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This paper investigated the formation of crosslinks in natural rubber compounds in the vulcanization 
systems: conventional (CV), semi-efficient (SEV), and efficient (EV), processed with three types 
of accelerators: MBTS (dibenzothiazole disulfide), TMTD (tetramethylthiuram disulfide) and CBS 
(n-cyclohexyl 2-benzothiazole sulfenamide). The cross-linked densities were determined by organic 
solvent swelling, dynamic mechanical analysis (DMA), stress vs strain, and low-field nuclear magnetic 
resonance, the latter being the reference technique for comparison with the other results. It was found 
that the choice of accelerator type influences the processing time and the cross-linked density of 
the vulcanizate. The four techniques showed close values of cross-linked density for natural rubber 
compounds, demonstrating that the analytical techniques studied can be applied to determine cross-
linked density.
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1. Introduction
Natural rubber (NR) compounds can be cross-linked 

by sulfur (vulcanization), peroxides (cure), or sulfur donor 
accelerators, such as tetramethylthiuram (TMTD). The most 
used curing agent in the rubber industry is sulfur1,2, because 
it offers advantages such as low cost, good compatibility 
with other additives, and also the predictable properties of 
vulcanized rubber3,4. The degree of cross-linked density or 
amount of cross-linked per material volume is associated 
with the number of sulfur atoms bonded between two carbon 
atoms of two adjacent chains in the polymer structure. These 
bonds can be of the mono-, di- and polysulfide types5 and 
are predominant according to the vulcanization system 
(conventional, semi-efficient, and efficient) used6. Cross-linked 
density can be determined by several methods7 including 
balance swelling using an organic solvent. Furthermore, they 
can also be calculated using the Flory-Rehner equation8,9, 
nuclear magnetic resonance10, dynamic mechanical analysis 
(DMA)11, and stress vs strain using the Mooney-Rivlin 

method12-14. The accelerator used in the curing process must 
have adequate safety time and reaction rate that is compatible 
with the vulcanization process. It must additionally have 
adequate vulcanization time and must assist in obtaining 
the desired final properties of the rubber compound15-17. 
Aside from the choice of the vulcanization system and the 
characteristics of the accelerator, it is further possible to 
improve the chemical resistance as regards the degradation 
and the mechanical properties of the compound with 
the incorporation of fillers18,19. Currently, several studies 
are being carried out with elastomers — particularly the 
innovation of formulations20,21, such as adding fillers22, various 
crosslinking systems23-25 and finding new applications26. 
Several methodologies are also being developed to determine 
cross-linked densities27,28 and their thermal29,30 and mechanical 
behavior31. Honorato  et  al.32 investigated vulcanized NR 
compounds using various combinations of accelerators 
(TMTD / MBT / and Sulfenamide) in an EV curing system. 
Among the curing systems used, those that contain the highest 
amount of free sulfur seemingly showed the best mechanical *e-mail: renivaldo.santos@unesp.br
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performance, before and after aging. The composition 
with the least number of crosslinks demonstrated superior 
performance, in relation to the dynamic properties after 
aging. Howse33 determined the amount and distribution 
of chemical crosslinks in both unaged and aged NR using 
different TMTD compositions by means of rheometry, 
hardness, dynamic mechanical properties, stress-strain 
(Mooney-Rivlin), equilibrium solvent swelling (Flory-Rhener), 
and low-field nuclear magnetic resonance (NMR) using the 
double quantum technique (DQ). The degree of crosslinking 
increased proportionally with TMTD concentration and the 
reaction rate of three TMTD molecules for crosslinking 
formation was maintained.

Given the above, it is evident how important it is to 
study cross-linked density, as well as the techniques used to 
determine the degree of crosslinking in rubber compounds. 
This paper thereby aims to compare the techniques used 
to determine the cross-linked densities of natural rubber 
compounds in conventional, semi-efficient, and efficient 
vulcanization systems using three types of accelerators. 
The four techniques compared in this work for determining 
cross-linked densities were swelling in organic solvent using 
the Flory-Rehner equation, dynamic mechanical analysis, 
stress vs strain using the Mooney-Rivlin equation, and nuclear 
magnetic resonance by hydrogen in low field.

