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ABSTRACT - This study aimed to assess the physical performance of Pantaneiro horses with and without equine infectious 
anemia (EIA) under functional conditions of cattle management. The horses were subjected to a performance test and split into 
two groups according to a completely randomized design: animals were chosen from populations testing positive and negative 
for EIA. Performance was measured as a function of a data envelopment analysis (DEA) model considering four outputs 
and one unitary input. The output measures were the distance achieved in the performance test, hematocrit as a weighted 
average over the test duration, respiratory rate as weighted average over the test duration, and the level of lactic acid at the test 
termination. Weights for the hematocrit and the respiratory rate output variables were determined by means of factor analysis. 
The performance score was a weighted average of the output variables with the weights defined by the averages of the optimum
individual multipliers in the DEA analysis. Contextual variables of interest were age, horse weight, room temperature, and 
corporal temperature. Only groups and room temperature were statistically significant effects, as indicated by a bootstrap
analysis. The performance of group positive for EIA is significantly lower than that of the group negative for EIA and room
temperature has a negative effect. 
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Introduction

The Pantanal wetland in the central western region 
of Brazil (Pantanal for short) counts 9.63 million heads 
of cattle according to the 2015 Brazilian county livestock 
research. This livestock is of economic importance in this 
region. The use of the so-called Pantaneiro horses is critical 
for the appropriate management of cattle. Equines were 
brought to Brazil by the first European settlers and in the
Pantanal, they have grown and multiplied without human 
interference for more than two centuries, giving rise to the 
Pantaneiro breed (Santos et al., 2016). 

In recent years, the occurrence of equine infectious 
anemia (EIA) has become a serious drawback for the 
use of Pantaneiro horses in cattle management (Oliveira 

et al., 2011). Equine infectious anemia is an incurable 
and transmissible viral disease affecting equines (Craigo 
and Montelaro, 2008; Cook et al., 2009). It is endemic in 
the Pantanal and vaccines are not available to control the 
disease. The infected horses have their working capacity 
reduced or, if asymptomatic, may be a permanent source 
for the spread of the disease (Juliano et al., 2016). 

Pantaneiro horses are generally not euthanized if they 
test positive for EIA. According to a Brazilian government 
web page, euthanasia is not required in endemic regions 
(Brasil, 2004). This fact leads to the investigation of whether 
infected horses perform satisfactorily when used in cattle 
management (Rezende et al., 2016). A growing number of 
cattle raisers use Pantaneiro horses in cattle management 
and are showing increased concern regarding this issue. 

This study aimed to assess the physical performance of 
horses with and without EIA under functional conditions of 
cattle management. To this end, 16 male equines, equally 
split into two groups – EIA positive and EIA negative – were 
evaluated after a stress test. The performance was determined 
by multivariate methods and by data envelopment analysis 
(DEA) models with unitary inputs and further analyzed 
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by nonparametric and bootstrap regression methods. The 
concept of DEA appears in the literature in the study of 
performance of decision-making units in a broader context. 
Decision-making units may be firms, schools, hospitals,
airplane companies, farmers, or experimental units 
arranged according to an experimental design. Particularly 
in experimental design, the use of DEA is not new. Marlin 
and Sohn (2016) proposed a hybrid process that combines 
simulation, design of experiments, and DEA to study an 
educational system. Yang et al. (2016) applied DEA and 
design of experiment concepts to evaluate the emission of 
water pollutants. Leme et al. (2014) proposed a simulation 
approach based on the philosophy of design of experiments 
to test the impact of environmental variables on the DEA 
efficiency scores of Brazilian electricity companies.
Grigoroudis et al. (2014) proposed a DEA model and optimal 
design to investigate biomass supply chain networks. Liu 
and Yang (2014) used DEA to obtain a robust design for 
the analysis of carbon filters. Gutiérrez and Lozano (2010) 
and Miranda et al. (2017) combined Taguchi’s method 
(orthogonal arrays) and DEA to estimate the response of 
experimental units. Bezerra Neto et al. (2007, 2010, 2012) 
and Lima et al. (2014) used DEA models to evaluate the 
performance of intercropping production systems arranged 
according to different experimental designs. Gomes et al. 
(2008) proposed the use of DEA efficiency scores, with
unitary input, in the multivariate analysis of variance. They 
discussed two examples of intercropping systems, where 
the experimental plots were arranged according to specific
designs. The authors stated that this approach agrees 
with the standard analysis of variance (covariance) for 
univariate responses and simplifies the statistical analysis
in the multivariate case. 

