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Thermodynamic Effect of Pressure on Nucleation Activation Energy

Diego Vilar da Silvaa* , Rodinei Medeiros Gomesa

aUniversidade Federal da Paraíba (UFPB), Programa de Pós-Graduação em Engenharia Mecânica, 
58051-900, João Pessoa, PB, Brasil.

Received: December 26, 2020; Revised: May 02, 2021; Accepted: June 04, 2021

The first stage of the solidification of metal alloys is nucleation, during this stage is defined the 
number of grains present in the final structure, just as the conditions in which the same will grow. 
The application of pressure in the solidification is mostly studied as an operational parameter, and its 
effects are described and commented extensively in literature. The objective of this paper is to study 
the effect of pressure on nucleation, still not to describe but to explain it, for this purpose the pressure is 
treated as a thermodynamic variable. From this analysis it was possible to determine the real influence 
of pressure on the activation energy, being clear that its effect is equivalent and co-dependent to that 
of the undercooling, and can thus cause considerable variations in the activation energy, much larger 
than what is proposed in previously published papers that approach the subject, causing a considerable 
stimulus on nucleation. It was also observed that the curve that represents the effect of pressure on the 
activation energy proposed in this paper, has a similar form to the curves that describe how the pressure 
refines structures, resulting from the process of solidification under pressure reported in literature.
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1. Introduction
Casting is one of the main manufacturing processes 

used in the production of metal parts, and the effects of the 
solidification process on these parts is most evident when 
casting is the final operation. This influence can also be 
seen in the finished product even after extensive machining, 
since the solidification structure and its associated defects 
are difficult to eliminate once they are created, so a good 
control of the solidification process from the initial stages 
is of great importance. Nucleation is the dominant process 
at the beginning of solidification, and it leads quickly to 
the determination of the final number of grains with each 
nucleus forming a grain. The conditions that lead to nucleation 
are therefore of the utmost importance in determining the 
characteristics of any microstructure1.

The mechanical properties of a metal alloy have a strong 
dependence on the structure produced during solidification, 
both on the macro and micro scale, and what controls the 
structural parameters are the thermal variables and the 
process dynamics, which in practice are controlled by the 
composition of the alloy, and by operational parameters such 
as mold preheating temperature, casting temperature, mold 
geometry, cooling mechanism and others. Each of these 
operational parameters changes the way the system evolves 
to its final state in a different fashion, causing variations in 
the structure of the resulting alloy.

Another operational parameter used in casting is the 
application of external pressure, according to Sobczak et al.2 the 
application of pressure promotes a more intimate contact 
between the metal and the mold walls, which causes an 

increase of the solidification and cooling rates, it also causes a 
variation in the melting temperature during the solidification 
of the alloy, among other changes in the properties of the 
material. In this way the application of pressure during 
solidification, if used correctly, can refine structures on 
both macro and micro scales of various metal alloys, thus 
improving the mechanical properties such as hardness and 
strength. These attributes make solidification under pressure 
a process capable of producing high quality components for 
critical weight applications, such as the automotive industry.

Conventional casting technologies that use pressure are 
usually based on purely empirical knowledge, and do not 
consider models originated from the understanding of the 
physical changes caused by pressure. The understanding of 
all the complex physical phenomena that accompanies the 
solidification under pressure is facilitated by the thermodynamic 
and kinetic descriptions2.

In this paper the effect of pressure on nucleation is 
discussed and explored, but not as an operational parameter 
but as a thermodynamic variable. When calculating its effects 
on the physical properties involved in the nucleation process, 
a set of equations was obtained and its implications were 
compared with the results published in the literature, making 
it clear that the effect of pressure on nucleation contemplates 
a much greater magnitude than what is proposed so far.

2. Classic Theory of Nucleation
In general the solidification occurs by a process of 

nucleation and growth in which the nuclei of the crystals are 
formed, which then by the addition of more atoms forms the *e-mail: diegovilartpb@hotmail.com
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grains or crystals. Nucleation occurs only when the kinetic 
energy of several atoms of the liquid metal reaches a value 
low enough to allow them to occupy equilibrium positions in 
the crystalline lattice, the conditions favoring the occurrence 
of nucleation depends on the thermodynamic aspects and 
the kinetic conditions of the transformation. When the solid 
is formed inside the liquid without the aid of any type of 
external energetic stimulant, it is said that the nucleation is 
homogeneous3.