2. Experimental Process

2.1. Materials
The materials used in this study were: Natural rubber 

(Brazilian light crepe, DLP Indústria e Comércio de Borrachas 
e Artefatos Ltda-ME, Brazil), zinc oxide (99.8%, PA, neon), 
stearic acid (95%, PA, Scientific Exotic), sulfur (99.5% 
Scientific Exotic), accelerators (MasterBor Indústria e 
Comércio de Produtos Químicos LTDA, São Paulo, Brazil): 
dibenzothiazole disulfide (MBTS), tetramethyltiuram disulfide 
(TMTD), n-cyclohexyl 2-benzothiazole sulfenamide (CBS). 
All reagents were both used and purchased without any 
treatment.

2.2. Preparation of rubber compounds
The rubber compounds were made from formulations 

based on the accelerator/sulfur ratio. Plasticizer oil, 
antioxidants, fillers, or binary accelerators were not added to 

avoid affecting the results. Three compounds were prepared 
for each type of accelerator in each vulcanization system 
(CV, SEV, and EV). The different compositions are shown 
in Table  1. An open roller mixer with a friction ratio of 
1:1.25 according to ASTM D318234 was used.

The compounds obtained were then subjected to 
rheometric tests (ASTM D2084-17)35 using an oscillating disk 
rheometer (Team Equipment) and a 1° arc at a temperature 
of 150 °C. The rheometric parameters determined were: ML 
(minimum torque), MH (maximum torque), ts1 (scorch time), 
t90 (optimum cure time) obtained from Equation 1, and CRI 
(cure rate index) obtained from Equation 2.
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where:
CRI: cure rate index (min-1);
t90: optimal cure time (min);
ts1: scorch time (min).

The molding of the NR compounds was formed by 
compression in a hydraulic press with heating at a temperature 
of 150 °C, under a pressure of 210 kgf cm-2 in a mold 
measuring 150 x 150 x 2 mm.

2.3. Methodology

2.3.1. Cross-linked density by swelling in an organic 
solvent (Flory-Rehner)

The determination of the cross-linked density of 
the compounds was obtained according to the ASTM 
D297‑15(2019) standard36 using ethyl alcohol with a density 
of 0.79 g cm-3 and calculated using Equation 3.
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Where:
ρ = sample density (g cm-3);
ρL = ethanol density at analysis temperature (g cm-3);
mA = mass of the wireless sample in air (g);
mB = mass of the wireless sample in liquid (g).

Table 1. Formulations and vulcanization properties for rubber compounds produced with various accelerators.

MATERIALS
CV (phr) SEV (phr) EV (phr)

CV1 CV2 CV3 SEV1 SEV2 SEV3 EV1 EV2 EV3
Natural rubber 100 100 100 100 100 100 100 100 100

Zinc oxide 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Stearic acid 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Sulfur 2.0 2.0 2.0 1.5 1.5 1.5 0.8 0.8 0.8
MBTSa 0.4 --- --- 1.1 --- --- 2.0 --- ---
TMTDb --- 0.4 --- --- 1.1 --- --- 2.0 ---
CBSc --- --- 0.4 --- --- 1.1 --- --- 2.0

Ratio used: Accelerator/Sulfur 0.2 0.7 2.5
Ratio range: Accelerator/Sulfur82 0.1 - 0.6 0.7 - 2.5 2.5 - 12

abenzothiazole disulfide. btetramethyltiuram disulfide. cn-cyclohexyl 2-benzothiazole sulfenamide.
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The samples were weighed to a mass of approximately 
0.25 ± 0.05 g and immersed in toluene in a dark environment 
for 5 days until equilibrium was reached. The samples 
were then removed, dried to remove excess solvent, and 
weighed. The samples were then placed in the oven at a 
temperature of 80 ºC for 24 hours and weighed. These mass 
values were used to determine the cross-linked density using 
Equation 4 developed by Flory-Rehner8,9. The values used for 
the molar volume of toluene (V0) and for the Flory‑Huggins 
interaction parameter (χ) were 106.4 cm3 mol-1 and 0.39, 
respectively37.
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Where:
v : Cross-linked density (mol cm-3);
χ: polymer-solvent interaction parameter (Flory parameter);
ρB: rubber density;
V0: molar volume of the solvent;
VB: rubber volume fraction of the swollen form, determined 
from the increase in weight by swelling.

