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Structural health monitoring (SHM) techniques aim to detect and prevent failures in constructions, 
although their use may require many sensors, which makes this technique expensive and laborious. 
In this sense, the use of self-sensing cementitious composites based on the piezoresistivity effect 
could be a solution to some monitoring problems. Thus, the evaluation of the piezoresistive effect 
is commonly performed by analyzing the linearity between mechanical forces and the variation of 
electrical resistivity, through the coefficient of determination (R2). However, this work has been used to 
perform the analysis through Pearson’s correlation in samples of self-sensing cementitious composites 
with graphite addition. The results obtained have shown that Pearson’s correlation has the potential 
to be used for the evaluation of the correlation between electrical resistivity and mechanical forces to 
verify the piezoresistive effect in the cases studied.
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1. Introduction
Structural health monitoring (SHM) techniques can 

provide increasing service life and construction safety, 
from early detection of strain, failures and damages1,2. 
However, continuous and wide-ranging monitoring may 
require high-cost investments due to the need for numerous 
sensors throughout the structure. So, using materials to be 
able to self-monitoring can be a solution to some problems 
with the use of sensors1,3. These materials can be created 
from a variety of matrices, such as polymers, asphalts, and 
cements4-9. The built-in sensors can make heterogeneity in 
the structure, which may cause some damage to the structure. 
While self-sensing composites make homogeneity to the 
structure2.

For the monitoring without using coupled or embedded 
sensors, the concrete structures need self-sensing cementitious 
composites in their manufacture to be able to detect changes 
in mechanical stress. Several electrical effects are the object 
of study for the application of self-sensing in materials, 
such as piezoresistivity. The piezoresistive effect allows the 
detection of mechanical strain and stress changes, as a result 
of the monitored electrical resistance change10,11. Further on 
the piezoresistivity, piezoelectric effect, capacitance and 
impedance are also used in self-sensing materials and sensor’s 
manufacture and mechanism12-16. Also used in sensors and 
sensing platforms are nanomaterials, which are another large 
field of research that is growing17-20.

Regular concrete and mortar exhibit a few piezoresistive 
responses when under loads, that is not enough to consider 
as self-sensing materials21. At least up to a certain point, 
piezoresistive composites offer a certain electrical conductivity 
for concretes and mortars. This conductivity cannot be 

too low to be considered the composite almost insulating, 
or too high to the offer almost no electrical resistivity, as 
this would impede the measurement of the piezoresistive 
effect11. In other words, for the composite to be able to self-
monitoring, a minimum conductive filler needs to be used, 
but not without prejudice to the highest possible electrical 
conductivity. This limit is called the “percolation threshold” 
as shown in Figure 123.

As shown in Figure 2, as the self-sensing composite is 
compressed, the electrical resistivity decreases, as well as it 
is tensioned, it increases. In other words, this effect is what 
characterizes piezoresistivity, as a relationship between 
mechanical forces and the change in resistivity of the material. 
This change happens because conductive fillers move closer 
together or further apart, with compression or tension, thus 
altering the conductive paths. The change occurs linearly in 
the elastic regime of the composite, that is, up to a certain 
point in this relationship, as shown in Figure 311, and the 
reversible strain happens in the elastic regime. As cracks 
appear after the elastic regime, the continuous paths are 
interrupted and the resistivity increases again2.

However, challenges must be overcome so that it is possible 
to use self-sensing composite to monitoring real structures, 
for example, to mitigate and reduce the influence of external 
environmental issues, which affect the performance of self-
sensing26. In this way, it could be useful to use Pearson’s 
correlation analysis (r) to see how the piezoresistivity effect 
works in a cementitious composite.

Pearson’s correlation analysis (r) makes it possible 
to quantify the degree of association between two linear 
variables in a sample. This association has been described as 
a level of assessment of intensity and direction between the 
two compared variables. The correlation is great when the *e-mail: lamaripalma@hotmail.com
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coefficient is 1 (one) or -1 (negative one) and unsatisfactory 
when it approaches zero. This method of correlation, which 
today has the name of its author, was developed in 1985, 

by Karl Pearson, and is obtained by Equation 1, where “x” 
and “y” are the variables, “x̄” and “ӯ” the means, and “n” 
the number of variable pairs27.
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There are some limitations to Pearson’s method, such 
as the need for analyzed data to have a bivariate normal 
distribution and a linear relationship between them. Although 
the samples analyzed are significantly large in relation to 
the population, no more than two decimal places of the 
coefficient should be considered if the sample size <500, 
not even more than one decimal place, if the value of the 
coefficient is very small. For three decimal places, should 
be considered more than 100,000 the sample size28,29.