In a phase transition such as solidification the transformation 
process cannot occur at any arbitrary undercooling. The reason 
is given by the high curvature of the interface associated 
with the crystal of atomic dimensions, this occurs because 
the difference of capillary pressure between the two phases, 
which is represented as curvature on the interface. This 
difference of pressure can be obtained by the Laplace-Young 
equation, which for a spherical geometry can be written as:

2p Kσ∆ = 	 (1)

Where σ  is the surface energy density and K  is the average 
curvature of the interface. At constant pressure there is a 
single temperature at which a pure liquid substance can 
coexist in equilibrium with its solid phase, that is the phase 
transition temperature.

At this temperature the free energies of both phases are 
equal. Below the melting temperature fT  the solid is the phase 
of lower energy, so this is the most stable one. But the liquid 
does not necessarily becomes solid immediately below the 
melting temperature, when an atomic cluster is arranged in 
a crystalline order to form an embryo a surface is formed, 
which carries a structure similar to both solid and the liquid 
phases, this surface separates the solid from the disordered 
liquid. Associated with this surface is a surface energy 
which is different from both the energy of the solid phase 
and the liquid phase. With the presence of the interface the 
equilibrium point of the system undergoes a temperature 
change given by rT∆  due to the surface energy. The size of 
the crystal that allows the equilibrium between the curved 
crystal and the liquid is called critical size, it is given by 
a critical radius  which in the case of spherical surfaces 
can be calculated considering the conditions of equilibrium 
between the crystal and the liquid1.

This condition suggests that homogeneous nucleation can 
occur through the formation of spherical embryos, since this 
geometric form is the one with the lowest surface/volume 
ratio3. Under these conditions the total free energy change 

G∆  will be given by:

V iG G G∆ = ∆ + ∆ 	 (2)

Where VG∆  is the free energy variation associated with the 
volume of transformed material, and iG∆  is the free energy 
variation associated with the created surface. The variation 

VG∆  for a sphere of radius r  is given by:

( )4 ³
3V S LG r g gπ∆ = − 	 (3)

Where Lg  and Sg  are respectively the free energies per 
volume of the liquid and the solid. The variation of Gibbs 
free energy can be written as:

( ) ( )S L S L S LG G H H T S S− = − − − 	 (4)

Where H is the enthalpy, S is the entropy, T is the transformation 
temperature and the subscripts S and L represents the solid 
and liquid phases. The enthalpy change is given by (4):

dH TdS Vdp= + 	 (5)

Where V  is volume, and p is pressure. Considering that the 
phase transition takes place under constant pressure, and 
integrating both sides of the Equation 5 it follows:

S L lH H Q− = 	 (6)

Where lQ  is the latent heat of fusion. The entropy change 
of the system is defined as4:

QrevdS
T

δ
= 	 (7)

Where revQ  is the reversible heat exchanged in the transformation. 
Since during phase transition the temperature does not change, 
one can write the entropy variation as:

l
f

QS
T

∆ = 	 (8)

Substituting Equations 6 and 8 into Equation 4 one gets:

l
S L l

f

QG G Q T
T

 
 − = −
 
 

	 (9)

That can be written as:

1S L l
f

TG G Q
T

 
 − = −
 
 

	 (10)

And normalizing the Equation 10 per volume unit gives:

1S L
f

Tg g L
T

 
 − = −
 
 

	 (11)

Where L  is defined as latent heat of fusion per volume unit. 
And substituting Equation 11 into 3 gives:

34 1
3V

f

TG r L
T

π
 
 ∆ = −
 
 

 
34

3
f

V
f

T T
G r L

T
π

 −
 ∆ =
 
 

	 (12)

Defining the undercooling T∆  as:

fT T T∆ = − 	 (13)

And substituting 13 into 12 gives:
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4 ³
3V

f

TG r L
T

π ∆
∆ = 	 (14)

With the formation of the solid particle, a solid/liquid 
interface is established and consequently, additional energy 
associated with that interface. The free energy variation 
associated to this surface iG∆ , in the case of spherical 
geometry is given by:

4 ²i iG rπ σ∆ = 	 (15)

