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On the Heat Capacity of Pure Elements and Phases
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Recently, a model was proposed to predict cv as a function of temperature from the absolute zero 
to the melting temperature applied. This solution was based on critical grain nucleation to determine 
the volume, which contains the total number of modes for a particular equilibrium and non-equilibrium 
state to calculate the density of state (DoS), which is strongly dependent on the nucleus radius for both 
pure element and compound. Electronic and rotational energies were regarded for both elements and 
compounds in this formulation. The anomalies associated with cv can be easily considered in terms of 
their entropies, independent of their nature, as a local change in the DoS. Comparisons of cv for elements 
and compounds are performed against Thermodynamics software simulations and experimental data.
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1. Introduction
The molar heat capacity for the solid-state of matter is 

important thermophysical properties for many branches of 
physics and engineering. There are two methods available for 
its calculation: (i) for high temperatures, in which empirical 
formulae based on integrals and experimental coefficients 
are normally used to calculate the molar specific heat as a 
polynomial function of temperature1 and (ii) with the use of 
Computational Thermodynamics packages and databases to 
be numerically determined for a specific class of materials2. 
For lower temperatures, the realm of the quantum pronounced 
effects, historically, Einstein3 modeled the atoms in a solid 
as independent harmonic oscillators vibrating at the same 
frequency, thereby modeling the density of state as a delta 
function. This simple density of state sometimes provides a 
good correlation with experimental heat capacity measurements 
at high temperatures, failing at low temperatures. Debye4,5 
otherwise modeled the vibrations in a solid as normal modes 
of a continuous elastic body, which corroborates well for 
long-wavelength vibrations that do not depend on the 
detailed atomic character of the solid and do conform better 
experimental scatter to lower temperatures, but failing for 
many materials with a gap in the density of state6,7. Another 
approach is applying ab initio calculations to predict several 
thermodynamics properties and the molar heat capacity8,9. 
Debye’s model does not consider rotational10, electronic11, 
and magnetic12-14 energies contributions to the molar specific 
heat. The magnetic contribution to the molar heat capacity 
usually is empirical formulae to account for contributions 
of Curie, Neel, and Schottky transition anomalies15. They 
calculated the Gibbs-Thomson coefficient for the equilibrium 
and the non-equilibrium solidification of Al-Cu-Si-Mg alloys 
as a function of Si content. By observing a different set of 
Gibbs-Thomson coefficients values for equilibrium and non-

equilibrium conditions, they defined this coefficient for alloy 
by the limiting case16. Ferreira et al.17 derived a model for 
pure elements and compounds, regarding the critical radius 
expressed in terms of the temperature drop ( )( )T r∆  by means 
of the correlation between the solid-liquid surface tension 
( )slσ  and the bulk melting entropy by unit volume ( )S∀∆ , 
which writes in terms of the Gibbs-Thomson coefficient ( )Ã . 
Consequently, a relation between bulk lattice and the surface 
lattice interatomic spacings, i.e., the reciprocal lattice in both 
networks and density of state (DoS), and the total number of 
atoms in the volume and a correspondent density of atoms 
n limited by nucleation conditions were proposed. Authors 
regarded the electronic and rotational energies contributions 
to the molar heat capacity ( )vc .

In this paper, calculations are performed for molar heat 
capacities of pure elements and phases, compared with the 
Thermo-Calc Software simulations and with experimental data.

2. Numerical Approach and Analytical 
Models
The thermal energy of materials is stored in several forms, 

such as translational, vibrational, rotational, electronic, and 
magnetic. In a solid element and compound, the translational 
contribution can be neglected10. The magnetic anomalies 
are generally modeled empirically11-15. Considering all 
contributions to the thermal heat capacity, it provides,

Trans Vib Rot e Mag
v v v v v vc c c c c c= + + + +  	 (1)

In this paper, applying Equation 1 to a solid element or 
compound, and the discussion about the magnetic contribution 