2.3.2. Cross-linked density by dynamic mechanical 
analysis (DMA)

The DMA tests were performed on a Netzsch model 
DMTA 242C, in traction mode with a frequency of 3 Hz, at a 
heating rate of 5 °C min-1 and a temperature range of -100 °C 
to 150 °C, in test specimens measuring 10 x 5 x 0.25 mm. 
The cross-linked density was determined with the values 
of the storage module (E’) obtained in the DMA test at a 
temperature of approximately 25 ± 2 °C (room temperature) 
and calculated using Equation 538,39,40:
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where:
η = cross-linked density (mol cm-3);
E’ = elastic storage modulus of the polymer;
R = universal gas constant (J mol-1 K-1);
T = absolute temperature (K).

2.3.3. Cross-linked density by the Mooney-Rivlin 
method

Stress vs strain tests were performed in an Instron traction 
testing machine at a speed of 50 mm min-1 with a 1,000 N 
load cell and an internal strain transducer. Quintuplets of test 
specimens cut into a C-binder format were used to perform 
the mechanical testing.

The evaluation of the cross-linked density of rubber 
compounds was based on the Mooney-Rivlin equation41, 
which has been widely used42 to correlate the behavior of the 
network deformation with the crosslinking properties of the 
polymeric network43. This theory is derived from the elastic 
deformation energy in ideal rubbers44. The Mooney-Rivlin 

theory works well at low to moderate stress levels45 and the 
general expression is shown in Equation 646:
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where:
σ = actual stress calculated from the stress x strain curve 
(MPa);
λ = elongation rate;
C1 = parameter related to network structures;
C2 = parameter related to intermolecular forces.

Equation 7 shows the relationship between the cross-linked 
density obtained by physical means (ɳ) and the constant C1 to 
estimate the cross-linked density of the vulcanized rubber47:
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where:
ɳ = cross-linked density (mol cm-3);
R = universal gas constant;
T = absolute temperature (K).

Equation 7 was used to accurately determine the 
cross‑linked density at deformations in the uniaxial direction 
between 30 to 150% (λ-1 ≈ 0.4 - 0.7)48,49.

2.3.4. Low-field nuclear magnetic resonance 
cross‑linked density using hydrogen

NMR measurements were performed on a Bruker Mini‑spec 
NMR spectrometer at a frequency of 20 MHz for 1H under 
40 ºC. For the determination of double quantum (DQ), the 
conditions were: Pulses of 90 º at 3.1 µs, pulses of 180 º 
at 6 µs and time between scans of 2 s with the number of 
scans being equal to 32. The double quantum 1H (DQ1H) 
or multiple-quantum 1H (MQ1H) is considered one of the 
most versatile, robust, and non-invasive NMR analysis 
techniques. This technique provides a reliable estimate of the 
cross-linked regions and their distribution, characterized by 
the representation of a residual dipolar coupling (RDC)50,51. 
The average intensity of the RDC is inversely related to the 
average molecular mass between dynamically restricted 
regions and is thus directly related to the cross-linked density 
in the polymer network52,53.

3. Results and Discussion

3.1. Rheometry
The minimum torque values (ML) are obtained in the 

pre-cure phase (tS1) where the NR compounds are not yet 
vulcanized. The ML values are associated with the viscosity 
of the compound that depends on the degree of processability 
of the materials that compose it54. The values of maximum 
torque (MH) for compounds without fillers depend on the 
degree of crosslinking55,56. The curing characteristic is shown 
in Table 2 based on the NR rheometric parameters in their 
respective crosslinking systems.
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The systems vulcanized with TMTD showed higher 
values of maximum torque and thus a higher degree of 
crosslinking. This behavior is due to the fact that this 
accelerator is a sulfur donor, able to donate up to 13% sulfur 
from its own structure57.

The semi-efficient vulcanization system (SEV) has a 
medium sulfur quantity when compared to the conventional 
system (CV) with a regular sulfur quantity and the efficient 
system (EV) with a low sulfur quantity58,59. The difference 
between the maximum and minimum torques (∆M) indicates 
the degree of crosslinking in the polymer matrix. As can be 
seen in Table 2, the compounds with TMTD accelerator were 
those that exhibited the highest degree of reinforcement60,61. 
The optimal cure time values were lower for TMTD, which 
also affected the CRI due to its sulfur donor character62.

