Estudo da Capacidade de Combinação de Linhagens de Matrizes de Frango de Corte, por Meio da Análise de Fatores de Características Produtivas¹

Valéria Maria Nascimento Abreu², Cosme Damião Cruz³, Martinho de Almeida e Silva⁴, Élsio Antônio Pereira de Figueiredo⁵, Paulo Giovanni de Abreu⁶

RESUMO - Este trabalho foi realizado para estudar a capacidade de combinação de linhagens de matrizes de frango de corte, por meio da análise de fatores de características produtivas. Os cruzamentos (dialelo parcial) entre as linhas de machos do grupo 1 (LL, TL, ZL, TT, LT, ZT, ZZ, LZ e TZ) e linhas de fêmea do grupo 2 (PP, KP, VP, KK, PK, VK, VV, PV e KV) foram avaliados. O delineamento experimental foi em blocos casualizados com três blocos, 81 cruzamentos e nove fêmeas por cruzamento. As características de produção analisadas, foram: fertilidade na 32ª, 38ª, 42ª e 49ª semana de idade, eclodibilidade na 32ª semana. O peso inicial dos pintinhos, peso e conversão no 42º dia de idade e rendimento de carcaça, peito e gordura abdominal no 42º dia de idade dos frangos foram analisados. Foram usados quatro fatores, cujo significado biológico foi definido após a rotação dos fatores. As linhas que se destacaram na análises de fatores, para o fator 2 (fator de peso aos 42 dias), foram LT e LZ no grupo 1 e VP, KP, KK, KV, PK e VV no grupo 2.

Palavras-chave: análise de fatores, capacidade de combinação, matrizes de frango de corte

Combining Ability of Parental Broiler Lines using Factor Analysis of Productions Traits

ABSTRACT - This study was carried out to study the combining ability of parental broiler lines using factor analysis of production traits. The single crosses (partial diallel) among the male lines of group 1 (LL, TL, ZL, TT, LT, ZT, ZZ, LZ, and TL) and female lines of group 2 (PP, KP, VP, KK, PK, VK, VV, PV, and KV). A completely randomized blocks design, with three blocks, 81 single crosses and nine females per cross was used. The production traits, were fertility at 32nd, 38th, 42nd and 49th weeks of age, hatchability at 32nd, the initial body weights of the chicks, body weight and feed:gain ratio at 42nd days of age, and carcass yield, breast yield and fat pad yield at 42nd day of age of the broiler. Four factors, whose biological meanings were defined after rotation of the factor, were used. The lines that stood out in the factor analysis, for factor 2 (body weight factor at 42nd day) were LT and LZ, in group 1, and VP, KP, KK, KV, PK and VV, in group 2.

Key Words: factor analysis, combining ability, broiler parental lines

Introdução

A análise de fatores tem sido muito aplicada na área de psicologia, a ponto de ser considerada como técnica voltada apenas para essa ciência. Na realidade, trata-se de um ramo da estatística, também empregada na pedagogia, genética, física quântica e meteorologia. A sua origem é atribuída a Charles Spearman, em 1904, embora, em 1901, Karl Pearson já tivesse publicado um trabalho no qual os aspectos estatísticos da análise de fatores já tivessem sido enfatizados. Entretanto, Charles Spearman é considerado o pai da análise de fatores, por ter dedicado os últimos 40 anos de sua vida a esse assunto (HARMAN, 1967).

A análise de fatores é uma técnica de análise multivariada que trata das relações internas de um conjunto de variáveis, substituindo um conjunto inicial de variáveis correlacionadas por um conjunto menor de fatores (ou variáveis hipotéticas) que podem ser não-correlacionados (fatores ortogonais) ou correlacionados (fatores oblíquos), que explicam a maior parte da variância do conjunto original (FACHEL, 1976).

Para tratar do problema da diminuição do número de características na estatística multivariada, normalmente, utilizam-se as técnicas de componentes principais e análise de fatores. Esses métodos visam gerar menor número de variáveis que expliquem

¹ Parte do trabalho de tese de D.S. do primeiro autor, financiada pela CAPES/UFV/EMBRAPA.

² Pesquisador EMBRAPA/CNPSA, bolsista da CAPES.

³ Professor da Universidade Federal de Viçosa.

⁴ Professor da Universidade Estadual do Norte Fluminense.

⁵ Pesquisador EMBRAPA/CNPSA, bolsista do CNPq.

⁶ Pesquisador EMBRAPA/CNPSA.

adequadamente a interdependência do conjunto original multidimensional dos dados (QUEIROZ, 1984).

Segundo POWELL e MACIVER (1977), a análise de fatores tem por objetivo geral reduzir uma série de variáveis a pequeno número de fatores (outras variáveis) não-correlacionados e definidos somente pelas dimensões reais, e os fatores resultantes retêm as informações mais importantes dos dados originais.

Cada fator envolve um grupo de características correlacionadas e, portanto, com interpretações biológicas. É possível encontrar, entre os fatores, os de significado biológico ou econômico e, portanto, a seleção seria eficientemente praticada.

Segundo CASTOLDI (1997), durante anos, a análise de fatores teve seu uso bastante limitado em função da complexidade dos cálculos envolvidos. Entretanto, graças às facilidades computacionais, essa técnica tem sido retomada, abrangendo as mais diversas áreas; como exemplos, destacam-se os estudos de inter-relações entre um grupo de características em milho (Fakorede, 1986), de características de produção em trigo (Walton, 1971, 1972) e qualidade de panificação de trigo (Briggs e Shebeski, 1972), entre outros.