Mag
vc  is postponed. By now, the thermal molar heat capacity 

expressed in terms of its components is given by
Vib Rot e

v v v vc c c c= + +  	 (2)*e-mail: ileao@ufpa.br
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The Gibbs-Thomson coefficient describes for pure 
elements the melting temperature depression mT∆  [ ]K , based 
on the solid-liquid interface tension slσ  . 1N m− 

  and on bulk 

melting entropy by unit volume S∀∆  . .1 3J K m− − 
 . The Gibbs-

Thomson is responsible for the effect of melting temperature 
drop6,7, which is associated with the surface free energy, 
due to elements bonds in the surface presenting a larger 
lattice interatomic spacing concerning that of the bulk. Let’s 
consider an isolated solid particle of diameter d  in its liquid, 
the Gibbs-Thomson equation for the structural melting point 
depression can be expressed by16:

( )          
   

bulk
sl m sl sl sl sl

m
sl

4 T 4 4 4 4T d n
H d S d S d S d d

γ γ σ γ σζ ζ ζ ζ
γ∀ ∀ ∀ ∀

Γ
∆ = = ≅ ≅ ≅

∆ ∆ ∆ ∆
 	 (3)

where n and ζ  are surface energy/surface tension relation 
parameters associated with the knowledge that crystals 
exhibit a surface stress that gives rise to small but detectable 
strains in the interior of the crystal, assumed as [ ] 1 mζ =  and 

sl

sl
n σ

γ
= , bulk

mT  is the bulk melting temperature [ ]K , H∀∆  is 

the latent heat of melting per unit volume . 3J m− 
  and d is 

the spherical solid-phase diameter [ ]m , respectively.
According to the definition presented, the Gibbs-Thomson 

coefficient Γ can be expressed as,

  bulk
sl sl mT
S H
σ σ

∀ ∀
Γ = =

∆ ∆
 	 (4)

The same does not occur to alloys. Jácome et al.18, while 
applying several microstructural evolution models for cellular 
and dendric growth to binary aluminum alloys, concluded 
that the Gibbs-Thomson of the solvent was not adequate to 
predict the evolution of high solute content alloys. Consider 
an alloy given by Al-50at%Ni, which one solvent, AlΓ  or NiΓ  
should be adequate to be carried out in the microstructural 
evolution models? They provide different results for the 
primary and secondary dendrite arm spacing. Consequently, 
the authors defined the alloy Gibbs-Thomson coefficient 

EqΓ  able to encompass the full range of alloy concentration,

  bulk
Eq sl sl L

Eq Eq
T

S H
σ σ

∀ ∀

Γ = =
∆ ∆

 	 (5)

where slσ  is the alloy solid-liquid surface tension, EqS∀∆  
and the alloy solidification entropy, bulk

LT  is the liquidus 
temperature, and finally, EqH∀∆  is the alloy latent heat per 
unit volume . 3J m− 

 .

As alloy solidification hardly occurs in equilibrium 
governed by the Lever Rule or in absolute non-equilibrium 
by the absence of solute back-diffusion in solid governed 
by the Scheil equation. Many authors contributed to the 
estimation and calculation of back-diffusion parameter β. 
In 1981, Clyne and Kurz19 derived an approximate relation,

( )/ / 1 1 22 1 e eα αβ α − −= − −  	 (6)

where α is the standard Fourier diffusion number. This 
proposed back diffusion treatment uses the Clyne and 

Kurz19 correction of the Brody and Flemings20. In 2001, a 
general and exact description of the back-diffusion parameter 
was derived, according to Voller21. The model used in this 
paper to calculate the back-diffusion parameter β is the one 
derived by Voller.

What is the connection between equilibrium and non-
equilibrium solidification for alloy the Gibbs-Thomson 
coefficient? It’s common knowledge that in the equilibrium 
solidification, higher latent heat is expected when compared 
to that in non-equilibrium conditions, as demonstrated in the 
work of Ferreira and Garcia16 and presented in Figure 1 for 
the alloys example above.

Figure  1 shows heat and latent heat per gram as a 
function of the temperature solidification range. The curve 
corresponding to the highest values of heat is associate with 
infinite diffusion in solid. The lowest curve represents the 
absence of back-diffusion in the solid phase. Between the 
curves is the so-called finite back-diffusion condition19-21.