The approach proposed here differs from the use of 
classical techniques, as for instance in Rezende et al. 
(2016). We borrowed the notion of performance from 
operational research, in which it is defined as a solution
of optimization problems associated with production 
functions. Our view of performance is in close association 
with DEA, in a multicriteria decision analysis context 
(Gomes et al., 2008).

Material and Methods

The experimental design was completely randomized, 
with the choice of eight animals per treatment. Initial 
conditions of the animals differed. The following response 
variables were measured: lactic acid blood concentration, 
hematocrit (initial condition, immediately after the test, 

and 10, 30, and 60 min after the test), heart rate at four time 
periods, respiratory rate at three time periods, and distance 
achieved in the test. Contextual variables of interest were 
room temperature, horse age, horse weight, and horse 
superficial temperature (this is skin temperature measured
in 11 different parts of the animal body, determined by a 
thermal imaging camera).

The objective of the statistical analysis was to compare 
the treatment effects (positive and negative for EIA), 
adjusted for the covariates. Having the same number of 
experimental units per treatment is a common choice in 
experimental design, which facilitates the consideration of 
type II probability errors in the design (Scheffé, 1959) and 
allows the same precision for the estimate of each treatment 
effect. As a performance vector, we initially considered a 
five-dimensional output vector with these components:
distance achieved, lactic acid concentration, hematocrit 
score, heart rate score, and respiratory rate score (Tables 
1 and 2). Later, the heart rate score was eliminated, given 
its negative rank correlation with distance and very low 
association with the remaining performance variables. 
Statistical methods considered here were descriptive 
statistics, standard nonparametric analysis with the use of 
ranks, standard multivariate analysis of variance, factor 
analysis, and regression analysis. Performance analysis 
is a modification of standard DEA models. We briefly
summarize below only the most important topics for our 
analyses: multivariate factor analysis and DEA models 
assuming a unitary input.

Mardia et al. (1980) and Johnson and Wichern (2007) were 
referenced for the factor analysis. A vector of a p-dimension 
variable x with mean µ and variance-covariance matrix Ω 
satisfies the k-factor model if x − µ = Λƒ + u, Λ = (λij) is 
a p × k  matrix of constants. ƒ(k × 1) and  u(p × 1) are 
random. The common factors are the components of f. The 
components of u are the specific factors. The variance-
covariance matrix of u is given by Φ = diag(φ11, ..., φpp). We 
then have . 

Under the factor model, the variance σ2
i of xi is 

given by . The term  is 
called communality and represents the variance of xi that 
is shared with the other variables via the common factors. 
λij = Cov(xi,ƒj) is the extent to which xi depends on the j-th 
common factor. 

The performance response score of horse i on the 
marginal dimension d of the output vector based on the 
k-factor model is defined, in our application, by a weighted
average. The weights are the relative communalities as 
defined in (1). These scores differ from usual factor scores
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and endow the weighting system with robustness relative to 
orthogonal transformations of the factor model.
               

      (1)

Data envelopment analysis models are defined by linear
programming problems designed to measure performance 
under production assumptions or for benchmarking 
purposes. It is possible to consistently estimate a production 
function using DEA responses. Intuitively, a DEA measure 
estimates the maximum increase in production that can 
be achieved given input levels (see Cooper et al. (2011) 
for details about DEA modeling). In our application, the 
output-oriented notion is generalized to measure output 

performance when a vector of responses is characterized 
by marginal indicators. We assume unitary input for all 
experimental units to make the analysis consistent. This 
idea is not unusual in the DEA literature and can be seen, 
for instance, in Caporaletti et al. (1999), Lovell and Pastor 
(1999), De Koeijer et al. (2002), Leta et al. (2005), and 
Gomes et al. (2008, 2012).