A análise de fatores tem sido muito usada em sistemas de classificação. KLOOSTERMAN e LAVHULICH (1972) apresentaram um método de interpretação estatística de dados de solo para uso agrícola e de engenharia, no qual a análise de fatores foi usada com base estatística para reduzir o número de variáveis a número menor de fatores independentes, realizando, assim, a classificação dos solos, de acordo com seus valores financeiros, quanto aos seus possíveis usos.

RUFINO (1986) empregou a análise de fatores e de agrupamento para a definição das regiões com relação ao grau de aptidão da seringueira, no zoneamento ecológico do Estado de Minas Gerais para aquela cultura. Junto às variáveis climáticas, foram incluídas a classificação dos solos e a altitude, confirmando a possibilidade do uso das variáveis de natureza distinta, simultaneamente, na análise de fatores.

Objetivou-se com este trabalho o estudo da capacidade de combinação de linhagens de matrizes de frango de corte, por meio da análise de fatores.

Material e Métodos

Os dados foram provenientes de experimento realizado no Setor de Melhoramento Genético de Aves (SMGA) do Centro Nacional de Pesquisa de Suínos e Aves (CNPSA), da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), em Concórdia, Santa Catarina, no período de janeiro de 1994 a dezembro de 1995.

Os pintos de 1 dia de idade deste experimento foram obtidos de cruzamentos (dialelo parcial) entre as linhagens do grupo I (LL, TL, ZL, TT, LT, ZT, ZZ, LZ e TZ) e do grupo II (PP, KP, VP, KK, PK, VK, VV, PV e KV).

A codificação das linhagens foi feita da seguinte maneira:

	Linhagem	
	Strain	
Grupo 1	Grupo 2	
Group 1	Group 2	
1 = LL	1' = PP	
2 = TL	2' = KP	
3 = ZL	3' = VP	
4 = TT	4' = KK	
5 = LT	5' = PK	
6 = ZT	6' = VK	
7 = ZZ	7' = VV	
8 = LZ	8' = PV	
9 = TZ	9' = KV	

O delineamento experimental foi em blocos casualizados, consistindo de três blocos, 81 cruzamentos e nove fêmeas por cruzamento.

As 11 características de produção estudadas foram: fertilidade na 42ª (FERT42), 49ª (FERT49), 32ª (FERT32) e 38ª (FERT38) semana; eclodibilidade na 32ª semana (ECLO32); peso inicial do pintinho (PI); peso dos frangos no 42º dia de idade (P42); conversão alimentar dos frangos no 42º dia de idade (CA); rendimento de carcaça dos frangos no 42º dia de idade (RCAR); rendimento de peito dos frangos no 42º dia de idade (RPEIT); e rendimento de gordura abdominal dos frangos no 42º dia de idade (RGA).

As análises foram realizadas utilizando-se o programa GENES (CRUZ, 1997).

Segundo CASTOLDI (1997), essa técnica multivariada procura explicar o comportamento de um número p de variáveis, em termos de número m (m < p) de outras variáveis não-perceptíveis, chamadas fatores comuns.

O modelo da análise de fatores é dado por:

$$X_{j} = a_{j1}F_{1} + a_{j2}F_{2} + ... + a_{jm}F_{m} + \varepsilon_{j}$$
em que j

 X_j = variável j, para j = 1,2, ..., p;

a_{ii} = carga associada à variável j no fator i, i=1,

F_i = o fator i comum a todas variáveis, os m fatores comuns não são correlacionados;

 ε_i = fator específico da variável j.

Na forma matricial:

$$X_{px1} = \Lambda \underset{pxm}{F} F_{mx1} + \varepsilon_{px1}$$

As pressuposições associadas ao modelo de fatores, dentro da configuração chamada de modelo de fatores ortogonais, considerando-se os fatores nãocorrelacionados, são:

- (i) $E(F) = 0_{m \times 1}$;
- (2) $COV(F) = E(FF') = I_{m \times m}$;
- (3) $E(\varepsilon) = 0_{p \times 1}$;
- (4) $COV(\varepsilon) = E(\varepsilon \varepsilon') = \Psi_{p \times p}$, em que Ψ é uma matriz diagonal; e

(5)
$$COV(\varepsilon,F) = E(\varepsilon, F) = 0_{p \times m}$$
.

Para melhor entendimento da análise de fatores, são necessárias mais algumas explicações como as seguintes:

- · segundo FERNANDES e LIMA (1991), o objetivo da análise de fatores é representar cada fator como combinação linear de diversas variáveis subjacentes;
- · as variáveis mais explicadas, as que apresentam valores altos para as "cargas fatoriais", podem ser englobadas em um mesmo fator; daí a redução do número inicial de variáveis para o número menor de fatores de explicação;
- · a soma das "cargas fatoriais" ao quadrado, para cada variável, a "comunalidade", indica a proporção de variância total de cada variável, explicada pelo conjunto de fatores comuns. Então, define-se como comunalidade de uma variável X_j a expressão algébrica dada por: $a_{j1}^2 + a_{j2}^2 + ... + a_{jm}^2$, que determina a fração da variância de \boldsymbol{X}_i dada pela influência dos fatores comuns e, como especificidade de X_i, a fração da variância de X_i dada pela ação dos fatores específicos; e
- · os "escores fatorais" são estimativas dos valores apresentados, para cada fator comum e observação.