In 2019, Ferreira and Garcia16 calculated the Gibbs-
Thomson coefficient for the equilibrium and the non-equilibrium 
solidification of Al-Cu-Si-Mg alloys as a function of Si 
content. By observing a different set of Gibbs-Thomson 
coefficients values for equilibrium and non-equilibrium 
conditions, they defined this coefficient for alloy by the 
limiting case. Expecting a greater undercooling for non-
equilibrium solidification conditions. Under infinite diffusion 
in the solid ( 1β = ) and no-back-diffusion in the solid ( 0β = )

  bulk
Eq sl sl m

Eq Eq
T

S H
σ σ

∀ ∀

Γ = =
∆ ∆

 	 (7a)

( )  Eq
Eq 4T d

d
Γ

∆ =  	 (7b)

and a non-equilibrium one as,

  bulk
Non Eq sl sl m

Non Eq Non Eq
T

S H
σ σ−

− −
∀ ∀

Γ = =
∆ ∆

 	 (8a)

( )  Non Eq
Non Eq 4T d

d

−
− Γ

∆ =  	 (8b)

Figure 1. Equilibrium and non-equilibrium latent heat and latent 
heat per gram as a function of temperature for Al-50at%Ni.
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Ferreira and Garcia16 assumed the solid-solid phase 
nucleation, based on several observations of equilibrated 
boundary groove shapes at multiple crystallographic 
orientations influencing the crystal-melt interfacial energy22,23, 
where the Gibbs-Thomson coefficient definition could be 
generalized for solid-phase transformations by carrying 
out the grain boundary surface tension GBσ  to predict the 
solid phase transformation temperature drop ( ) ,TT d∆  that is,

 
  
  bulk

SPT Eq GB GB T
T SPT Non SPT Non

T
S H
σ σ

∀ ∀

Γ = =
∆ ∆

 	 (9a)

( )  Eq
SPT Eq T

T
4

T d
d
Γ

∆ ≈   	 (9b)

and,

 
  

  bulk
SPT Non Eq GB GB T
T SPT Non Eq SPT Non Eq

T
S H

σ σ−
− −

∀ ∀

Γ = =
∆ ∆

 	 (10a)

( )
  SPT Non Eq

T
T

4
T d

d

−Γ
∆ ≈  	 (10b)

where, Eq
TΓ  and Non Eq

T
−Γ  is the Gibbs-Thomson coefficient of 

equilibrium and non-equilibrium solid phase transformation 
[ ].K m , GBσ  is the interface tension of the grain-boundary 

. 1N m− 
 ,

  SPT EqS∀∆  and  SPT Non EqS −
∀∆  are the bulk effective 

entropies of the solid phase transformation per unit volume 

for the equilibrium and non-equilibrium in . .3 1J m K− − 
  , 

respectively.   SPT EqH∀∆  and  SPT Non EqH −
∀∆ are the bulk heats of 

the solid phase transformation per unit volume . 3J m− 
  for the 

equilibrium and non-equilibrium conditions, respectively. 
bulk

TT  is the bulk solid transformation temperature [ ]K . The 
eutectic and eutectoid reactions are both examples of such 
solid transformations. The grain boundary surface tension 

GBσ  is greater than the solid/liquid surface slσ , as far as the 
solid-solid interface barrier energy for the nucleation of 
a new solid phase is greater than that of the solid-liquid.

In the case of an element, for a given nucleus to be 
stable and to grow, it must have at least a radius r greater 
than or even equal to the critical radius Cr , i.e., Cr r≥ . This 
critical radius can be expressed in terms of the temperature 
drop ( )T r∆  through the correlation between the solid-liquid 
surface tension slσ  and the bulk melting entropy by unit 
volume S∀∆ , which can be written in terms of the Gibbs-
Thomson coefficient Ã.

