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Micro electro-discharge machining is one of the efficient processes to create three-dimensional micro 
features of metallic components for various applications. Powder mixed EDM improves the machining 
rate and reduces the surface roughness by evenly distributing the spark. The present studydemonstrates 
the effect of SiC nanopowder on the machining of Inconel 718 at different Discharge Energy Regimes 
(DER). Significant improvement in MRR, reduction in TWR and surface roughness were observed 
in nanopowder mixed micro-EDM (NPMμEDM) compared with micro-EDM. The nano additive 
considerably improved the Material Removal Rate (MRR) by163% and reduced the Tool Wear Rate 
(TWR)and surface roughness by 24%, 17% respectively. Models were created to predict the Surface 
Roughness in NPMμEDM using two different approaches namely Support Vector Regression (SVR) 
and Random Forest Machine (RFM). Both SVR and RFM models were able to predict the Ra value 
with better accuracies.
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1. Introduction

1.1. Powder mixed EDM
Electrical discharge machining is one of the nontraditional 

machining processes adopted by the industries for machining 
hard conductive materials1-3. The control of spark energy 
becomes a critical factor that affects the material removal 
process and surface topographywhen the EDM process is 
used for the creation of micro features. Though the process 
consumes more time and generates surface imperfections 
suchas surface cracks, recast layer, and heat-affected zone, 
researchers are trying to improve the above-mentioned 
factors by adopting different strategies. The powder mixed 
EDM process is one of the strategies in which the dielectric 
liquid is mixed with fine powders. The powders added to the 
dielectric modify the properties of the dielectric according to 
the type, size, and concentration and modifying the material 
removal process dynamics.

Pillai et al.4 analyzed the effect of nano-Graphene powder 
on micro EDM of Ti-6Al-4V alloy with a cryogenic-treated 
tungsten carbide tool. The results indicate substantial 
improvements in MRR, TWR, and surface finish due to 
the cryogenic treatment of the tool and due to the addition 
of nano-Graphene powder into the dielectric. The obtained 
results are reasoned with the change in breakdown voltage 
of dielectric due to the addition of nano-Graphene powder. 
Paswan et al.5 carried out an experimental study on NPMEDM 
machining of Inconel 718 with nano-Graphene powder mixed 
dielectric. 20.1%, 14%, and 2% improvement in MRR, 
surface roughness, and TWR are reported respectively. 

They also conducted waveform analysis and found that the 
spark is more stable in NPMEDM than Conventional EDM.

Abdul-Rani et al.6 studied the effect of aluminum 
nanopowder on NPMEDM of titanium alloy for biomedical 
applications and observed improvements in surface 
quality. The reduction in surface cracks and voids was 
also observed. Chenxue Wang et al.7 analyzed NPMEDM 
with aluminum nanopowder and observed improvements 
in surface properties. Improvements in MRR and TWR 
were also observed. Nguyen Huuhan et al.8 experimented 
titanium micro powder mixed EDM process with various 
tool electrodes. The effect of titanium micro powder and 
tool material on surface roughness, white layer thickness 
and hardness were analyzed. The better surface roughness, 
white layer thickness was obtained when copper electrode 
used in PMEDM process. The titanium nano powder added 
to the dielectric significantly increased the hardness of the 
machined surface.

Hourmand et al.9 conducted machining experiments on 
machining of Al-20Mg2Si composite with aluminum nanopowder 
mixed dielectric and used Adaptiveneuro-fuzzyinferencesystem 
to model the EDM process. The results of the experiments 
indicate current as the most significant factor which 
determines the MRR. The fuzzy model was able to predict 
the process outcomes effectively. Amorim et al.10 studied 
the effect of zinc coated wire on WEDM of Ti6Al4V alloy. 
The zinc coating increased the IEG and enabled better 
flushing improved MRR. The coating also reduced the recast 
layer thickness considerably. However, no improvement on 
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surface quality was reported. Sahu and Mandal11 compared 
the performance of graphite and alumina micro powders 
in PMEDM of Nimonic 263. Graphite, because of higher 
electrical and thermal conductivity, produced better MRR 
whereas alumina produced better surface finish. Current 
was found as the most significant parameter affecting MRR, 
TWR and surface finish by a statistical analysis.