A análise de fatores envolve quatro estádios, descritos a seguir:

Determinação do número de fatores comuns

O método utilizado para determinar o número de

fatores foi escolher o número de fatores comuns proporcional aos autovalores maiores ou iguais à unidade, obtidos da matriz de correlação genética das variáveis originais (Harman, 1968, citado por CASTOLDI, 1997). Fizeram parte da análise somente os fatores com autovalores maiores que a unidade. KIM (1975) assegura que são esses fatores que sustentam a maior proporção da variância dos dados originais.

Cálculo das cargas fatoriais

As cargas fatorais de cada variável são dadas por:

$$a_{ij} = \sqrt{\lambda_i} V_{ij}$$

em que

 a_{ij} = carga fatorial do fator i correspondente à variável j;

 $\sqrt{\lambda_i}$ = autovalor i maior que a unidade, obtido da matriz de correlações genéticas; e

 V_{ii} = valor j do autovetor i.

Em síntese, cada autovalor maior que a unidade corresponde a um autovetor que, por sua vez, é constituído por um número de valores iguais ao número de variáveis originais. Logo, um mesmo fator teve cargas individuais para todas as variáveis, o que esclarece a razão da denominação "fator comum", empregada na teoria de "factor analysis". Um dos principais objetivos da análise de fatores é a caracterização dos fatores comuns, que é função dos caracteres com maior carga dentro desses fatores. Um fator só poderá ser caracterizado com clareza se existirem alguns caracteres com altas cargas fatoriais e que ainda tenham alguma relação de funcionalidade entre si. As características mais explicadas, as que apresentam valores altos para as cargas fatoriais, podem ser englobadas em um mesmo fator de explicação. Algumas vezes, porém, ao se assumirem valores semelhantes, as cargas dos fatores não se apresentam distintas entre si, impedindo, com isso, perfeita caracterização dos fatores. A maneira de superar essa dificuldade é por meio da rotação dos fatores.

Rotação fatorial

A partir das cargas fatoriais iniciais, obtêm-se as cargas finais, de forma que algumas características terão cargas fatoriais próximas de 1,0 (um) e as restantes, próximas de zero, permitindo definir o fator de produção (fator biológico), tornando mais clara a interpretação dos fatores.

O principal objetivo da rotação de fatores é obter uma matriz, mais facilmente interpretável, ou mais identificável com a natureza das variáveis. São feitas tantas rotações quantas forem necessárias

para se obter uma estrutura mais simples, em que cada variável, tanto quanto possível, se correlacione significativamente com um fator.

Em resumo, faz-se com que, dentro de cada fator, as cargas fatoriais apresentem variância máxima, o que equivale a dizer que algumas cargas fatoriais assumem valores próximos à unidade e outros, próximos a zero (CASTOLDI, 1997).

Na rotação de fatores, uma matriz de cargas fatoriais iniciais $[L]_{p \times m}$ é pós-multiplicada por uma matriz ortogonal $[T]_{m \times m}$. Com isso, [L][T] resulta em nova matriz $[L]^*_{p \times m}$, em que $[T]'[T] = I_m \times m$ e [L]* é a nova matriz $p \times m$ de cargas fatoriais rotacionadas. Verifica-se que as comunalidades de [L] e [L]* são iguais, assim como se mantém inalterada a matriz de variâncias e covariâncias, ou seja, $[L][L]' + \Psi = [L]*[L]*' + \Psi$. A multiplicação [L][T] resulta em nova matriz de cargas fatoriais [L]*, em que, dentro de cada fator, algumas variáveis terão cargas fatoriais próximas de 1,0 e as restantes, próximas de zero, permitindo, com isso, a interpretação dos fatores. Em outras palavras, consegue-se maximizar as variâncias dos quadrados das cargas fatoriais em cada fator e, consequentemente, maximizar a soma dessas variâncias. A função V da variância a ser maximizada é dada por:

$$V = (1/p) \sum_{k=1}^{m} \sum_{j=1}^{p} (a_{jk}/h_{j})^{4} - \sum_{k=1}^{m} \left(\sum_{j=1}^{p} a_{jk}^{2}/h_{j}^{2}\right)^{2}$$

em que a_{jk} representa a carga fatorial final da variável j no fator k e h_j^2 , a comunalidade da variável j. A comunalidade é atributo da variável e representa o somatório dos quadrados de todas as cargas fatoriais da variável. É única e invariante. Calculam-se, portanto, tantas comunalidades quantas variáveis exis-

tentes em estudo. Se no modelo não existirem mais que dois fatores, a rotação pode ser feita graficamente, bem como a determinação das novas cargas fatoriais, que seriam obtidas simplesmente pela medição, sobre os eixos dos fatores, das projeções dos pontos representativos das variáveis. Para três ou mais fatores, isso fica inviabilizado. Para o modelo de fatores ortogonal, o método mais utilizado para a rotação é o chamado Varimax Normal, cuja matriz $[T]^*$ é formada por cossenos e senos do angulo θ . Não importando quantos fatores comuns sejam utilizados, a rotação é feita sempre de dois a dois, em um total de C_m^2 rotações, em que m é o número de fatores comuns (CASTOLDI, 1997).