( )  
C

2T r r
r
Γ

∆ ≥ =  	 (11)

There is a relation between bulk lattice and the surface 
network parameters. Consequently, the reciprocal lattice in 
both networks and density of state (DoS) which is dependent 
on the nucleus radius. The density of state ( )D ω  for a given 
grain of volume ∀ regarding the critical nucleation radius, 
is defined as

( )  
  

2

2 3D
2

ωω
π ν
∀

=  	 (12)

where ω  is the frequency, ν  is the speed of sound in the 
solid phase. For a total number of atoms N  in the volume 
∀ and a correspondent density of atoms n, these variables 
can be expressed as,

 N n= ∀  	 (13)

The first Brillouin zone is exchanged by an integral over 
a sphere of radius Dk , containing precisely N  wave vectors 
allowed. As a volume of space k by wave vector is e requires,

( )3 3
D2 4 kN

3
π π

=
∀

 	 (14)

Then, the density of atoms n  can be obtained as,

 
 

33
D B D

2 2
k k1n

6 6 νπ π
Θ = =  
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 	 (15)

As observed in Equation 15, the compound fundamental 
frequencies are expressed as a function of the linear combination 
of Debye’s temperatures of elements i, that is,

B D
D

kω ⋅Θ
=



 	 (16)

where, DΘ  is the Debye‘s temperature of element i, Bk  and 
 are the constant of Boltzmann and Planck, respectively.

The electronic contribution to vec  is written in terms of 
the phonon energy Vib

vc  as the following,

  

3
ve D

Vib 3 2 bulk
v m

c 5 Z
c 24 T Tπ

Θ
=  	 (17)

where, Z is the valence of the element, bulk
mT  is the melting 

temperature of element [ ]K  and T is the absolute temperature [ ]K .
In 2019, Ferreira et al.17 considered the following approach 

for the rotational energy,

( )2
Rot 2

J J 15E  
4 M r

+
=

⋅


 [ ] J   	 (18)

where, J  is the rotational level corresponding to integer 
, , , ,  J 0 1 2 3= …, r and M  are the atomic radius and the molar 

mass, respectively. The rotational contribution Rot
vc  to molar 

heat capacity can be derived as,

( )
( )

 

3
Rot
v 2 22

B D D

J J 15 Rc
4 M rk Tω

+⋅ ⋅
=

⋅+ Θ

  . .1 1 J mol K  − − 
  	 (19)

where, R is the universal gas constant . .1 1J mol K− − 
 , Dω  is the 

maximum admissible frequency known as Debye’s frequency.
Debye’s temperature for pure elements is tipically 

found in the literature5. The Equation  17 addition of the 
electronic and Equation 19 of the rotational contributions 
to vc  , it provides,

( )( )
( )

( )

( )
 

 .     

/ .   

D

T
3 È 4 x

v a B ve2xD 0

3
Rot Dia
v 2

Dia D m

T x ec 1 0 D 9 N k dx 1 c
È e 1

E  RTn 1 2 9 0c 1
E  È T

ω

ρ
ρ

 
= + + + 

  −

  ⋅
+ + −   ⋅   

∫
	(20)



Ferreira4 Materials Research

Let’s analyze the effects of surface and the bulk reciprocal 
lattices, for a grain of radius greater than the critical concerning 
the Brillouin zone, whose reciprocal lattice do not coincide 
for bulk and surface, due to atoms arrangement in both 
lattices. Another important aspect is the difference in the 
solute concentration in the bulk and in the surface regions 
that contributes to change the reciprocal lattice.

The density of state ( )Comp CompD ω  for a grain of a 
compound of volume ∀, with a certain critical nucleation 
radius is defined as

( )  

  

2
Comp

Comp Comp 2 3D
2

ω
ω

π ν

∀
=  	 (21)

where Compω  is the frequency, ν  is the speed of sound in 
the solid compound. For a total number of atoms N  in the 
volume ∀ and a correspondent density of atoms n, these 
variables can be expressed as

 N n= ∀  	 (22)

The first Brillouin zone is exchanged by an integral over 
a sphere of radius Dk , containing precisely N  wave vectors 
allowed. As a volume of space k by wave vector is e requires

( )3 3
D2 4 kN

3
π π

=
∀

 	 (23)

Then, the density of atoms n can be obtained as

, 
 

33
B D CompD

2 2
kk 1n

6 6 νπ π

Θ 
= =  
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 	 (24)

and,

, , 
n

D Comp i D i
i 1

x
=

Θ = Θ∑  	 (25)

As observed in Equation 14, the compound fundamental 
frequencies are expressed as a function of the linear combination 
of Debye’s temperatures of elements i , that is,

,
,

B D Comp
D Comp

k
ω

⋅Θ
=



 	 (26)

where, ,D iΘ  is the Debye‘s temperature of element  i, ,D CompΘ  
is the compound Debye‘s temperature, Bk  and  are the 
constant of Boltzmann and Planck, respectively.