Where iσ  is the surface energy density. Then the total free 
energy change in the formation of a solid spherical particle 
of radius r  is given by the sum of the two terms iG∆  and 

VG∆ , that is, the sum of Equations 14 and 15:

4 ³ 4 ²
3 i

f

TG r L r
T

π π σ∆
∆ = + 	 (16)

The sum of these two energy components leads to a 
resulting curve passing through a maximum value, which is 
defined as the activation energy for nucleation, which must 
be achieved to form a stable nucleus of critical radius. This 
point can be determined by making:

( )
0

d G
dr
∆

= 	 (17)

That is:

24 8 0c i c
f

TL r r
T
π πσ∆

+ = 	 (18)

Where cr  is the critical nucleus radius given by:

2 i f
c

T
r

L T
σ

=
∆

	 (19)

And the maximum value of G∆  can be determined by 
substituting the critical radius of Equation 19 into Equation 16:

316

3 ²

i
c

f

G
TL

T

πσ
∆ =

 ∆ 
 
 

	 (20)

Particles that reach a radius greater than the critical radius 
become stable nuclei that will grow within the liquid phase, 
whereas those with a radius smaller than the critical radius return 
to the liquid state. Equations 19 and 20 clearly demonstrate 
the dependence of cr  and cG∆  with undercooling T∆ , this 
undercooling is determined by the curvature of the interface.

In the following topics are proposed and discussed equations 
derived from thermodynamics that describes the effects of 
pressure to the critical radius and the activation energy.

3. Pressure Influence on Activation Energy
One of the main parameters of homogeneous nucleation 

is the critical radius of the nucleus, and the factors that 

determine it have essentially a thermodynamic nature being 
the main factor, according to the classical theory of nucleation, 
undercooling (temperature), but thermodynamically speaking 
pressure is a parameter as primitive as temperature, both 
intensive parameters and independent variables of Gibbs 
potential. Therefore considering a process to which the 
pressure variates, it must be taken into account throughout it.

As regards the literature that approaches this topic one can 
find a very straightforward review in Sobczak et al.2, where 
it can be concluded that according to the papers published so 
far, the effects of pressure on the critical radius of the nuclei 
are generally due to the variation in coexistence temperature 
and on the energy density of the interface.

In the classical theory of nucleation briefly exposed in 
this paper, it was discussed the thermodynamic relations that 
rules the process of homogeneous nucleation when there is no 
external pressure on the system. In this section the influence of 
external pressure on nucleation will be discussed considering 
it as an independent variable of the Gibbs potential as well 
as temperature, calculating its influence directly from the 
thermodynamic equations.

It was previously observed on equation 5 that the pressure 
differential reduces to zero in the case of constant pressure, 
but considering a pressure variation during nucleation, and 
considering the effect of pressure on the latent heat, the 
enthalpy change given would be calculated as:

0

p

lp

p

H Q Vdp∆ = + ∫ 	 (21)

Where lpQ  is a pressure-dependent latent heat. Aluminum 
alloys are widely used in casting under pressure, so considering 
a system formed only by pure aluminum, one can calculate 
the value of the integral in Equation 21 by to writing V  as a 
( )V p  function. This can be done by using the state equation 

of ideal solids:

( ) ( )0 0 01V V T T p pγ κ = + − − −  	 (22)

Where γ  is the coefficient of volumetric expansion at constant 
pressure, defined as:

00

1 V
T p pV

γ
=

∂
=

∂
 	 (23)

And κ  is the coefficient of isothermal compressibility, 
defined as:

0
0

1 V
p T TV

κ
=

∂
= −

∂
	 (24)

Now one must write T  as a ( )T p  function in Equation 
22. Observing the curve describing the dependence of the 
melting temperature as a function of the applied external 
pressure to a system formed of pure aluminum, presented in 
Jozsef and Chen5, it can be seen a linearity roughly between 
0 GPa and 20 GPa, as showed in Figure 1:
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This linearity is relevant because the vast majority of 
castings performed under pressure are within this range, 
in the industry it’s generally in the order of 100 MPa≈ . 
By restricting the range of allowable pressure variations 
to 0 10 p GPa≤ ∆ ≤ , and considering a system made of pure 
aluminum, one can estimate a linear ( )T p  function like:

( )0pf fT T n p p= + − 	 (25)