Cálculo dos escores fatoriais

O escore fatorial quantifica o efeito de cada fator comum na expressão dos caracteres. Os escores são obtidos de acordo com Manly (1980), citado por CASTOLDI (1997), da seguinte forma:

$$F^* = (GG')^{-1}G'X$$

em que

 $F^* = \text{vetor de dimensão m} \times 1 \text{ de escores fatoriais};$ $G = \text{matriz de dimensão p} \times \text{m das cargas fatoriais}$ rotacionadas; e

X= vetor de dimensão $p\times 1$ de médias dos caracteres.

Resultados e Discussão

Os autovalores, a explicação e a porcentagem acumulada dos fatores são apresentados na Tabela 1. Foram utilizados quatro fatores que apresentaram autovalores superiores à unidade.

A análise de fatores permite criar novo critério de seleção, estabelecido em função de um fator comum, denominado de fator de produção, sobre o

Tabela 1 - Autovalores, explicação e porcentagem acumulada dos fatores

Table 1 -	Eigenvalues, percentage and accumulated percentage of total variance accounted by factor						
Fator	Autovalores	Explicação (%)	Porcentagem acumulada (%)				
Factor	Eigenvalues	Percentage of total	Accumulated percentage				
		variance					
FAT1	2,294910	20,86	20,86				
FAT2	1,914415	17,40	38,26				
FAT3	1,724264	15,67	53,94				
FAT4	1,263981	11,49	65,43				
FAT5	0,927858	8,43	73,86				
FAT6	0,844826	7,68	81,54				
FAT7	0,648415	5,89	87,44				
FAT8	0,527805	4,79	92,24				
FAT9	0,466612	4,24	96,48				
FAT10	0,244418	2,22	98,70				
FAT11	0,142487	1,29	100,00				

Tabela 2 - Valores das cargas fatoriais¹ iniciais (CFI) e após rotação (CFR) e comunalidades (COM) das características Table 2 - Initial factor (CFI), rotation the after (CFR) and comunility (COM) the traits

Características	CFI-1	CFI-2	CFI-3	CFI-4	CFR-1	CFR-2	CFR-3	CFR-4	COM
Traits									
FERT42	0,2406	0,0708	0,2608	0,5797	0,0618	-0,1049	-0,0893	0,6665	0,4670
Fert 42									
FERT49	0,3894	0,3847	0,4831	0,0407	0,4424	0,0645	0,3902	0,4274	0,5348
Fert 49									
FERT32	0,7658	0,4519	-0,2370	-0,048	0,8907	0,0681	-0,2080	0,0897	0,8493
Fert 32									
FERT38	0,1725	0,1839	0,5452	0,5451	0,0333	-0,0231	0,1886	0,7880	0,6581
Fert 38									
ECLO32	0,8269	0,3866	-0,1061	-0,1640	0,9296	-0,0380	-0,0514	0,0564	0,8714
Hatch32									
PI	0,4407	-0,1464	0,2276	-0,6379	0,4498	-0,3662	0,4563	-0,3605	0,6745
Initial weight									
P42	-0,2269	0,7218	-0,2061	-0,0314	0,1563	0,7666	-0,0608	-0,0152	0,6160
Weight 42									
CA	0,4068	-0,5239	0,2087	0,1586	0,0522	-0,6831	0,0008	0,1985	0,5087
Feed:gain ratio									
RCAR	-0,4625	0,4080	0,5454	-0,2404	-0,2085	0,4817	0,6752	0,0663	0,7358
Carcass yield									
RPEIT	-0,3873	0,6213	-0,0590	0,0283	-0,0555	0,7300	0,0398	0,0532	0,5403
Breast yield									
RGA	-0,0996	-0,0646	0,7868	-0,3286	-0,1115	-0,1387	0,8385	0,0800	0,7412
Fat pad yield									

O número de cargas fatoriais corresponde ao número de autovalores maiores que a unidade, obtidos a partir da matriz de correlações entre as variáveis originais.

qual se praticará a seleção. Estabeleceu-se, neste trabalho, que a característica peso no 42º dia de idade (P42) é a mais importante; por conseguinte, entre os quatro fatores que fizeram parte da análise, foi considerado o fator de produção aquele em que P42 apresentou maior carga fatorial após a rotação, com maior valor absoluto, tornando-se esse fator de produção (fator biológico) o critério de seleção.

Constam da Tabela 2 os valores das cargas iniciais (CFI), das cargas após a rotação (CFR) e das comunalidades (COM) das características.

Pode-se observar que o fator 1 é o fator determinante da eclodibilidade e fertilidade na 32ª semana, pois apresenta as maiores cargas fatoriais para estas características. O fator 2 é determinante do peso no 42º dia de idade e rendimento de peito; o fator 3, determinante do rendimento de gordura abdominal; e o fator 4, determinante da fertilidade na 38ª semana. Portanto, sobre o fator 2, é que será feita a seleção.

As comunalidades que indicam a proporção de variância total de cada variável explicada pelo conjunto de fatores comuns, também apresentadas na Tabela 2, mostram que apenas a variável FERT32 apresentou pequena proporção na explicação da variação total.

Os escores fatoriais mostrados na Tabela 3 quantificam o efeito de cada fator comum na expressão dos caracteres.

Os maiores escores para o primeiro fator foram obtidos pelos cruzamentos 96 e 97; para o segundo fator, os cruzamentos 11 e 26; para o terceiro, os 47 e 77; e para o quarto, os 12 e 58.

Na Tabela 4, são apresentados os efeitos da capacidade geral de combinação, obtidos a partir da análise dos escores dos quatro fatores.