Researchers from different areas of science usually give 
names to the levels of Pearson’s coefficient intervals used to 
rank their results, such as “moderate correlation” between 
0.6 and 0.7. However, like the classification for this range, 

Figure 1. Schematic description of percolation theory. In Zone A, there is no conductive network. In Zone B, the resistivity is reduced 
abruptly, with few additions of fillers. Lastly, in Zone C, there is no significance in the reduction of resistivity when more fillers are added22.

Figure 2. Conductive microstructure scheme in self-sensing cementitious (based on24).

Figure 3. Graphic relationship between electrical resistivity and 
mechanical effort in a self-sensing composite (adapted from25).
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it is also called otherwise by other researchers who consider 
it strong and not moderate. That is to say, the interpretation 
of the coefficients varies substantially between the different 
areas of scientific research, and thus the use of classification 
nomenclature should be avoided, given the lack of absolute 
rules for interpreting the correlation between the variables30.

Even though researchers21,22,31-41 have been working to 
analyze self-sensing behavior in cement composites, they 
have used only the coefficient of determination (R2) or graphic 
comparisons. However, this work does not aim to evaluate 
the mechanical properties of the cementitious composite but 
to use the Pearson’s correlation to analyze the piezoresistive 
effect of self-sensing cement, which is why only graphite 
was used in the composite. Carbon-based materials have 
good electrical conductivity, so they are the materials most 
commonly used nowadays to make self-sensing cement 
composites42. Graphite is used, in a wide range of composites 
and materials, including smart structures, electromagnetic 
shielding, building, electric power, road engineering, aircraft 
parts, and thermal management8,42-44. Graphite powder was 
chosen because it is a low-cost material when compared 
with nanomaterials.

2. Materials and Methods
2.1. Materials

Following the literature45-47 four mortar specimens were 
prepared for the piezoresistive test, in cubic shape samples 
with a 40 mm edge, dimensions recommended in NBR 
16868-248 for compression test. The mortar mix rate was 
made in the following proportions of cement, sand, and 
graphite: T1C=1:4:0; T2C=1:4:0.125; T3C=1:4:0.250; and 

T4C=1:4:0.375, in proportions to the cement mass, and these 
graphite proportions are within the range (0-0.4) used by49.

The water/cement ratio (w/c) of 0.50 used in the T1C 
mix could not be maintained in the other mixes, in which the 
following w/c ratios were used: T2C=0.75; T3C=1.05; and 
T4C=1.40, to get the consistency for molding the samples.

The specifications of the materials, according to the 
manufacturers, are: Portland cement, marketed by the company 
Votorantim Cimentos – Classification CP-II-F-32, 75% - 89% 
by mass of clinker + gypsum; 11% - 25% carbonate material; 
The quartz sand has a Fineness Modulus 2,03 according to 
NBR 721150. The powdered graphite, marketed by Wonder 
- Carbon (Loss to Fire) >72%; Ash a maximum of 28%; 
maximum moisture 0.5%. In the Figure 4, the granulometric 
of sand and graphite are shown.

During the molding of the sample’s specimens, 4 electrodes 
(aluminum plates) with a size of 35 x 20 x 0.1 mm were 
inserted, spaced 10 mm between each other and with 25 mm 
embedded in the mortar, as shown in Figure 5.

Although graphite improves the electrical conductivity of 
the cementitious composite, it generally causes a reduction 
in the composite’s compressive strength. Much research 
reports the use of graphite with other fillers, such as polymer 
fibers or carbon, to improve the mechanical strength46,49,51.

2.2. Methods
The samples were tested by compression in a manual 

press, for three repetitions of each sample45,52, with a maximum 
load of nearly 2 kN31,32, since this load would not cause 
rupture of the samples, because it is a non-destructive test. 
The voltage (U) changes and force (compression) applied 
were recorded synchronously at a sampling rate of 10 Hz, 
using the scheme in Figure 6, which had a data acquisition 

Figure 4. The granulometric curves of the sand (a) and graphite (b) samples.
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system (DAQ) model 8000-8-SM (Micro-Measurements), 
a load cell, and a laptop.