Muthuramalingam and Phan12 investigated the effect of 
process parameters on white layer formation in PMEDM 
process. An attempt was made to correlate the white layer 
thickness with the aluminum micro powder concentration 
in the dielectric liquid and other process parameters while 
machining silicon steel. The results indicated that the aluminum 
powder in the dielectric reduced the white layer thickness 
significantly under all operating conditions.

George et al.13 investigated the effect of silicon powder 
with Carbon nano tubes (CNT) and Graphene coated 
electrodes on EDM of Inconel 825. The results indicated 
improvements in MRR, TWR and surface finish when CNT 
coating was used in combination with silicon powder mixed 
dielectric. Sivaprakasam et al.14 experimentally analyzed the 
effect of graphite nano powder mixed dielectric in micro 
WEDM process of Inconel 718 and found that the addition of 
graphite nano powder improved the process characteristics. 
Improved the topography, surface finish and MRR were 
reported. Graphite nano powder concentration of 0.5 g/l, 
capacitance of 0.01 mF and voltage of 100 V were found 
as optimum conditions for better process characteristics.

Talla et al.15 also studied the machinability of Inconel 
625 with Graphite powder mixed kerosene dielectric. 
Improvements in surface finish and fatigue strength were 
reported due to the addition of graphite in the dielectric. 
Reduction in surface crack density and thickness of the white 
layer were also reported. Prihandana et al.16 examined the 
impact of molybdenum disulfide (MoS2) on EDM machining 

of Inconel 718. The effect of particle size also investigated. 
The findings reveal that the 50nm MoS2 powder provides better 
MRR in comparison with 2 μm and 10 nm powders. The study 
also indicates that the increase in powder concentration under 
lower energy levels destabilize the process by unwanted 
secondary discharges and short circuits.

1.2. Machine Learning in Machining Process
The complex material removal process in EDM, 

especially with some additives in the dielectric fluid, makes 
it difficult to create models. There are various machine 
learning algorithms successfully used to classify and predict 
the results in different applications. Different attempts have 
been made to predict the performance of the machining 
operations using different models.

Moghaddam and Kolahan17 used Artificial Neural 
Network (ANN) with particle swarm (PSO) algorithm to 
model EDM process. The proposed back propagation based 
neural network was able to predict the process outcomes with 
less than 1% error. The used optimization technique, particle 
swarm algorithm, also proved to be effective.Extreme learning 
machine (ELM) was used to predict surface roughness in 
abrasive water jet machining process by Ćojbašić et al.18. 
ELM was compared with ANN and genetic algorithms. 
Better predictive accuracy was obtained with ELM.

Sing Nain et al.19 used machine learning algorithms SVM, 
Geometric Progression (GP) and ANN to predict surface 
roughness in WEDM process. The predicted values from 
the different machine learning algorithms were compared. 
The genetic algorithms provided better prediction accuracy 
with a small data set. Lu et al.20 also compared the prediction 
accuracies of SVM, GP and PSO algorithms in milling and 
turning of TC18 titanium alloy. The models were able to 
predict the surface roughness to appreciable accuracies. 

Figure 1. (a) Conventional EDM (b) Nano SiC mixed EDM.
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The SVM algorithm outperformed other mentioned models 
interms of prediction accuracy and training time.

Ulas et al.21 demonstrated application of different machine 
learning algorithms for prediction of surface roughness in 
WEDM process. Extreme learning machine and support 
vector regression were used to build models from the 
experimental data. Both ELM and SVR models were able 
to predict surface roughness with high accuracy.