As linhagens favoráveis de cada grupo para cada fator, em ordem decrescente, são:

Fator	Grupo I	Grupo II
Factor	Group I	Group II
FAT1	1, 9, 3, 4, 2 e 5	8′,9′e6′
FAT2	5 e 8	3′, 2′, 4′, 9′, 5′ e 7′
FAT3	8, 7 e 5	1', 3', 4' 5' e 6'
FAT4	1, 4, 9, 2, 3 e 5	1′, 8′, 4′, 9′, 7′e 2'

Destaca-se o fato de que, como o fator 3 é o fator determinante do rendimento de gordura abdominal, e esta é uma característica na qual reside o interesse de diminuição como forma de melhoramento da mesma, interessam linhagens com CGC de valores

¹ The number of factor traits correspond to the number of eingevalues higher tham the unit, obtained from the correlation matriz among the original traits.

Tabela 3 - Escore dos cruzamentos para os quatro fatores

Table 3 -	Escore dos of Score of cross			เลเเบ เลเบเยร	Commont			ore	
Table 5	Ocore or cross	Escore	1401013		Cruzamento)	Sco	ore	
Cruzamen	to	Score			Cross	FAT1	FAT2	FAT3	FAT4
Cross					54	227,3794	-19,6420	34,8458	169,3085
	FAT1	FAT2	FAT3	FAT4	55	237,6295	-19,0364	39,4392	167,0690
11	220,5837	-20,1960	40,0477	176,2020	56	227,6982	-16,7925	46,5937	159,4311
12	236,5017	-19,1061	45,6915	182,1822	57	227,3574	-16,1236	42,4630	155,3512
13	232,6389	-18,1429	45,4920	174,2810	58	242,3813	-19,3385	44,7450	180,6846
14	234,5630	-18,4854	42,5712	174,4109	59	231,9641	-18,0458	47,0248	166,3018
15	233,5445	-15,5664	42,1788	148,4055	61	241,2907	-17,7579	40,5404	170,0511
16	230,7247	-18,7063	43,2793	169,1272	62	224,9589	-16,8107	42,0533	158,1255
17	231,9165	-18,8881	44,4620	169,6079	63	221,7227	-14,9963	42,2384	142,1022
18	237,9766	-18,5153	46,5916	172,9917	64	222,5947	-17,0850	37,1214	151,0265
19	232,0558	-16,5399	45,9880	163,8665	65	236,3355	-16,0916	47,5010	161,3678
21	231,4946	-19,5409	42,1529	177,2222	66	205,9738	-17,0475	42,7409	139,3199
22	239,6392	-17,6727	41,4109	164,6456	67	183,7296	-17,6978	46,3813	142,2647
23	233,3005	-17,1658	43,8719	157,3872	68	231,6899	-17,6926	40,9322	159,7561
24	225,0392	-15,5316	41,4000	152,0125	69	239,8137	-17,6588	44,8867	172,3048
25	218,3717	-18,7920	42,8297	158,4307	71	205,1195	-17,0388	39,6939	168,6769
26	216,8982	-20,6222	43,8724	175,6117	72	203,1193	-18,6163		168,0911
27	232,8554	-18,6940	43,2637	162,5038			,	41,4029	,
28	228,9814	-18,7274	46,2598	174,8775	73	225,7779	-17,6136	37,2095	146,9160
29	232,2018	-17,7878	45,2465	165,9637	74 75	225,2455	-18,9717	36,7444	165,2462
31	233,2917	-18,2291	45,0873	161,9411	75 76	217,6113	-17,5541	40,6934	146,6020
32	223,3924	-15,2555	47,0460	146,9695	76	238,0422	-16,1309	42,1021	143,6329
33	233,1097	-17,9477	41,5027	166,0911	77	230,4609	-17,8266	48,0431	174,3812
34	221,5750	-17,8432	47,3622	170,8585	78 - 0	242,2359	-18,2328	46,5447	165,9444
35	229,0931	-17,6432	40,5944	164,4310	79	222,0927	-18,7710	33,2456	133,5903
36	234,5789	-19,6091	45,7807	164,8076	81	230,0334	-18,7014	36,1485	156,0883
	236,4585	-18,7474	47,0075	178,4099	82	213,6673	-16,5830	42,1332	143,6280
37					83	217,7562	-19,7460	29,6116	131,2761
38	215,7829	-19,2752	39,6645	160,1300	84	216,0202	-18,0797	37,3188	152,4277
39	237,7289	-18,0793	46,4614	169,4698	85	221,4953	-16,7272	35,5629	127,9461
41	224,5638	-18,3854	41,5464	177,7411	86	232,5388	-19,4395	31,7551	143,2802
42	216,4576	-19,7852	41,9420	175,0789	87	226,9598	-16,9580	41,9445	151,1441
43	235,9409	-16,5258	44,6496	162,5881	88	230,7215	-17,3968	36,1643	138,0938
44	236,7854	-16,9926	45,5581	169,2471	89	237,6906	-16,1057	46,0986	157,8079
45	221,8396	-19,9986	43,4705	174,1229	91	236,6416	-17,9355	42,2173	162,3593
46	234,0628	-18,6263	37,8797	153,9221	92	231,2706	-18,7142	41,7335	165,7613
47	228,9602	-17,0533	48,0141	163,2722	93	220,9697	-18,8001	38,5371	159,7565
48	237,2498	-17,9132	43,1571	165,4810	94	223,6635	-18,3871	43,6180	173,9348
49	224,7079	-18,8926	42,1227	167,4135	95	198,0445	-17,8717	38,2692	148,1800
51	210,8891	-18,5932	34,7776	155,6110	96	244,2938	-18,0081	43,9836	166,8793
52	228,4410	-15,5015	46,6663	151,1265	97	245,5075	-19,5202	44,0062	177,2694
53	224,8508	-16,5598	41,1333	149,3197	98	230,1050	-18,0354	41,8420	160,7918
		Continua	na nróvin	a coluna	99	238,3589	-19,3554	46,5147	178,3493

absolutos negativos para este fator, pois essas linhagens teriam melhor desempenho para este fator.