The undercooling for a critical grain of a volume ∀ can 
be written for solid-liquid nucleation

  Comp bulk
Comp sl sl L

Comp Comp
T

S H
σ σ

∀ ∀

Γ = =
∆ ∆

 	 (27a)

( )  Comp

C
C

2T r
r
Γ

∆ =  	 (27b)

and for solid-solid nucleation as

  Comp bulk
Comp GB GB T
G Comp Comp

T T

T
S H
σ σ

∀ ∀

Γ = =
∆ ∆

 	 (27c)

( )  Comp
T

CG
CG

2
T r

r
Γ

∆ =  	 (27d)

where, CompΓ  is the solid-liquid nucleation Gibbs-Thomson 
coefficient [ ].K m , Comp

GΓ  is the solid-solid nucleation Gibbs-
Thomson coefficient [ ].K m , Cr  is the critical solid-liquid 
nucleation grain radius [ ]m , CGr  is the critical solid-solid 
nucleation grain radius [ ]m .

The element i electronic contribution to vec  is written in 
terms of the phonon energy Vib

vc  as the following,

, ,

,  

3
ve i D i

iVib 3 2 bulk
v m i

c 5 Z
c 24 T Tπ

Θ
=  	 (28)

where, iZ  is the valence of element i, ,
bulk
m iT  is the melting 

temperature of element i [ ]K  and T is the absolute temperature 
[ ]K .

Thus, the total electronic contribution ,ve ic  to the electronic 
molar heat capacity ,  ve Compc , can be expressed as

, , , , ,
n n n n

ve Comp i ve i i j ve i ve j i ve i
i 1 i 1 j i i 1

c x c x x c c x c
= = > =

= ⋅ + ⋅ ⋅ ⋅ + ⋅∑ ∑ ∑ ∏ 	 (29)

where, ix  is the molar fraction of element i.
In 2019, Ferreira et al.17, regarded the following approach 

for the rotational energy for each element i,

( )
,

i i2
Rot i 2

i i

J J 15E  
4 M r

+
=

⋅
  [ ] J  	 (30)

where, iJ  is the rotational level corresponding to integer 
, , , ,  J 0 1 2 3= …, ir  and iM  are the atomic radius and the molar 

mass of element i , respectively. The rotational contribution 
Rot
vc  to molar heat capacity can be derived as,

( )
( )

, ,

 

 

3 n i i iRot
v 2 22 i 1 i iB D Comp D Comp

x J J 15 Rc
4 M rk Tω =

⋅ +⋅ ⋅
=

⋅+ Θ
∑

  . .1 1 J mol K  − − 
  	 (31)

where, R  is the universal gas constant . .1 1J mol K− − 
  , ,D  Compω  

is the maximum admissible frequency known as Debye’s 
frequency.

The modified Debye’s equation for compounds is derived 
on the Neumann-Koop principal. In this model proposed by 
Ferreira et al.17, the Authors neglected magnetic anomalies 
such as Curie, Neel, and Schottky. The obtained final equation 
molar heat capacity for a compound is given by,

( )( )
( )

( )

( )

,

,

,

 .      

 / .   
  

D Comp

T
3 È 4 x

v Comp Comp a B ve2xD Comp 0

3
Rot i Dia
v 2

Dia i D Alloy L

T x ec 1 0 D 9 N k dx 1 c
È e 1

E RTn 1 2 9 0c 1
E È T

ω

ρ
ρ

 
= + + +  

  −

  
 + + −     

∫
	 (32)