Where 
pfT  is the pressure-dependent fusion temperature, 

fT  is the fusion temperature at atmospheric pressure, 
dTn
dp

=  is the slope of this curve. In Sobczak et al.2, the 
value of this slope is presented as 53.7 /K GPa, as shown 
in Figure 2:

Now one can substitute Equation 25 into (22):

( ) ( )0 0 01V V n p p p pγ κ = + − − − 

( )( )0 01V V n p pγ κ = + − − 
	 (26)

And use Equation 26 to calculate the integral of Equation 21:

( )( )
0

0 01

p

p

V n p p dpγ κ + − − ∫

( ) ( )( )
0

²
2

n p
V p

γ κ − ∆
∆ + 

  

	 (27)

To quantify the constants of Equation 27, it should 
be remembered that this transformation takes place 
close to the melting point of aluminum, so it must be 
used the values of the quantities under these conditions. 
In Touloukian et al.6 one can find the coefficient of volumetric 
expansion as 6 1113,4 10 Kγ − −= × . With regard to the isothermal 
compressibility, it does not vary perceptibly between 300  K
and 933K , as described in Hänström and Lazor7, therefore 
it is reasonable to consider the value 10,014GPaκ −=  which 
is the one obtained at 300K .

By substituting the values of the constants in Equation 27, 
we obtain:

( )
( )( )21

0 0
0,0103

 
2

GPa p
V p V p

− − ∆ ∆ + ≅ ∆ 
 
 

	 (28)

This shows that the second term on the right-hand side of 
Equation 27 is not relevant even at high pressures, becoming 
significant only at pressures in the order of 10GPa or greater. 
But since the pressure variations used in practical cases 
revolves around 100MPa, it is reasonable to disconsider the 
second term of Equation 27.

Regarding the effect of pressure on the latent heat 
exchanged it can be given by the equation (29), as shown in8:

( )( ) ( )
fp

f

T
lp l p l p sTQ Q c c dT= + ∫ − 	 (29)

Where ( )p lc  is the heat capacity of aluminium in the liquid 
phase, and ( )p sc  is the heat capacity of aluminium on the 
solid phase. The values the calorific capacities are given by9:

( ) 7 / .p lc J K mol=

( ) ( )34,94 2,96 10  / .p sc T J K mol−= + ×
	 (30)

Using the values of Equations 30 on the Equation 29 it 
gives:

( )37 4,94 2,96 10
f p

f

T
lp l

T
Q Q T dT−= + − − ×∫

2 2
32,06 2,96 10

2
pf f

lp l
T T

Q Q T −
 − = + ∆ − ×   
 

	 (31)

Substituting Equation 25 on Equation 31 it can be determined 
the influence of pressure on the latent heat of fusion:

( ) ( )3 (2
2,06 2,96 10

2
f

lp l
n p T n p

Q Q n p −  ∆ + ∆
 = + ∆ − ×
 
 

	 (32)

Using the values of the constants 933 fT K=  and
53,7 /n K GPa= , one can find that it takes about 8GPa to 

Figure 1. Coexistence curve for solid and liquid aluminum5.

Figure 2. Melting point of aluminum and eutectic temperature of 
Al-Si system as function of pressure2.
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decrease 5% the fusion latent heat, so at operational pressures 
this variation can be considered negligible. Therefore for 
this discussion onwards it will be considered that lp lQ Q= .

Given the considerations made regarding Equation 27 and 
(32), and substituting Equation 27 into (21) the variation of 
enthalpy is given by:

0lH Q V p∆ = + ∆ 	 (33)

Considering the effect of the pressure on the entropy 
and substituting (25) into (7) gives:

l
f

QS
T n p

∆ =
+ ∆ 	 (34)

Now substituting Equation 33 and Equation 34 in 
Equation 4 gives:

( )0
l

l
f

TQG Q V p
T n p

∆ = + ∆ −
+ ∆ 	 (35)

Which can be written as:

01l
f

TG Q V p
T n p

 
∆ = − + ∆ 

+ ∆  

0l
f

T n pG Q V p
T n p

 ∆ + ∆
∆ = + ∆ 

+ ∆  

	 (36)

Normalizing the Equation 36 per volume unit gives:

S L
f

T n pg g L p
T n p

 ∆ + ∆
− = + ∆ 

+ ∆  
	 (37)