As linhagens 4' e 9' foram as que se destacaram, pela CGC da análise de fatores, no grupo II e a linhagem 5, grupo I.

Um modo de se evidenciar mais facilmente a superioridade das linhagens, considerando-se simultaneamente um conjunto de características de interesse, é por meio da dispersão gráfica, em que se consideram os eixos cartesianos, representados pelos fatores de interesse.

A Figura 1 mostra a dispersão dos efeitos da capacidade geral de combinação entre o fator 1, de eclodibilidade, e o fator 2, de peso aos 42 dias. Por intermédio deste gráfico, observa-se que as linhagens 2', 3',4', 5' e 7' são que seriam selecionadas para o melhoramento do fator de peso aos 42 dias. As linhagens 5 e 9' seriam selecionadas para realização de cruzamentos para melhoria do fator 1 e 2 simultaneamente, porque são as únicas positivas para os dois fatores. Para escolher linhagens para cruzamentos visando-se ao fator 2, de peso aos 42 dias, e o fator 3, de rendimento de gordura abdominal, seriam selecionadas conjuntamente as linhagens 3', 4', 5', 5 e 8, como ilustra a Figura 2.

Na Figura 3, são apresentadas as dispersões da CGC do fator 2, de peso aos 42 dias, e do fator 4, de fertilidade. As linhagens selecionadas para os dois

fatores simultaneamente seriam: 2', 4', 7', 9' e 5. Efeitos da capacidade específica de combinação

As estimativas dos efeitos da capacidade específica de combinação dos quatros fatores são apresentadas na Tabela 5.

Os cruzamentos selecionados pela CEC, com

Tabela 4 - Estimativa do efeito da capacidade geral de combinação dos quatro fatores Table 4 - General combining ability estimate of the four factors

Table 4 Cener	Estima	ativa da capacidade)
		General combining at	,	
Linha	FAT1	FAT2	FAT3	FAT4
Line				
		Grupo	1 (Group1)	
1	4,1781	-0,2401	1,8029	8,7579
2	0,6532	-0,2832	1,1369	4,0446
3	1,3454	-0,1755	2,2701	3,4283
4	0,8517	-0,2430	0,9183	6,2903
5	0,6320	0,2613	-0,2652	0,2166
6	-4,9769	1,0163	0,4800	-6,2149
7	-1,5653	-0,0698	-1,5995	-4,3524
8	-2,8910	0,2497	-4,8153	-16,7290
9	1,7725	-0,5158	0,0717	4,5587
		Grupo	2 (Group2)	
1'	-2,1104	-0,6945	-1,9848	5,9599
2'	-0,7050	0,4378	1,1115	0,3728
3'	-0,7594	0,4986	-1,7588	-6,9483
4'	-2,2262	0,1074	-1,5039	2,9132
5'	-4,3264	0,0820	-1,0596	-6,1887
6	1,3232	-0,2185	-0,2320	-4,0268
7'	-0,9662	0,0529	2,8344	2,4390
8'	4,9135	-0,3490	0,6473	2,9441
9'	4,8568	0,0832	1,9459	2,5349

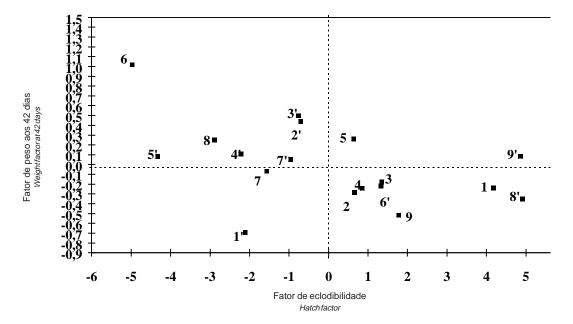


Figura 1 - Gráfico de dispersão dos efeitos da capacidade geral de combinação, obtidos a partir dos escores dos fatores 1 (fator de eclodibilidade) e 2 (fator de peso no 42º dia).

Figure 1 - General combining ability dispersion graph effects obtained from factors scores 1 (Hatch factor) and 2 (Weight factor).

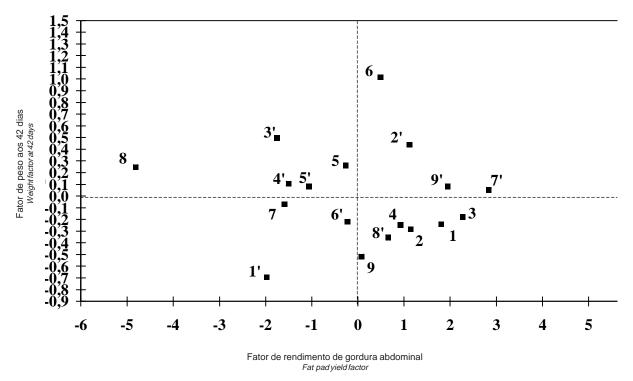


Figura 2 - Gráfico de dispersão dos efeitos da capacidade geral de combinação, obtidos a partir dos escores dos fatores 3 (fator de rendimento de gordura abdominal) e 2 (fator de peso no 42º dia).