The electrical resistance was obtained from Ohm’s 
law41 and, through the electrical circuit in Figure 7, it was 
possible to determine the electrical resistance (Rs) of the 
composite by Equation 2 (adapted from53). A DAQ system 
was used to obtain the voltages in the sample (Us) and in 
the circuit supply (Uin), with the use of a reference resistor 
(Rref) 1000 Ω34,54,55. The data from voltages in the sample 
(Us) corresponds to the wires green and yellow in Figure 6.

s
s ref

in s

U
R R

U U
=

−
 (2)

The electrical resistivity (ρ) was calculated by Equation 
351,56, where the distance (L) between the central electrodes 
and their contact area (A) with the composite are known 

values, while the fractional change in resistivity (FCR) was 
calculated using Equation 42.

Figure 5. Cubic specimens with electrodes

Figure 6. Data acquisition scheme of the experiment.

Figure 7. Electrical circuit for measuring electrical resistance 
(adapted from53).
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Among the ways indicated in the literature, the 
sensitivity22 of the piezoresistive composite was determined 
from the fractional change of resistivity per unit stress (σ), 
using Equation 534,37-40.

%FCRS
σ

=  (5)

In other words, the sensitivity is the relationship 
between mechanical and electrical effects for the evaluation 
of piezoresistivity, when the resistivity can be affected by 
stress amplitude37-39.

Pearson’s correlation (r), coefficient of determination 
(R2) and other statistical parameters were determined using 
OriginLab Pro software, version 2021b.

3. Results and Discussion
According to literature33-36 the applied force (compression) 

values and the fractional change in resistivity (FCR) obtained 
in the experiment are compared in the graphs of Figure 8, for 
each of the samples and repetitions, and a visual correlation 
analysis would be very subjective for qualifying the results, 
which is why a preliminary sensitivity analysis of the 
piezoresistive effect was performed.

The sensitivity analysis was made from the relationship 
between the peak values of the compression force and the 
FCR, using Equation 5, as shown in Table 1.

Figure 8. Compressive force values and the FCR in each mix and repetition test for T1C (a, b, c), T2C (d, e, f), T3C (g, h, i) and T4C (j, k, l).
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Through the sensitivity relationship, it was possible 
to verify that the T2C and T3C samples had better results 
compared to the other samples. This is even clearer when 
presented graphically in Figure 9, with shows the mean 
values and their standard deviations (SD).

Even though the sensitivity relationship analysis shows 
a better response of the T2C and T3C samples, it also makes 
evident the accentuated variations between repetitions. This is 
especially true for the T3C sample, with has a high standard 
deviation compared to the other samples.

In a preliminary linearity analysis, the graphs of 
Figure 10 were plotted, which visually show better results 
for the T2C and T3C samples, but also possible to the 
subjectivity of their interpretation.

The Pearson’s correlation values (r), based on the data in 
the graphs in Figure 8, and the coefficients of determination 
(R2) based on the data in the graphs in Figure 10, are shown in 
the graph in Figure 11. Although both coefficients (r and R2) 
have been plotted on the same graph, the direct comparison 
between them cannot be adequate because the first express 
values from -1 to 1, and the second from 0 (zero) to 1.

The means and standard deviations of each coefficient 
(r and R2) for the samples tested are shown in the graphs 
in Figure 12, where again the best results for samples T2C 
and T3C are shown.

The R2 values obtained for the T2C and T3C samples 
are close to those found in the literature avaliable46, while 
the low correlation of the T1C sample is justified by the 

Table 1. Sensitivity of samples based on FCR/Stress relationship.

Sample Repetition
Peak Value Sensitivity

(Equation 5)Stress* (MPa) FCR (%)
1st -1.30 -19.86 15.33

T1C 2nd -1.33 -21.97 16.46
3rd -1.27 -25.62 20.12
1st -1.27 -140.79 111.20

T2C 2nd -1.31 -118.99 90.84
3rd -1.26 -114.24 90.92
1st -1.29 -186.47 144.53

T3C 2nd -1.32 -140.54 106.49
3rd -1.28 -129.67 101.56
1st -1.26 -38.36 30.39

T4C 2nd -1.37 -36.65 26.81
3rd -1.32 -33.01 25.01

*Compression

Figure 9. Mean sensitivity and standard deviations (SD) of samples.