2.1. Magnetic contribution due to anomalies
Specific heat can be characterized by the fundamental 

excitations involved in the phase transition24. According 
to the authors, phase transitions involving spin, charge, 
lattice, and orbital degrees of freedom, which under certain 
circumstances for a given level of lattice thermal vibration 
associated with special band structure, would define a state of 
matter, the so-called superconducting state. The concurrence 
among those phase transitional mechanisms would easily 
explain how a superconducting state would be achieved at 
higher temperatures by increasing the pressure25, which is 
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also a variable of state, such as the solute composition26. 
According to Souza et al.24, entropy change is associated 
with a first-order transition, no matter its nature, and can 
be directly obtained by integrating specific heat over the 
temperature T . It means that entropy plays the most important 
role in predicting anomalies. As Ferreira et al.17 stated the 
transformation (transitional) entropies change the Density of 
State ( )D ω . Consequently, the entropy must be provided, as 
far as the nucleation entropies of solid-liquid and solid-solid 

transformations needed to be provided to determine the critical 
volume, which encompasses the total number of modes.

3. Results and Discussion
The physical properties of elements used to calculate the 

molar heat capacity are provided in Table 15,28.
Figures 2-5 presents the molar heat capacities for pure 

Al, Fe, Zr, and Be and the experimental data. Debye’s model 

Table 1. Thermophysical properties of elements.

Properties Unit Value
Aluminum Debye’s Temperature - ,D Al  Θ K 433.0

Aluminum latent heat of fusion - Al  H∆ . 3J m− 397000

Aluminum liquid phase density at the melting point - ,L Alρ . 3kg m− 2557

Aluminum atomic radius – Alr pm 118

Iron Debye’s Temperature - ,D Fe  Θ K 477.0

Iron latent heat of fusion - Fe  H∆ . 3J m− 247400

Iron liquid phase density at the melting point - ,L Feρ . 3kg m− 7030

Iron atomic radius – Fer pm 156
Zirconium Debye’s Temperature - ,D Zr  Θ K 290.0
Zirconium latent heat of fusion - Zr  H∆ . 3J m− 196000

Zirconium liquid phase density at the melting point - ,L Zrρ v 6324.4
Zirconium atomic radius – Zrr pm 160
Beryllium Debye’s Temperature - ,D Be  Θ K 981.0

Beryllium latent heat of fusion - Be  H∆ . 3J m− 1728000

Beryllium liquid phase density at the melting point - ,L Beρ . 3kg m− 1794.0

Beryllium atomic radius – Ber pm 112.0
Copper Debye’s Temperature - ,D Cu  Θ K 347.0

Copper latent heat of fusion - Cu  H∆ . 3J m− 209000

Copper liquid phase density at the melting point - ,L Cuρ . 3kg m− 8125.0

Copper atomic radius – Cur pm 145.0
Nickel Debye’s Temperature27 - ,D Ni  Θ K 477.0

Nickel latent heat of fusion - Ni  H∆ . 3J m− 298500

Nickel liquid phase density at the melting point - ,L Niρ . 3kg m− 8237.91

Nickel atomic radius – Nir pm 149.0
Tellurium Debye’s Temperature - ,D Te  Θ K 153.0

Tellurium atomic radius – Ter pm 138.0

Germanium Debye’s Temperature - ,D Ge  Θ K 371.0

Germanium atomic radius – Ger pm 122.0

GeTe latent heat of fusion - GeTe  H∆ . 3J m− 236000.0

GeTe liquid phase density at the melting point - ,L GeTeρ . 3kg m− 6100

GeTe fusion Temperature - , F GeTeT K 998.0

Planck constant - h J.S 6.626 x 10-34

Boltzmann constant- Bk . 1J K − 1.380658 x 10-23

Gas constant - R . .1 1J mol K− − 8.31451
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predictions are present as a reference for Ferreira’s model 
calculations17. Instead of using the sound velocities as an 
approximation for the last term of Equation 21, the value of 
Young’s modulus and the correspondent density was applied 
to this term. The model proposed17, agrees for low and high 
temperatures with experimental data for Al29,30, as far as with 
Thermo-Calc simulations for equilibrium.