Now Equation 37 can be substituted in (3) to obtain:

4 ³
3V

f

T n pG r L p
T n p

π
   ∆ + ∆   ∆ = + ∆

   + ∆   

	 (38)

Taking into account the influence of pressure on the 
surface energy density, according to Sobczak et  al.2 it is 
given by the following equation:

T

V p
p A
σ κ

 ∂  = ∆   ∂   
	 (39)

Where A is the area of the nucleus. Considering a spherical 
nucleus, Equation 39 can also be written as a function of 
the radius:

3

2

4
3

34T

r rp p
p r

πσ κ κ
π

 ∂
= ∆ = ∆ ∂ 

	 (40)

Where r  is the radius of the nucleus, which suggests that 
the dependence of surface energy density on pressure is 
proportional to the size of the nucleus and the mechanical 
properties of the material. This equation was deduced 
assuming that the radius of the nucleus does not vary with 
the application of pressure.

In order to quantify the magnitude of the pressure effect 
on the density of surface energy, one can use typical values 

on Equation 40. Even without the effect of external pressure 
the critical radius of a stable nucleus assumes values in the 
order of 910 m− 1, κ  assumes a value of the order of 2 110 GPa− − , 
and pressures used operationally are in the order of 110 GPa− , 
so the variation of the energy density with pressure is in 
the order of:

2 2
12 8/ /10 10

T

J m J cm
p GPa GPa
σ − − ∂

= = ∂ 
	 (41)

Without external pressure the surface energy density takes 
values in the order of 610 / ²J cm− 10, so it will take at least 
10 GPa to make a relevant variation, therefore the effect of 
pressure on the density of energy will be disregarded in this 
discussion. Now replacing Equations 38 and (15) in (2) gives:

4 ³ 4 ²
3 i

f

T n pG r L p r
T n p

π π σ
   ∆ + ∆   ∆ = + ∆ +

   + ∆   
	 (42)

Calculating the critical pressure-dependent radius gives:

2p i
c

f

r
T n pL p

T n p

σ
=

 ∆ + ∆  + ∆
 + ∆ 

	 (43)

Then, as can be seen from Equation 43, the increase in 
pressure causes a decrease in the critical radius. It can also 
be realized that at 0p∆ =  Equation 43 reduces to Equation 
19. Now we can substitute Equation 43 in Equation 42 to 
obtain the pressure-dependent activation energy:

3

2
16

3

p i
c

f

G
T n pL p

T n p

πσ
∆ =

  ∆ + ∆   + ∆
  + ∆  

	 (44)

And again, as can be seen from Equation 44, the increase 
in pressure causes a decrease in the activation energy, just as it 
can be seen that at 0p∆ =  Equation 44 reduces to Equation 20.

4. Results and Discussions
Comparing Equations 20 and (44), one observes that 

the pressure-dependent activation energy differs in two 
terms from the classical expression, highlighted in Figure 3:

Figure 3. Influence of pressure on activation energy.

The term in yellow showed in Figure 3 is caused by 
the change in the melting temperature, which is the only 
significant change caused by pressure according to previous 
papers found in literature. The term in red proposed on this 
paper, is accounted by a variation in enthalpy given by the 
change in the energy configuration, and obtained directly 
from its definition as showed previously.
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To grasp a quantitative notion of the effect of the term 
proposed on this paper, typical values of the quantities used 
on Equation 44 will be applied, it can be used the following 
values found in the literature: 933fT K= , 195maxT K∆ = , 

3120 10 / ²i J mσ −= × , 61074 10  / ³L J m= × 10, and 100p MPa∆ = , 
which is a typical pressure value used in solidification under 
external pressure. Substituting these values into the 
denominator of the equation shown in Figure 3, and comparing 
the magnitude of the term proposed in this paper with the 
expression proposed in literature we get:

Substituting the values of the respective quantities on 
Equation 45 for the case of homogeneous nucleation gives:

2

2

2

1951074
933 224,46 0,4785

324,461951074 100
933

p
c
c

G
G

η

  
    ∆   = = = = ∆     +  

  

	 (46)

With the application of 100MPa the new activation energy 
corresponds to approximately 48% of its corresponding value 
to the same process without pressure, this considering an 
undercooling of 195 T K∆ = .

