Comment on "Molten Salt Synthesis of Bi₂WO₆ Powders and its Visible-Light Photocatalytic Activity" in Materials Research. 2019; 22(5): e20190311

Salmon Landi Jr.ª 回

^aInstituto Federal de Educação Ciência e Tecnologia Goiano, 75901-970, Rio Verde, GO, Brasil.

Received: April 22, 2021; Accepted: June 24, 2021

Recently, Dai et al. published a paper in Research Materials 2019; 22(5): e20190311. They have investigated the visible-light photocatalytic activity of the synthesized Bi_2WO_6 powders¹. In the context of determining of band gap energy based on diffuse reflectance measurements, the cited authors make some mistakes, which are clarified in the present letter.

Keywords: Diffuse Reflectance Spectroscopy, Kubelka-Munk function, Absorption coefficient.

- 1) $\alpha hv = A(hv E_g)^2$ was designed by Kubelka-Munk (K-M) equation¹, which is incorrect. In fact, $\alpha hv = A(hv - E_g)^2$ is a classical equation from the optical transitions theory in semiconductor/insulator materials². On the other hand, the dimensionless K-M function/equation (*F*(*R*)) is defined as the ratio between the K-M absorption and scattering coefficients³. In the vicinity of E_g , the scattering phenomenon can be neglected, that is, the scattering coefficient is treated as a constant⁴, therefore: *F*(*R*) $\propto \alpha$
- According to the referred authors¹, the parameter *A* is usually 1. In fact, the value of *A* does not interfere in the determination of the band gap energy (*E_g*) because it is an independent parameter of photon energy (*hv*)⁵. However, its value depends on properties such as the number of unit cell or even the type of electronic transition between the valence and conduction bands⁶. In this sense, it is unlikely that its value is usually 1.
- 3) According to inset of Figure 5, $(\alpha hv)^{1/2}$ is plotted against the hv, where α is the absorption coefficient of material and represents the probability of light being absorbed per unit path length⁷. Consequently, the unit of measure for αhv is unit of energy divided by unit of length and not eV as declared by the authors¹. However, as the values presented on the ordinate axis in the inset shown in Figure 5 were obtained from the absorbance measurements, the most appropriated unit for αhv is "arbitrary unit".

References

- Dai B, Xuan M, Lv Y, Jin C, Ran S. Molten Salt Synthesis of Bi₂WO₆ Powders and its Visible-Light Photocatalytic Activity. Mater Res. 2019;22(5):e20190311. http://dx.doi. org/10.1590/1980-5373-mr-2019-0311.
- Landi S. Comment on "Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure" and "Evaluation of the effect of dose change of Fe3O4 nanoparticles on electrochemical biosensor compatibility using hydrogels as an experimental living organism model". J Mol Liq. 2021;338:116635. http://dx.doi.org/10.1016/j. molliq.2021.116635.
- Milosevic M, Berets SL. A review of FT-IR of diffuse reflection sampling considerations. Appl Spectrosc Rev. 2002;37(4):347-64. http://dx.doi.org/10.1081/ASR-120016081.
- Liu S, Wang Z, Bao Q, Li X, Chen Y, Wang Z, et al. Abnormal thermal quenching and blue-shift of Zn3(BO3) (PO4): Inducing host T defect by doping Mn²⁺ and Tb³⁺. Dyes Pigments. 2021;165:44-52. http://dx.doi.org/10.1016/j. dyepig.2019.01.048.
- Malainho E, Vasilevskiy MI, Alpuim P, Filonovich SA. Dielectric function of hydrogenated amorphous silicon near the optical absorption edge. J Appl Phys. 2009;106:073110. http://dx.doi. org/10.1063/1.3240203.
- Elliott RJ. Intensity of Optical Absorption by Excitons. Phys Rev. 1957;108:1384-9. http://dx.doi.org/10.1103/PhysRev.108.1384.
- Yang L, Kruse B. Revised Kubelka-Munk theory. I. Theory and application. J Opt Soc Am A Opt Image Sci Vis. 2004;21:1933-41. http://dx.doi.org/10.1364/josaa.21.001933.