Figure 2 - General combining ability dispersion graph effects obtained from factors scores 1(Fat pad yield factor) and 2 (Weight factor).

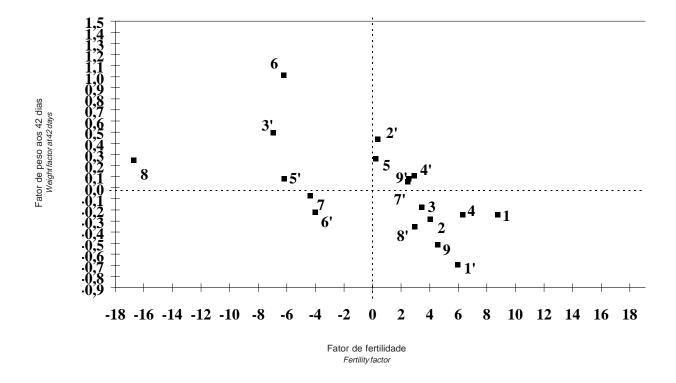


Figura 3 - Gráfico de dispersão dos efeitos da capacidade geral de combinação, obtidos a partir dos escores dos fatores 4 (fator de fertilidade) e 2 (fator de peso no 42º dia).

Figure 3 - General combining ability dispersion graph effects obtained from factors scores 1 (Fertility factor) and 2 (Weight factor).

1217 Rev. bras. zootec.

Tabela 5 - Estimativa dos efeitos da capacidade específica de combinação dos quatro fatores

Table 5 - Specific combining ability estimate of the four factors

Estimativa da capacidade específica de combinação Specific combining ability estimate

	Specific co	ombining abili	ty estimate				
Cruzamento	FAT1	FAT2	FAT3	FAT4			
Cross							
11	-9,5842	-1,2629	-2,0010	0,1225			
12	4,9283	-1,3054	0,5463	11,6891			
13	1,1199	-0,4030	3,2172	11,1099			
14	4,5109	-0,3543	0,0415	1,3781			
15	5,5925	2,5900	-0,7951	-15,5252			
16	-2,8768	-0,2493	-0,5222	3,0345			
17	0,6044	-0,7025	-2,4059	-2,9505			
18	0,7846	0,0722	1,9107	-0,0718			
19	-5,0794	1,6153	0,0084	-8,7878			
21	4,8515	-0,5647	0,7702	5,8561			
22	11,5907	0,1710	-3,0685	-1,1333			
23	5,3064	0,6171	2,2631	-1,0705			
24	-1,4880	2,6425	-0,4635	-16,3068			
25	-6,0554	-0,5924	0,52177	-0,7866			
26	-13,1785	-2,1220	0,7368	14,2324			
27	5,0681	-0,4653	-2,9382	-5,3413			
28	-4,6856	-0,0967	2,2449	6,5272			
29	-1,4086	0,4105	-0,0669	-1,9773			
31	5,9564	0,6393	2,5713	-8,8087			
32	-5,3482	2,4806	1,4336	-18,1931			
33	4,4234	-0,2723	-1,2392	8,2496			
34	-5,6444	0,2232	4,3654	3,1553			
35	3,9738	-1,5172	-2,8467	5,8298			
36	3,8099	-0,1862	1,5119	4,0445			
37	7,9790	-0,6264	-0,3276	11,1810			
38	-18,5763	-0,7522	-5,4835	-7,6039			
39	3,4263	0,0113	0,0147	2,1450			
41	-2,2777	0,5505	0,3823	4,1292			
42	-11,7893	-1,9815	-2,3184	7,0542			
43	7,74835	1,2170	3,2595	1,8846			
44	10,0596	1,1413	3,9131	-1,3180			
45	-2,7860	-1,8391	1,3811	12,6597			
46	3,7875	-0,1663	-5,0372	-9,7029			
47	0,9744	1,1352	2,0307	-6,8186			
48	3,3842	0,6773	-0,6391	-5,1150			
49	-9,1009	-0,7343	-2,9721	-2,7733			
51	-15,7325	-0,1616	-5,2029	-11,9271			
52	0,4137	1,7977	3,5893	-10,8244			
53	-3,1220	0,6786	0,9267	-5,3100			
	Continua na próxima coluna						

Estimativa da capacidade específica de combinação
Specific combining ability estimate