In real cases, even without pressure, nucleation is greatly 
facilitated by the presence of solid particles foreign to the 
liquid such as: impurities, the mold walls themselves and oxide 
layers formed in the portion of the liquid in contact with air, 
and others. In such cases, if the structure of the substrate is 
compatible with the liquid the activation energy is decreased 
due to geometric factors, decreasing the number of atoms 
of the critical nucleus, as well as the total surface tension 
imposed on the nucleus, as showed schematically in Figure 5. 
Due to the combination of these factors the activation energy 
decreases to a point where it can be reached even at much lower 
undercooling than the previously proposed, reaching typically 
values close to 10K . This mechanism is called heterogeneous 
nucleation and is the process that dominates nucleation in 
real solidifications, completely overlapping homogeneous 
nucleation since it is activated with much smaller undercooling. 
Although the presence of the substrate decreases the number 
of atoms in the critical nucleus, its radius does not vary in 
heterogeneous nucleation.

Similarly, the pressure also decreases the total energy 
of the stable nucleus by decreasing its number of atoms, 
but unlike the heterogeneous nucleation this decrease is 
caused by the reduction of the critical radius as showed 
in Equation 43. Being the proportional variation given by:

1/2
p fc

r
c

f

TL
Tr

r TL p
T

η η

 ∆ 
 
 = = =

 ∆  + ∆
 
 

	 (47)

Figure 4. Comparison between the magnitude of the pressure effect 
proposed in the literature and that proposed in this work.

Figure 5. Schematic representation of heterogeneous and homogeneous nucleation.

As can be seen in Figure 4 the difference caused by the 
effect of pressure on the phase coexistence temperature (in 
yellow) is on the order of 64,86 10  / ³J m× , while the influence 
of pressure on enthalpy (in red) is given by 6104,86 10  / ³J m× , 
which is greater than its value by almost two orders of magnitude. 
Thus, the main influence of pressure on the activation energy 
is given by the change in the energetic state of the system due 
to its variation in enthalpy, and not due to the variation of 
the melting temperature as it is attributed in Sobczak et al.2.

Therefore for simplicity, the effect of the variation of the 
melting temperature in the activation energy will be neglected 
from this point onwards. Calculating the proportional variation 
of pressure in the activation energy we have:

3

2 2

3 2

2

16

3

16

3

i

p f fc
c i

f

f

T TL p L
T TG

G
TL p

TTL
T

πσ

η
πσ

      ∆ ∆      + ∆
      ∆       ≡ = =

∆   ∆   + ∆      ∆     
    

	 (45)
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Where rη  is the proportional variation of the radius. In 
practical cases the two effects of heterogeneous nucleation 
and pressure combine, as shown schematically in Figure 6:

With application of external pressure, the activation energy 
decreases to an even lower value, compared to nucleation 
without pressure, allowing nucleation to begin with yet 
smaller undercooling. This effect predicted in this paper has 
already been reported in literature by Han et al.11, where was 
observed a decrease in undercooling corresponding to the 
maximum nucleation rate value, reproduced here in Figure 7:

Algebraically the effect shown on Figure 6 is described 
by the parameter η  given by Equation 45, which is strongly 
linked to the actual value of the undercooling, for example 
considering a real case of heterogeneous nucleation, taking 
an undercooling of 10 T K∆ = , a much smaller value is 

obtained for η than obtained in Equation 46, on the order 
of 0,0106 , therefore η is actually a function ( ),p Tη ∆ ∆ . This 
codependency between the effect of pressure and undercooling 
on the activation energy can be understood as a consequence 
of the Gibbs phase law given by4:

2F K P= − + 	 (48)

Where F  is the number of freedom degrees of the system, 
K  is the number of component types and P  is the number 
of phases. Thus, considering that the system discussed 
is composed only of pure aluminum, applying the phase 
law it would have only one degree of freedom and, 
therefore, only one independent variable so that all the 
parameters that influence the energy state of the system 
must have links with each other. As the parameter η  is a 
dimensionless quantity the function ( ),p Tη ∆ ∆  characterizes 
precisely this link between pressure and temperature. This 
co-dependence is seen in Figure 7, where it is observed 
that the increase in pressure causes a decrease in the 
undercooling corresponding to the maximum nucleation 
rate value, as previously discussed.