From the literature it is evident that the PMEDM process 
produces better MRR and surface finish. The addition of 
powder additives to any dielectric liquid – Distilled water, 
Kerosene and Hydrocarbon oils, improves the process 
dynamics. The effect of powder mixed in the dielectric on the 
performance characteristics of EDM and the mechanism of 
PMEDM is also studied and analyzed by various researchers. 
It is also observed that the most of the available literature is 
on die-sinking EDM process and with expensive conductive 
powders like Graphene, CNT, and titanium. So there is a need 
to study effect of powder mixed dielectric in micro-EDM. 
The effect of nano additives on the white layer formation 
also needs investigations since very few articles regarding 
WLT in EDM were found. The present study aims to find 
the effect of SiC nanoparticle concentration in the dielectric 
medium while machining Inconel 718 alloy at three different 
energy levels. MRR, TWR,SR,and WLT were considered 
as the measurable response parameters.

The detailed literature review also indicates that the 
data driven machine learning algorithms can be applied to 
machining processes and can be used to predict one or more 
output variables. In this study the data from SiC nanopowder 
mixed micro ED milling process was used to build SVM and 
Random Forest Machine (RFM) learning algorithm based 
models for the prediction of surface roughness.

2. Methodology

2.1. Machiningexperiments
The experiments were conducted in DT-110, a multipurpose 

micro machining center.Inconel 718 alloy is used as the 
workpiece. Micro slots, as shown in Figure 2, were machined 
usinga solid tungsten carbide electrode.Commercially available 
DCO1000i EDM oil was used as the base dielectric fluid. 
SiC nanopowder was used as additive with three different 
concentrations, 0.2 g/l, 0.3 g/l and 0.4 g/l, based on literature 
and previous experiments.

Based on the machine capabilities, three capacitance 
levels such as0.1μF, 0.01μF, and 0.001μF (low, medium 
and high) were considered. The voltage levels such as 80V, 
90V, 100V, 110V & 120V were chosen as the input machine 
parameters. The full factorial experimental design with sixty 
experiments was used for this study. The discharge energy 
[E = 0.5 VC2] is classified into three regimes, for analyzing 
the results, namely low -3.2 to 7.2 μJ, medium -32 to 72 μJ, 
and high -320 to 720 μJ, as in Table 1.The workpiece polarity 
ispositive and the spindle is set to run at a constant speed 
of 1500 rpm.

Before each machining cycle, the tool electrode was 
flattened at the bottom side by the reverse EDM process. 
The nano SiC powder (25-35 nm) was measured on an 
electronic weighing scale and added to the dielectric medium. 
A magnetic stirrer was used to ensure the consistent mixing 
of the nanopowder to the dielectric while circulating in the 
machining chamber. The MRR and TWR were calculated 
based on the loss of weight after the machining cycle. 
The surface roughness was measured through a non-contact 
laser interferometer device. The white layer thickness was 
measured using a high-resolution SEM.

2.2. Machine Learning – SVM and RFM
The surface generated in EDM process is collection of 

overlapping craters and it depends on various factors. It is 
difficult to predict the surface roughness in EDM process 
using analytical equations21. The addition of nano SiC makes 
the powder mixed micro EDM process more complex to 
model. Machine learning methods are used to model various 
processes that are difficult to model using analytical techniques 
and that are expensive and time consuming17-21.

Machine learning isa process of feeding adequate data 
to train and predict a possible outcome using algorithms. 
In this study, the Support Vector Machine (SVM) and 
Random Forest Machine (RFM) techniques are used to build 
predictive models for predicting surface roughness. The SVM 
and RFM come under the category of supervised learning, 
in which the machine is trained with a labeled dataset. 
The process of building a machine learning model starts with 
Data acquisition. The data set obtained from full factorial 
machining experiments was used for training and testing Figure 2. Machined micro slots.

Table 1. Energy levels classification.

Parameter Unit Levels

Discharge Energy, 21  
2

E CV=
μJ Low 3.2, 4.05, 5, 6.05, 7.2

Medium 32, 40.5, 50, 60.5, 72
High 320, 405, 500, 605, 720
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the model. The algorithm used for building classification 
or regression model is based on the nature of the data set. 
Python was used to create both the SVM and RFM models.