In the case of Fe, equilibrium, and non-equilibrium 
predictions are shown in Figures 3a and Figure 3b, respectively. 
For low temperature,  T 300 K≤ , the experimental data are 
those of Kelley34, Euken and Werth35, and Simon and Swain36. 
For high temperatures,  T 300 K> , Valencia and Quested31 
compiled experimental data from three sources from 
Smithells37, Mills38, and Gaskell39. The experimental data 
determined by Awbery and Griffiths40 fits the Thermo-Calc 
calculations for the equilibrium condition. In Figure 3a a good 
agreement is observed for low and high temperatures for all 
experimental data, Thermo-Calc simulations, and Ferreira’s 
model17, except the dataset compilation found in Valencia 
and Quested31. As Valencia’s compilation dataset provides 
values below those expected for the equilibrium, it is probably 
determined under non-equilibrium conditions. Figure  2b 
presents predictions of Ferreira’s model for non-equilibrium 
conditions, even assuming that a non-equilibrium condition 
is established since the beginning of data measurements of 
the three datasets, which is probably not true, Ferreira’s 
model fits the data accordingly.

Figure 2. Comparison of the molar heat capacity of pure Al by 
applying Debye, Thermo-Calc, the present approach, and experimental 
results of Giauque and Meads29 and Brooks and Bingham30.

Figure 3. Comparison of the molar heat capacity of pure Fe by 
applying Debye, Thermo-Calc, and Ferreira et al.17, and Valencia 
and Quested31, ( A ) equilibrium, and, ( B ) non-equilibrium.

Figure 4. Comparison of the molar heat capacity of pure Zr by 
carrying out Debye, Thermo-Calc, and Ferreira’s model.

Figure 5. Comparison of the molar heat capacity of pure Be by carrying 
out Debye, Thermo-Calc, Ferreira’s model, and experimental data 
for low-temperature Cristescu and Simon32 and high-temperature 
Howe et al.33.
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Figure 4 presents the molar specific heat for Zr as a 
function of temperature from 0 K to 900 K, for Debye’s 
model, Ferreira’s model predictions for fundamental 
(n 0= ) and fourth (n 4= ) normal modes and Thermo-Calc 
calculations. The experimental scatter for high temperatures 
is that found in Pankratz and Mrazek41, and Valencia and 
Quested31, whose data is compiled from Smithells37. A good 
agreement can be noticed among the experimental datasets 
and Ferreira’s model calculation.

Figure  5 shows the comparison of predictions for 
molar specific heat capacity considering Ferreira’s model 
and Thermo-Calc. The experiments for low temperature, 
Cristescu and Simon32, and high temperatures, Howe et al.33 
agree with the theoretical predictions of Ferreira’s model 
and Thermo-Calc.

Figure  6 presents the calculation of molar specific 
heat capacity of pure Nickel as a function of temperature, 
comparison with Thermo-Calc and, the experimental data 
found in Desai42. The magnetic transition ferromagnetic/
paramagnetic of Ni can be captured if the calculation of 
molar specific heat capacity is performed by the composition 
of equivalent wavevectors at lattice points n’s, using 
n = {0, 1, 3, 7, 10, 13, 10, 7, 3, 1, 0} the model fits the 
experimental scatter. It seems transformation pass through the 
sequence of equivalent wavevectors, /k 2 aπ+ , where a is the 
lattice spacing at the current temperature, and its anomalies 
found near the Curie point, as observed by Kohlhaas et al.43.

Figures 7-9 present the molar heat capacities for AL2CU, 
AL3MG2, and AL3NI2. Debye’s model’s predictions are 
present only as a reference for Ferreira’s model calculations17. 
Instead of using the sound velocities as an approximation 
for the last term of Equation 32, the value of Young’s 
modulus and the correspondent density was applied to this 
term. From the point of view of nucleation of a compound, 
for a nucleating stable grain concerning the Brillouin zone, 
another aspect that plays an important role is the difference 
in the solute concentration in the bulk and the surface 
regions contributes to change both reciprocal lattices. In 
the case of the AL2CU phase, calculations are performed by 
applying Thermo-Calc, and TTAL7 database, Thermo-Calc 
TCAPI5 (Thermo-Calc Application Programming Interface 
version 5) interface using C++ language routine to perform 
calculations of specific heat by applying the TCMP2 database, 
and, finally, Thermo-Calc and COST-507 databases. The 
first two simulations seem to agree with each other for the 
whole temperature range. Thermo-Calc using COST-507 
seems to deviate from equilibrium but still provides good 
results slightly. Ferreira’s model prediction fits Thermo-Calc 
and TCAPI simulations for all databases until temperature 
reaches 450 K. Beyond, this temperature agrees better with the 
Thermo-Calc (TTAL7) and TCAPI5 (TCMP2) calculations. 
In Figure 8, calculations were made for the AL3MG2 phase 
for the equilibrium conditions, where Thermo-Calc, TCAPI, 
and Ferreira’s model simulations agreed for the whole 
temperature range. In the Al3Ni2 intermetallic phase, only 
Thermo-Calc using the TTAL7 database, and TCAPI5 routine 
by utilizing TCMP2 calculation are performed. Ferreira’s 
model results behave equally with the specific molar heat 
capacity predicted of Thermo-Calc and TCAPI calculations 
for the whole range, as shown in Figure 9.