3.2. Stress vs strain
Figure 1 shows the curves obtained in the stress vs strain 

tests. Materials vulcanized with TMTD tend to produce short 
monosulfide bonds, which are more rigid and thus more 
susceptible to breakage63,64. MBTS compounds showed greater 
elasticity due to longer crosslinks compared to polysulfide 
and disulfide types, which are more elastic and flexible and 
therefore promote greater elongation to failure65. Table 3 shows 
the stress vs strain data. The Semi-Efficient system exhibited 
the best stress-strain for the three types of accelerators. In this 
system, the ratio of sulfur to accelerator is close to 1, likely 
forming lattices with a predominance of polysulfide and 
disulfide bonds, resulting in superior stress-strain66.

3.3. Mechanical dynamic analysis (DMA)
The all-natural rubber compounds had storage modules 

close to 1,000 MPa at a temperature of -100 °C in their 
respective crosslinking systems. These values are related to the 
limitations on the relative movements of the polymer chains 
attributed to the glassy state of the rubber. For values above 
the glass transition temperature, between -60 °C to -40 °C, all 
compounds showed an abrupt reduction in the storage module 
due to the movement of the chains, particularly the longest 
polymer chains, and the dissipation of mechanical energy 
attributed to the relaxation of the said chains. The curves of 
the storage module (E’) are shown in Figure 2.

The curves of Tan δ as a function of temperature are 
shown in Figure 3. It further illustrates the relaxation of the 
chains and the maximum dissipation of the system energy67. 
For all compounds, this event occurs with greater intensity 
at the temperature of around -40 °C, as shown by the peaks 
of the Tan δ curves.

Table 2. Rheometric parameters of NR compounds vulcanized and accelerated by: MBTS, TMTD and CBS in their respective crosslinking 
systems.

Crosslinking systems Accelerators
ML MH ∆M ts1 t90 CRI

(dN.m) (dN.m) (dN.m) (min) (min) (min-1)

CV

CV1 MBTS 0.95 12.03 11.08 4.02 11.45 13.49

CV2 TMTD 0.89 19.75 18.86 3.32 4.82 66.33

CV3 CBS 0.99 17.27 16.28 4.62 10.35 17.48

SEV

SEV1 MBTS 1.00 14.75 13.75 5.07 9.15 24.55

SEV2 TMTD 0.87 19.92 19.05 3.75 4.65 110.31

SEV3 CBS 0.84 18.92 18.08 5.25 7.65 41.83

EV

EV1 MBTS 0.79 11.56 10.77 6.58 9.90 30.05

EV2 TMTD 0.93 18.07 17.14 3.83 5.57 58.36

EV3 CBS 0.79 15.17 14.38 6.12 8.17 49.38

Figure 1. Stress vs. strain curves of NR compounds vulcanized 
and accelerated by: MBTS, TMTD and CBS in their respective 
vulcanization systems.

Table 3. Data obtained from the stress versus strain tests of vulcanized 
and accelerated NR compounds by: MBTS, TMTD and CBS in 
their respective crosslinking systems.

Accelerator Crosslinking 
System

Maximum 
stress

Maximum 
strain

(MPa) (%)

MBTS
CV 14.6 ± 0.6 1241.7 ± 6.6
SEV 16.0 ± 1.5 1170.0 ± 19.5
EV 14.4 ± 2.2 1291.7 ± 27.3

TMTD
CV 19.2 ± 1.7 1136.7 ± 27.7
SEV 21.7 ± 3.9 1100.0 ± 35.3
EV 17.4 ± 2.1 1051.7 ± 28.1

CBS
CV 17.4 ± 1.5 1140.0 ± 28.0
SEV 21.0 ± 3.2 1325.0 ± 22.7
EV 17.2 ± 2.3 1128.4 ± 30.7
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3.4. Cross-linked density with NMR
Analysis of the NMR results has shown that elastomeric 

networks are far from ideal, so it is important to consider the 
spatial distribution of crosslinks68,69. Figures 4, 5, 6 illustrate 
the accumulation of magnetization for NR compounds in their 
respective crosslinking systems, obtained from normalizing 
the double quantum intensity (IDQ).

The accumulation of magnetization represents only 
chemical crosslinks, and the higher the normalized IDQ intensity 
of the accumulation curve, the greater the number of 
crosslinks present70. In Figure 4, the conventional MBTS 
accelerator system presents more crosslinks in relation to 
the semi‑efficient and efficient systems. In Figure  5, the 
semi‑efficient and efficient TMTD accelerator systems show 
the same number of crosslinks.