The SVM uses the various kernel functions to convert the 
inseparable problem into a separable problem by adding more 
dimensions to it. The generally used kernel functions were 
linear kernel, polynomial kernel, and radial basis function 
kernel. The random forest algorithm uses multiple decision 
trees and it’s decided for regression problems.

The obtained data from the full factorial experiments 
were used to built SVM and Random forest learning 
algorithms. As the size of the data set is small,5 fold cross 
validation is used to evaluate the models. Cross-validation 
is a technique that is used to assess machine learning models 
on a small sample of data. Cross-validation is largely used 
in applied machine learning to assess a machine learning 
model’s competence on previously unseen data. That is, to 
use a small sample to assess how the model will perform 
in general when used to generate predictions on data that 
was not utilized during the model’s training. It is a popular 
approach because it is straightforward to comprehend and 
produces a less biased or optimistic estimate of model 
competence than other methods. The data set was randomly 
split into 5 groups. For each unique group: The group was 
taken as test data set and remaining four groups were used 
as the training data set. The model was fitted on the test 
data set to evaluate and the scores (R2 and RMSE) were 
recorded. The process was repeated for all five unique groups. 
The scores were summarized and overall performance of 
the trained model was evaluated. The models were analyzed 
based on the Coefficient of Determination (R2) and the Root 
Mean Square Error (RMSE) values.

3. Results and Discussion

3.1. Analysis of MRR
Figure 3 depicts the effect of SiC nanopowder concentration 

on MRR under different discharge energy ranges. For all SiC 
nanopowder concentrations, under Low and Medium DER, 
the MRR rises as the discharge energy increases. When the 
discharge energy is raised, more heat is produced in the 
machining zone, resulting in an increase in MRR. Under 
low DER the energy is low and produces weak discharges 
results in low MRR. Frequent short circuits were observed 
under low DER. The IEG is very small when the discharge 
energy is low which causes short circuits. The small IEG 
also affects the debris removal which results in low MRR. 

Under high DER also low MRR is obtained. That can be 
explained by increased pulse-off time due to high capacitance 
value. When high capacitance used in an RC circuit, the 
charging duration of the capacitor increases that resulted 
in no spark or pulse-off time. This increase in pulse-off 
time reduces number of discharges for the given duration. 
The increase in pulse-off time also enables high convective 
heat transfer from the workpiece. Thus MRR in high DER is 
very low when compared with low and high DERs. Better 
MRR is obtained under medium discharge energy range 
(32uJ-72uJ) when compared with the low and high DERs. 
Under medium DER, the combination of sufficient energy 
for powerful discharges and a short pulse off time improves 
material removal. Similar results are reported by Pillai et al.4.

The material removal rate increased with the increase 
of SiC concentration for all discharge energy regimes, 
as shown in Figure 3. Similar findings were reported by 
Jahan et al.22 and Prakash et al.23. The breakdown voltage of 
the dielectric with various SiC nanopowder concentrations 
were measured using a standard breakdown voltage testing 
equipment with 2 mm constant IEG. A maximum of 40% 
reduction in breakdown voltage was observed with 0.4 g/l 
of SiC nanopowder concentration. The reduced dielectric 
breakdown voltage increased the discharge frequency 
and more sparks were produced for the given time. This 
resulted in increased MRR. Since the breakdown voltage is 
reduced due to the addition of SiC nanopowders, the inter 
electrode gap is increased. The enlarged IEG makes flushing 
of debris more efficient, hence improving the material 
removal process. The larger IEG also allows for a greater 
number of suspended powder particles in the IEG, creating 
ideal circumstances for numerous primary and secondary 
discharges. The SiC nanoparticles with moderate electrical 
conductivity also breaks the large discharge channels into 
smaller and uniformly distributed discharges, as in Figure 1, 
results in improved erosion. The SiC being a semiconductor 
also increased the number intermediate sparks between the 
tool and the workpiece. The added semi-conductive SiC has 
reduced the time to breakdown the dielectric medium and it 
increased the number of sparks for the given duration. Stable 
sparking with less frequent arcing was observed when the 
nano powder mixed dielectric is used5. The sparking stability 
improves as the concentration of SiC nanopowder increased.