The Figure 8 shows the graph of the function ( )0,p Tη ∆ ∆ , 
for a fixed undercooling 0 10 T K∆ =  in a pure aluminum system:

Observing the graph in Figure 8 considering the slope 
of the curve, one can see three distinct regions, first a 
region where the value of the parameter η decreases rapidly 
(approximately between 0 MPa and 25 MPa), then a saturation 
region where the slope of the curve is considerably reduced 
(between 25 MPa and 100 MPa), and then a third region where 
η shows no appreciable variation with pressure (from 100 MPa 
until the end of the chart).

Figure 6. Schematic representation of the effect of pressure in combination with heterogeneous nucleation.

Figure 7. Influence of pressure on undercooling and nucleation rate 
of A356 aluminum alloy11.
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The decrease in nucleation activation energy is 
associated with the refining of structural parameters, in 
fact a behavior similar to that shown in the Figure 8 is 
reported in several studies in the literature regarding the 
influence of pressure on structural parameters, including at 
similar pressure ranges, as can be seen in Maleki et al.12, 
for LM13 aluminum alloy with casting temperature of 
1003 K  and mold temperature of 473 K , it can be seen a 
considerable decrease in secondary dendritic arm spacing 
between 0 MPa and 25 MPa, between 25 MPa and 100 MPa a 
saturation phase is observed, and after 100 MPa it appears 
that the pressure no longer has a considerable refining 
effect, reproduced here in Figure 9:

In Obiekea et al.13 an A1350 alloy was solidified under 
pressure to analyze its effect on the mechanical properties 
and structural parameters of the alloy. Considering the 
conversion factor 21 / 0,098Kgf cm MPa= , a similar behavior 
is also observed, as there is a decrease in the slope of the 
curve describing the average grain diameter with increasing 
pressure from 40 MPa , reproduced here in Figure 10:

In Lima14 the effect of pressure on the average grain 
diameter in diluted alloys of the Al-Zn system, with 1%, 3% 
and 5% zinc in its composition was investigated. The same 
tendency of decreasing the average diameter of the grain with 
applied pressure is observed, a more pronounced decrease until 
50 MPa, between 50 MPa and 100 MPa a region of saturation 
is observed, and then from 100 MPa  until 150 MPa pressure 
does not show an appreciable decrease in the average grain 
diameter, reproduced here in Figure 11:

In contrast to the model proposed in this paper, the 
influence of pressure on the activation energy described 

Figure 8. Typical curve of ( )0,p Tη ∆ ∆  according to Equation 45, 
presenting 3 distinct regions.

Figure 9. Secondary dendritic arm spacing of LM13 aluminum alloy12.

Figure 10. Average grain diameter as a function of pressure for A1350 aluminum alloy13.

Figure 11. Average grain diameter versus pressure for aluminum alloys Al-Zn 1%, Al-Zn 3% and Al-Zn 5%14.
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in the literature so far can be represented by the yellow 
term in Figure 3, considering only the variation in the 
melting temperature the proportional term η  would be 
given by:

2

2
f

f

TL
T

T n pL
T n p

η

  ∆  
    =

  ∆ + ∆  
  + ∆  

 	 (49)

Which represents a hyperbole just like Figure 8, but 
the difference in order of magnitude between the yellow 
and red terms shown in Figure 4 implies that the saturation 
region, presented as region 2 in the Figure 8, would only be 
reached at pressures much higher than what is proposed by 
the Equation 45, and therefore would not be in agreement 
with the experimental results.

Of course the refining of structures does not depend 
only on the nucleation activation energy cG∆ , however the 
importance of this parameter is of remarkable significance, 
so much that it is clear that the influence of pressure on the 
structural parameters of aluminum alloys, can be seen as a 
reflection of the influence of pressure on activation energy, 
as can be observed by comparing the graph in Figure 8 with 
those in Figures 9, 10 and 11.

5. Conclusion
In conclusion the models used to describe the effects of 

pressure on nucleation published on literature so far do not fully 
contemplate it, so that in addition to the variation of the melting 
temperature, pressure still has a much more remarkable effect on 
the system energy state which is equivalent and co-dependent to 
undercooling. This effect causes a decrease in critical radius and 
consequently a decrease in activation energy acting in combination 
with the geometric effects of heterogeneous nucleation.
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