Figure 6 also shows the magnetization accumulation 
curves for the semi-efficient and efficient CBS accelerator 
systems, which are virtually the same and have the same 
number of crosslinks. Figure 7 shows the distributions of 
average molecular weight (1/2Mc) associated with chain 
size and crosslinks present.

The mechanical properties of vulcanized elastomers are 
influenced by the distribution and heterogeneity of crosslinks 

in the polymeric network71. It can be observed that the 
SEV and EV vulcanization systems had chains with closer 
molecular weights and therefore with a more homogeneous 
distribution, except for the cross-linked compounds in the 

Figure 2. Storage module curves (E’) of NR compounds vulcanized 
and accelerated by: MBTS, TMTD and CBS in their respective 
vulcanization systems.

Figure 3. Delta tangent curves (Tan δ) of NR compounds vulcanized 
and accelerated by: MBTS, TMTD and CBS in their respective 
crosslinking systems.

Figure 5. Normalized magnetization accumulation curves for NR 
compounds vulcanized and accelerated by TMTD in their respective 
crosslinking systems.

Figure 6. Normalized magnetization accumulation curves for 
vulcanized NR compounds and those accelerated by MBTS in their 
respective crosslinking systems.

Figure 4. Normalized magnetization accumulation curves for 
vulcanized NR compounds and those accelerated by MBTS in their 
respective crosslinking systems.



Hiranobe et al.6 Materials Research

presence of MBTS. As the amount of accelerator increased 
and the amount of sulfur decreased, the distribution of the 
average molecular weight of the polymer chains shifted to 
higher values and with more homogeneity.

3.5. Comparison of cross-linked densities of 
NR compounds as determined by swelling, 
DMA, stress vs strain, and NMR techniques

The results of the cross-linked densities obtained by the 
Swelling, DMA, Stress x Strain, and 1H NMR techniques 
are on the order of 10-4 mol cm-3, indicating that the four 
techniques showed relatively coherent results for determining 
the cross-linked densities. The results obtained with the four 
techniques are shown in Table 4.

Therefore, the crosslink density determined by physical 
means such as DMA, stress x strain (obtained from the 
elastic regions) and 1H NMR has higher values compared 
to the solvent swelling.

NMR experiments are done in a relaxed state. While 
the tests of stress-strain, DMA and swelling correspond to 
deformations of large amplitude. In Table 4, the results of 
different techniques are correlated. The values differ slightly 
between the techniques, due to defects (topological restrictions, 
entanglements, etc.) acting differently in the different techniques 

besides the stable cross-links72. Furthermore, in determining 
the crosslink density, each technique uses different nature 
information of vulcanized rubber. For example, in the hydrogen 
NMR at low magnetic field the hydrogen protons were 
studied, being possible to determine the number of each of 
the different types of non-equivalent protons, as well as obtain 
similar information regarding the nature of the immediate 
environment by a simplified dynamic model of network chain 
characterization73. The uniaxial stress-strain test was used to 
obtain the crosslink density, the data were obtained from the 
curves in the range of strains between 30 to 150%, with a rate 
of 50 mm min-1 in a quasi-equilibrium deformation system The 
theories by which this can be done differ mainly in the way 
in which topological interactions between network chains are 
taken into account. The network model used was the affine 
applied in the Mooney-Rivlin equation74. The determination 
of crosslinked densities by dynamic mechanical analysis was 
determined experimentally by measuring the elastic storage 
module in the rubber plateau region at room temperature. In this 
technique, the effects of chain ends, main chain splitting and 
entangled chain entanglements acting as crosslinking were 
not taken into account, which can result in a quantitative error 
in the crosslinking density determinations75. An alternative is 
the analysis of the swelling equilibrium in a suitable solvent, 
it has been widely used to characterize network structures 
of elastomeric. The Flory-Rehner equation, based on the 
elastic response to the osmotic stress of the solvent, directly 
relates the rubber volume fraction at swelling equilibrium 
to the average molecular weight between cross-links. Thus, 
the average molecular weight between the cross-links can be 
determined in a simple way76.

Several works in the literature have shown that increasing 
the sulfur content favors the crosslinking degree, which in 
turn increases the cross-linked densities77-79. However, as 
shown in the studies in this paper, only the MBTS met this 
condition in the CV, SEV, and EV systems when swelling, 
stress x strain, and NMR were used. So, the exception is the 
MBTS with EV system when DMA was used.