3.2. Analysis of TWR
Figure 4 portrays the TWR as function of discharge 

energy and SiC nanopowder concentration. The TWR 
increases with the increase in discharge energy under low 
and medium DER. As the discharge energy increases, the heat 
generation in the machining zone increases. The increase in 
heat enables more material removal from both workpiece and 
tool electrodes. Significant reduction in TWR was observed 
under high DER. The high DER is obtained with high 
capacitance value and thus increases the charging duration 
of the RC circuit24. This charging duration in RC circuit can 
be considered equivalent to pulse-off time in conventional 
EDM circuit. Thus the increase in pulse-off time resulted 
in reduced material removal both from workpiece and tool. 
Under high DER the plasma channel widens and the spark 
expands because of high discharge duration and energy level. Figure 3. MRR at different Energy Levels Vs SiC concentration.
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As a result, the bulk of the plasma’s heat is transferred to 
the dielectric and workpiece, reducing heat transfer to the 
tool11 which also reduces TWR under high DER.

The addition of SiC nanopowder enables better sparking 
in low DER. The increase in sparking frequency as the result 
of reduced breakdown voltage of the dielectric increases the 
material removal in workpiece and tool. Thus the addition 
of SiC nanoparticles under low DER increases the TWR. 
The increase in SiC nanopowder concentration under low 
DER increases the TWR significantly and it is depicted in 
Figure 4. Under medium and high DER, the addition of 

SiC nanopowder reduced the TWR considerably. The TWR 
is the result of melting and evaporation of tool electrode 
due the heat generated during discharges. Due to the high 
heat generated under medium and high DER pyrolysis of 
hydrocarbon based dielectric takes place. The carbon from 
the pyrolysis process deposited on the tool electrode reduces 
the thermal conductivity of the tungsten carbide electrode 
and results in increased TWR25, 26. The SiC nanopowder 
breaks the large plasma channels into smaller and less intense 
channels. This reduces the pyrolysis rate and hence reduction 
in carbon deposition. The SiC nanoparticels also reduces 
the carbon deposition on the tool surface by frequently 
striking it. The reduction in carbide layer due to the SiC 
nanopowder resulted in reduced TWR under medium and 
high DER. The SiC nanoparticles also collide with the proton 
discharge, ions and electrons from the anode27 and reduced 
the amount of erosion at the cathode (tool). The increase in 
SiC concentration reduces the TWR in medium and high 
DER as depicted in Figure 4.

3.3. Analysis of surface finish
Figure 5 represents the Ra value of the machined surface 

with respect to the nanopowder concentration and discharge 
energy. The surface roughness increases with the increase in 
discharge energy. The increase in discharge energy increases 
the surface roughness under all three DERs. The increase 
in discharge energy increases the spark intensity and size. 
The increased spark size results in increased crater size. 
The surface generated in EDM process is the result of 
multiple overlapping craters as shown in Figure 6. Thus the 
increase in discharge energy increases the crater size and 
hence increases the surface roughness.

The addition of SiC nanopowder in all DERs resulted 
in reduced surface roughness. The addition of nanopowder 
reduces the breakdown voltage and increase the IEG. The SiC 

Figure 4. Tool Wear Rate Vs SiC at different Energy Levels.

Figure 5. Surface roughness Vs SiC and Energy Level.

Figure 6. SEM and 3D surface images of the level of energy applied during the machined surface (a) Plain dielectric and (b)SiC mixed.
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Figure 7. White layer.

Figure 8. Effect of SiC concentration and discharge energy on WLT.

nanopowder breaks large discharge channels and enable 
uniformly distributed smaller sparks with less intensity. 
The reduced per spark intensity reduces the crater size and 
reduced the surface roughness28, 29. The SEM and 3D surface 
images of the machined surfaces with and without nano 
SiC addition are shown in Figure 7. Small shallow craters 
with rim were observed when the nano SiC is mixed with 
the dielectric, (Figure 6b) whereas larger, uneven craters 
without any rim like feature observed with pure dielectric 
(Figure 6a). The SiC abrasive nanopowder may also reduced 
the surface roughness due abrasive action over the machined 
surface as the particles moves with high velocity due to 
plasma burst and also due to the rotation of tool electrode. 
Similar findings were reported by Baghel et al.30 Wu et al.31.