Figure 10 presents the calculation for the molar specific heat 
of GeTe compound from 100 to 900 K by applying Ferreira’s 
model and comparing it with two sets of experimental data 
found in Zalden et al.28. A very interesting physical behavior 

Figure 6. Comparison of the molar heat capacity of pure Ni by 
applying Debye, Thermo-Calc, Ferreira’s model, and experimental 
data from Desai42.

Figure 7. Comparison of the molar heat capacity of the AL2CU 
phase by carrying out Debye, Thermo-Calc, and Thermo-Calc 
TCAPI5 simulations and the Ferreira’s model17.

Figure 8. Comparison of the molar heat capacity of the AL3MG2 
phase by carrying out Debye, Thermo-Calc, and Thermo-Calc 
TCAPI5 simulations and the Ferreira’s model17.
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can be observed, as around 650 K there’s a transition from 
the second ( )n 1=  normal mode to the fundamental normal 
mode ( )n 0=  captured by Ferreira’s model’s predictions. 

Calculations with other Pure metals and phases have shown 
similar behavior.

The critical volume ∀, of radius Cr r≥ , which depends 
on the nucleation kinetics, as demonstrated by Equation 11 
and Equation 12, provide the total number of modes N , 
under nucleation kinetics restrains. For the lack of nucleation 
data, the perovskite K2La2Ti3O10 will not be calculated in 
this paper as many thermophysical properties couldn’t be 
found in the literature. Figure 11 represents only the first 
dataset of Sankovich et al.44.

4. Conclusion
The model proposed previously by Ferreira  et  al.17 

the density of state (DoS) is a function of the nucleation 
parameters, which influence the reciprocal lattices in the 
bulk and in the surface of the grain to determine the total 
number of modes, and consequently, the correct predictions 
of the Density of State. The model successfully predicts the 
molar heat capacity’s behavior from absolute zero to high 
temperatures to the melting point for elements and compounds. 
Furthermore, the formulation encompasses solid-solid grain 
nucleation, as long as the Gibbs-Thomson coefficient, which is 
also defined in terms of the solid-solid nucleation, to predict, 
for instance, the molar specific heat capacity of perlite. A 
composition of equivalent wavevectors successfully predicted 
the magnetic transition of Ni. An interesting aspect is the 
transition mode of the wavevector observed in GeTe, which 
behavior can also be verified in pure metals, as far as many 
other substances. The lack of trustworthy thermophysical 
properties at nucleation temperature (fusion temperature) 
for perovskite K2La2Ti3O10 did not allow the author to 
extend the predictions for higher temperatures, as far as 
Ferreira’s model does not have any adjustment parameters, 
it encompasses only physical properties. Nevertheless, it has 
predicted the behavior of perovskite’s heat capacity correctly 
where Debye’s model fails, as it has no information of the 
critical volume that contains the total number of modes for a 
particular equilibrium and non-equilibrium state. Anomalies 
observed in the molar specific heat capacity, such as thermal, 
magnetic, configurational transitions, and electronic, can 
be treated by combining equivalent wavevectors and the 
Density of State (DoS). This would also explain how the 
change of other thermodynamic variables of state, such as 
composition and pressure, can dislocate the superconducting 
state’s critical temperature to higher values.
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