The NMR results are more sensitive and accurate 
compared to the other techniques mentioned because it 
examines the structure of the network at the molecular level 
and identifies all types of defects that restrict the movement 
of the polymer chains80. When comparing the results in 

Table 4. Cross-linked densities of vulcanized NR compounds determined by the Swelling, DMA, Stress x Strain and 1H NMR techniques 
in respective crosslinking systems.

Accelerators Crosslinking 
systems

Swelling 
cross‑linked density 

by Flory Rehner

Cross-linked density 
by DMA

Cross-linked density 
by Mooney Rivlin

Cross-linked density 
by 1H NMR

(10-4 mol cm-3) (10-4 mol cm-3) (10-4 mol cm-3) (10-4 mol cm-3)

MBTS
CV1 1.36 ± 0.01 1.74 ± 0.03 1.97 ± 0.02 1.81 ± 0.01

SEV1 1.20 ± 0.02 1.37 ± 0.02 1.93 ± 0.01 1.70 ± 0.05
EV1 0.86 ± 0.01 1.49 ± 0.02 1.44 ± 0.01 1.56 ± 0.01

TMTD
CV2 1.29 ± 0.01 1.59 ± 0.02 3.10 ± 0.02 1.78 ± 0.01

SEV2 1.28 ± 0.01 1.41 ± 0.03 3.30 ± 0.04 2.07 ± 0.01
EV2 1.40 ± 0.03 1.53 ± 0.01 2.84 ± 0.04 2.01 ± 0.01

CBS
CV3 1.33 ± 0.01 1.25 ± 0.01 2.73 ± 0.02 1.73 ± 0.01

SEV3 1.42 ± 0.01 1.23 ± 0.03 2.81 ± 0.02 2.02 ± 0.01
EV3 1.35 ± 0.01 1.54 ± 0.02 2.32 ± 0.03 1.97 ± 0.01

Figure 7. Distribution curves of the average molecular weight of 
the NR compounds vulcanized and accelerated by: MBTS, TMTD 
and CBS in their respective crosslinking systems.
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Table 4, the results from the NMR technique were those 
that showed the least variation. Valentin and Saalwachter 
compared the swelling techniques in solvent and NMR for 
determining crosslinks and questioned the results obtained 
by swelling. In their work, they identified possible errors 
associated with the Flory-Rehner equation in determining 
the volumetric fraction of the rubber, with the Flory-Huggins 
parameter for polymer-solvent interaction, and with the 
applied model of rubber elasticity.

The highest values of crosslinking densities were obtained 
in the stress-strain tests, as shown in Table 4. Hagen and 
co-authors showed that the crosslink density depends on 
the time scale of the method used, which means that there 
is not sufficient time to disentangle before the direction of 
deformation is reversed during dynamic mechanical tests. 
The lowest crosslink densities are obtained from equilibrium 
swelling data, where all entanglements that are not trapped 
have enough time to untangle themselves.

The rubbers have complex parameters and properties 
that are difficult to predict and require further study. Some 
of these parameters and properties are the length distribution 
of the main polymer chain, network defects (free ends of 
the chain, cyclic links, and entanglement of the chains), and 
limited chain extensibility (applicable in the elastic ranges 
between 30 to 150% of the chain length deformation)81.

4. Conclusions
In this work, we investigated the cross-linked density 

using different techniques, in three crosslinking systems: 
conventional, semi-efficient, and efficient in the presence 
of three accelerators: MBTS, TMTD, and CBS. The solvent 
swelling tests are the most commonly used by researchers 
today and their results are unanimously accepted. However, 
the results showed that the other methods for determining the 
cross-linked densities are consistent and provide satisfactory 
results for studying the mechanical properties of natural rubber 
compounds. Using the NMR technique as a reference, since 
it is a more accurate method for determining the cross-linked 
density among the other techniques, the results showed that 
the stress vs strain and DMA techniques are suitable for 
estimating the cross-linked density within a small margin of 
error. The stress vs strain and DMA techniques are simpler 
and less expensive compared to the NMR technique. Thus, 
new opportunities are created to measure crosslinks using 
alternative methods that provide adequate, simple, and 
rapid tools for studying cross-linked density, in addition to 
choosing a crosslinking system with accelerators suitable 
for the desired applications of natural rubber compounds.
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