3.4. White layer thickness
The white layer thickness values were measured for the 

slots machined at the voltage of 120V. From the measured 
values of the recast layer, it is evident that both Energy 
level/capacitance and the quantity of nano SiC added to the 
dielectric affect the recast layer thickness. Figure 7 represents 
the white layer thickness for various concentrations of SiC 
nanopowder at different energy levels. A distinct amorphous 
layer of various thicknesses is found at the top surface of 
all the microchannels machined (Figure8).

The white layer thickness, when the pure dielectric oil is 
used, is proportional to the discharge energy and follows the 
semi-empirical model of Lee et al.32. The addition of nano 
SiC reduced the WLT at all energy levels. As the number 
of sparks increased due to the presence of the nano SiC 
additives, the discharge energy per spark gets reduced and 

it resulted in reduced recast and heat affected zone; hence 
the reduced WLT. The suspended additive particles remove 
the molten layer from the machining zone and further reduce 
the formation of thick white layer33.

3.5. Machine learning
Four types of kernel functions such as linear, polynomial, 

sigmoid, and radial basis functions were used to create 
the roughness prediction model. It was transmitted to the 
regression analysis which has a measure of the relation 
between the mean value of one variable and the corresponding 
value of other variables. Among the four kernel functions 
used in SVR the Polynomial kernel with order 3 and RBF 
kernel created better models. The experimental data and the 
predicted values of surface roughness by SVR and Random 
forest machines are presented in Table 2. The R squared and 
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Table 2. Experimental and Predicted Surface Roughness for various.

Sl. No. Capacitance 
(μF) Voltage (V) Energy (μJ) Powder 

(g/L)

Ra (μm)