Cruzamento	FAT1	FAT2	FAT3	FAT4
Cross		11112	11110	
54	0,8733	-2,0124	-5,6156	4,8170
55	13,2235	-1,3814	-1,4666	11,6795
56	-2,3573	1,1630	4,8602	1,8797
57	-0,4086	1,5604	-2,3368	-8,6659
58	8,7354	-1,2523	2,1322	16,1622
59	-1,6250	-0,3920	3,1134	2,1887
61	20,2778	-0,0813	-0,1853	8,9446
62	2,5406	-0,2664	-1,7688	2,6061
63	-0,6411	1,4871	1,2866	-6,0959
64	1,6977	-0,2104	-4,0852	-7,0332
65	17,5386	0,8083	5,8499	12,4099
66	-18,4726	0,1530	0,2622	-11,7997
67	-38,4273	-0,7687	0,8362	-15,3208
68	3,6530	-0,3614	-2,4257	1,6654
69	11,8335	-0,7600	0,2301	14,6233
71	-19,3048	-0,1340	1,0476	5,7079
72	6,3981	-0,9859	-0,3397	10,7092
73	0,0024	-0,0440	-1,6627	-3,1446
74	0,9369	-1,0109	-2,3827	5,3239
75	-4,5971	0,4320	1,1219	-4,2182
76	10,1841	2,1558	1,7030	-9,3492
<i>7</i> 7	4,8923	0,1886	4,5775	14,9331
78	10,7874	0,1844	5,2663	5,9912
79	-9,2990	-0,7860	-9,3314	-25,9536
81	6,9346	-0,2582	0,7180	5,4958
82	-10,8368	0,7277	3,6063	-1,3772
83	-6,6935	-2,4960	-6,0448	-6,4079
84	-6,9627	-0,4385	1,4074	4,8819
85	0,6124	0,9393	-0,7927	-10,4976
86	6,0063	-1,4724	-5,4281	2,6745
87	2,7168	0,7376	1,6947	4,0726
88	0,5987	0,7008	-1,8982	-9,4828
89	7,6244	1,5596	6,7373	10,6405
91	8,8793	1,2732	1,8997	-9,5208
92	2,1028	-0,6378	-1,6804	-0,5317
93	-8,1436	-0,7845	-2,0064	0,7846
94	-3,9829	0,0196	2,8195	5,1013
95	-27,501	0,5604	-2,9735	-11,5514
96	13,0978	0,7245	1,9132	4,9859
97	16,6010	-1,0589	-1,1306	8,9101
98	-4,6813	0,8278	-1,1077	-8,0725
99	3,6292	-0,9244	2,2663	9,8941

base nas melhores CGC, para o fator 1, que é o fator de eclodibilidade, foram: 18, 36, 39, 46, 48, 58, 96 e 99.

Para o fator 2, que é o fator de peso aos 42 dias, os cruzamentos foram: 52, 53, 57, 82, 85, 87 e 89.

Utilizando-se o fator 3, que é o fator de rendimento de gordura abdominal, os seguintes cruzamentos seriam selecionados: 51, 54, 55, 73, 74, 83, 85 e 86. No fator 4 – o fator da fertilidade – seriam selecionados os cruzamentos: 11, 12, 14, 21, 28, 34, 37, 39, 41, 42, 54, 58, 59, 94, 96 e 99.

Conclusões

Foram utilizados quatro fatores, cujo significado biológico foi definido após a rotação dos fatores, de forma que o fator 1 foi definido como o determinante da eclodibilidade e fertilidade na 32ª semana; o fator 2, do peso no 42º dia e rendimento de peito; o fator 3; do rendimento de gordura abdominal; e finalmente o fator 4, da fertilidade na 38ª semana de idade das aves.

As linhagens 2', 3', 4', 5', 7' e 9'foram as que se destacaram na análise de fatores, para o fator 2 (fator de peso no 42º dia), no grupo II e as 5 e 8, no grupo I.

Pela análise de fatores, além de se estudar conjuntamente várias características, obtêm-se fatores com significados biológico e econômico que possibilitam maiores facilidades de uso e interpretação, sendo, portanto, uma análise promissora nestes tipos de estudos.

Referências Bibliográficas

- CASTOLDI, F.L. Estudo comparativo de diversos métodos de seleção multivariada em milho (Zea mays L.). Viçosa, MG: UFV. 1997. Tese (Doutorado em Zootecnia) Universidade Federal de Viçosa, 1997.
- CRUZ, C.D. 1997. Programa GENES Aplicativo computacional em genética e estatística. Viçosa, MG: UFV. 442p.
- FACHEL, J.M.G. Análise fatorial. São Paulo, SP: USP, 1976. 81p. Dissertação (Mestrado em Zootecnia) - Universidade de São Paulo, 1976.
- FERNANDES, T.A.G., LIMA, J.E. 1991. Uso de análise multivariada para identificação de sistemas de produção. *Pesq. Agrop. Bras.*, 26(10):1823-1836.
- HARMAN, H.H. 1967. *Modern factor analysis*. 2 ed., Chicago and London. The University of Chicago Press. 467p.
- KIM, J.O. 1975. Factor analysis. In: NIE, H.H., HULL, C.H., JENKINS, J. G. et al. (Eds). Statistical package for the social sciences. 2 ed. New York: McGraw-Hill. Inc. p.468-514.
- KLOOSTERMAN, B., LAVHULICH, L.M. A method of statistically interpreting soil data for agricultural and enginering land use. *Soil Sci. Soc. of Amer. Proc.*, 37(2):285-291, 1972.
- QUEIROZ, W.T. Análise de fatores ("Factor analysis") pelo método da máxima verossimilhança: aplicação do estudo da estrutura de florestas tropicais. Piracicaba, SP, ESALQ, 1984. 112p. Tese (Doutorado em Zootecnia) Escola Superior de Agricultura "Luiz de Queiroz", 1983.
- RUFINO, D.T.C. Zoneamento ecológico para o cultivo da seringueira no Estado de Minas Gerais. Viçosa, MG, UFV, 1986. 70p. Dissertação (Mestrado em Zootecnia) -Universidade Federal de Viçosa, 1986.

Recebido em: 24/09/98 **Aceito em**: 09/09/99