7The Utilization of Pearson’s Method to Analyze Piezoresistive Effect in Self-Sensing Cement Composite with Graphite

Figure 10. Graphical relationship between FCR and compression force, with linear regression (line in red) in each mix and repetition test 
for T1C (a, b, c), T2C (d, e, f), T3C (g, h, i) and T4C (j, k, l).

Figure 11. Pearson (r) and determination (R2) coefficients per sample.

absence of graphite and that of the T4C sample by the excess 
of graphite, which is also valid to justify the results obtained 
with the Pearson analysis.

For the final visualization of the results, each sample 
was ranked for each of the analyzes performed according 
to the table in Figure 13a, and each sample was spatialized 
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according to the values of each parameter obtained, as shown 
in the graph in Figure 13b.

With the ranking shown (Figure 13a), the proportionality 
between the Pearson and determination coefficients becomes 
even more evident. Although they have different purposes, there 
is a quadratic relationship57,58 between them. This relationship 
is shown in Figure 14, which exposes the analytical values of 
Pearson starting in 0.01 and moving forward in centesimal 
fractions to 1.00. Then, the quadratic value of Pearson that 
corresponds to R2, for each centesimal fraction, is plotted 
(Pearson versus R2). The experimental values of Pearson and 
R2 of tested samples are plotted in the same graph (Figure 14), 
and are the same as the quadratic relationship analytical.

Figure 12. Mean and standard deviation per sample for each type of coefficient (r and R2).

Figure 13. Ranking table of the results per sample for each analysis parameter (a); spatialization of the results of each parameter in each 
sample (b).

Figure 14. Analytical values (continuous line) and tested samples’ 
values (dashed line) of Pearson versus R2 and the difference between 
them; maximum difference (red line).
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On the other hand, the graphic spatialization (Figure 13b) 
visually supported the best results obtained for T2C and T3C.

4. Conclusions
Based on the results obtained, it can be considered that for 

the conditions and cases analyzed, the Pearson’s coefficient 
has the potential to be used in the analysis of the correlation 
between changes in electrical resistivity and mechanical 
forces (or stress and strain) to verify the piezoresistive effect 
in self-sensing cementitious composites, although more 
studies are required to extrapolate these considerations to 
other cases and conditions.

We also saw that the higher the sensitivity, the standard 
deviation was higher too, which indicates that the repeatability 
was affected. But, in contrast to this, the correlation from 
Pearson (r) and determination (R2) coefficients did not show 
that the repeatability was affected, because the higher the 
coefficients, the smaller the standard deviation.

It is also possible to pronounce that:
1. The evaluation of piezoresistive effect should not 

be limited only to graphical analysis of the values 
of electrical and mechanical parameters. Although 
it is important, this may lead to subjective or even 
mistaken interpretations, when not compared to 
numerical analysis;

2. The correlation analysis by Pearson must be limited 
to the linear behavior range of the study otherwise, 
other methods must be used;

3. The use of the Pearson correlation method should not 
exempt analysis by the coefficient of determination 
(R2) method, because they have different purposes. 
But, the first does not have the influence of a quadratic 
relationship in the results. The quadratic relationship 
makes the difference between the coefficients be 
minimum when approaching 0 (zero) or 1 (one) 
and maximum, when approaching 0.5 (half), as 
shown in Figure 14.

Determination of sensitivity, a relationship between 
FCR and stress, is also an important way of evaluating 
the self-sensing composite, although it has been observed 
(Figure 13) that few the sensitivity of the T4C-1 sample did 
not directly impact the bivariate correlation, as this sample 
obtained the 3rd position in the ranking of the Pearson and 
determination (R2) coefficients.

Lastly, both graphic and numerical evaluations (sensitivity 
and correlation coefficient) must be present in the analysis 
of the piezoresistive effect in self-sensing cementitious 
composites because, together, they allow a better interpretation 
of this effect.
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