Actual
Predicted

SVR 
(Polynomial) SVR (RBF) Random 

Forest
1 0.001 80 3.2 0 0.303 0.413 0.433 0.435
2 0.001 90 4.05 0 0.293 0.298 0.294 0.338
3 0.001 100 5 0 0.364 0.362 0.366 0.396
4 0.001 110 6.05 0 0.317 0.314 0.319 0.369
5 0.001 120 7.2 0 0.337 0.340 0.336 0.357
6 0.01 80 32 0 0.848 0.713 0.692 0.732
7 0.01 90 40.5 0 0.836 0.839 0.837 0.841
8 0.01 100 50 0 0.862 0.860 0.863 0.843
9 0.01 110 60.5 0 0.903 0.907 0.905 0.841
10 0.01 120 72 0 0.924 0.921 0.926 0.875
11 0.1 80 320 0 1.05 1.054 1.049 0.969
12 0.1 90 405 0 1.11 1.107 1.110 1.038
13 0.1 100 500 0 1.14 1.141 1.139 1.110
14 0.1 110 605 0 1.16 1.029 0.976 0.981
15 0.1 120 720 0 1.18 1.177 1.180 1.108
16 0.001 80 3.2 0.2 0.253 0.259 0.254 0.361
17 0.001 90 4.05 0.2 0.274 0.276 0.279 0.309
18 0.001 100 5 0.2 0.256 0.265 0.259 0.337
19 0.001 110 6.05 0.2 0.237 0.241 0.241 0.303
20 0.001 120 7.2 0.2 0.242 0.255 0.245 0.311
21 0.01 80 32 0.2 0.657 0.669 0.660 0.655
22 0.01 90 40.5 0.2 0.721 0.736 0.722 0.775
23 0.01 100 50 0.2 0.748 0.758 0.750 0.757
24 0.01 110 60.5 0.2 0.778 0.784 0.775 0.759
25 0.01 120 72 0.2 0.824 0.816 0.824 0.799
26 0.1 80 320 0.2 1.02 1.012 1.016 0.941
27 0.1 90 405 0.2 1.17 1.157 1.166 1.005
28 0.1 100 500 0.2 1.43 1.415 1.350 1.112
29 0.1 110 605 0.2 1.02 1.019 1.015 0.977
30 0.1 120 720 0.2 1.09 1.087 1.087 1.101
31 0.001 80 3.2 0.3 0.32 0.315 0.321 0.364
32 0.001 90 4.05 0.3 0.325 0.319 0.329 0.310
33 0.001 100 5 0.3 0.351 0.337 0.349 0.349
34 0.001 110 6.05 0.3 0.348 0.332 0.346 0.313
35 0.001 120 7.2 0.3 0.296 0.302 0.297 0.325
36 0.01 80 32 0.3 0.575 0.591 0.578 0.622
37 0.01 90 40.5 0.3 0.883 0.697 0.704 0.716
38 0.01 100 50 0.3 0.688 0.699 0.691 0.717
39 0.01 110 60.5 0.3 0.666 0.668 0.669 0.708
40 0.01 120 72 0.3 0.697 0.704 0.702 0.733
41 0.1 80 320 0.3 0.817 0.822 0.820 0.861
42 0.1 90 405 0.3 0.845 0.849 0.846 0.940
43 0.1 100 500 0.3 0.897 0.898 0.900 1.018
44 0.1 110 605 0.3 0.994 0.986 0.990 0.930
45 0.1 120 720 0.3 1.18 1.165 1.175 1.091
46 0.001 80 3.2 0.4 0.292 0.308 0.381 0.383
47 0.001 90 4.05 0.4 0.342 0.336 0.340 0.326
48 0.001 100 5 0.4 0.338 0.323 0.342 0.359
49 0.001 110 6.05 0.4 0.316 0.305 0.320 0.316
50 0.001 120 7.2 0.4 0.381 0.374 0.375 0.333
51 0.01 80 32 0.4 0.623 0.613 0.620 0.636
52 0.01 90 40.5 0.4 0.713 0.707 0.707 0.728
53 0.01 100 50 0.4 0.697 0.704 0.698 0.728
54 0.01 110 60.5 0.4 0.702 0.715 0.706 0.724
55 0.01 120 72 0.4 0.724 0.740 0.751 0.755
56 0.1 80 320 0.4 0.828 0.838 0.830 0.875
57 0.1 90 405 0.4 0.887 0.894 0.887 0.945
58 0.1 100 500 0.4 0.848 0.852 0.848 1.024
59 0.1 110 605 0.4 0.947 0.944 0.943 0.937
60 0.1 120 720 0.4 0.989 1.000 0.990 1.076
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RMSE values for each kernel are also presented in Table 3. 
Figure 9 displays the actual and model-predicted values 
of surface roughness for polynomial-SVR, RBF-SVR and 
Random forest machine. Figure 10 depicts the importance of 
the three input variables for deciding the surface roughness 
according to the random forest machine.

4. Conclusions
In this work the influence of SiC nanopowder and its 

concentration on nano powder mixed micro electro discharge 
milling of Inconel 718 under three different energy regimes 

were investigated. Material removal rate, tool wear rate and 
surface roughness were considered as performance measures 
for this investigation. Machine learning algorithms were 
used to build prediction models from the experimental 
data. The following conclusions can be drawn from the 
experimental results.

• The medium DER produced better MRR due to 
optimum charging and discharging duration and 
increased erosion efficiency.

• An average of 163.58% improvement in MRR 
was observed with 0.4 g/l of SiC nanopowder 
concentration under medium DER.

• The addition of SiC nanopowder reduced the TWR 
up to 24.35% under medium and high DERs.

• An average reduction of 17.20% in surface roughness 
was obtained with 0.4 g/l of SiC nanopowder 
concentration.

• The addition of SiCnanopowderi in the dielectric 
reduced the WLT considerably.

• SVR with polynomial and RBF kernals predicted 
the surface roughness in NPMμEDM with R2 values 
of 0.979 and 0.986 respectively.
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