In DEA modeling, it is necessary to define the units under
evaluation – decision-making units – and the production 
variables (inputs and outputs). In an experimental design, 
the experimental units arranged according to the layout 
of the design are the decision-making units. The output 
vector is the non-negative response vector of each 
experimental unit. The issue under consideration is the 

Table 1 - Experimental data – response variables

Experimental 
unit

Treatment
Lactic 
acid 

(mmol/L)
Distance

(km)

Hematocrit  
 (%)

Heart rate 
(beats per minute)

Respiratory rate
(breaths per minute)

H_r H_0 H_10 H_30 H_60 CF_r CF_1 CF_2 CF_f RF_r RF_2 RF_f

1P P 8.8 5.3 35 39 33 38 27 40 57 172 192.0 12 36 50.0
2P P 10.7 6.0 34 42 34 35 29 40 101 149 205.0 12 56 88.0
3P P 4.8 3.9 27 27 27 21 24 38 69 172 172.0 16 56 56.0
4P P 17.2 5.2 28 34 29 28 28 37 100 111 158.0 16 52 72.0
5P P 11.0 5.3 29 39 30 28 23 37 75 148 208.0 30 40 64.0
6P P 6.1 4.0 32 40 35 32 25 45 106 202 202.0 20 56 56.0
7P P 4.9 3.9 22 32 28 25 25 46 97 197 197.0 32 64 64.0
8P P 5.3 3.9 33 34 30 30 29 38 96 167 167.0 30 56 56.0
1N N 8.4 4.3 25 41 35 30 27 48 110 144 144.0 52 64 64.0
2N N 19.8 5.3 26 45 31 30 25 50 74 178 178.0 48 96 84.0
3N N 12.5 5.8 27 39 33 29 28 48 105 210 210.0 32 80 76.0
4N N 8.1 5.8 25 41 32 29 42 48 92 130 130.0 30 53 53.0
5N N 2.3 6.9 28 46 40 35 31 54 85 157 192.0 25 56 72.0
6N N 17.8 5.4 34 44 40 35 35 54 85 204 204.0 28 60 60.0
7N N 14.5 5.4 27 41 35 29 24 40 85 130 130.0 36 80 64.0
8N N 10.2 5.6 27 40 33 31 32 52 105 161 161.0 36 60 84.0
P - testing positive for EIA; N - testing negative for EIA; H_r - hematocrit when resting; H_0 - hematocrit immediately after the stress test; H_10 - hematocrit 10 min after the stress 
test; H_30 - hematocrit 30 min after the stress test; H_60 - hematocrit 60 min after the stress test; CF_r - heart rate when resting; CF_1 - heart rate at time 1; CF_2 - heart rate at 
time 2; CF_f - final heart rate; RF_r - respiratory rate when resting; RF_2 - respiratory rate at time 2; RF_f - final respiratory rate.

Table 2 - Experimental data – contextual variables
Experimental 
unit

Room 
temperature (°C)

Horse weight
(kg)

Horse age
(years)

Horse superficial temperature (°C)

Tsg Tsn Tscx Tsp Tsc Tspt Tsa Tsb Tsj Tsbp Tspf

1P 26.6 370 22 35.8 34.2 35.5 34.7 35.4 35.0 34.7 34.3 35.8 34.9 34.7
2P 23.8 360 14 32.1 34.7 35.2 34.5 32.8 35.7 34.3 33.7 34.1 35.2 34.9
3P 26.6 385 15 36.3 34.4 37.4 35.6 37.0 34.7 35.4 35.8 36.9 35.5 35.3
4P 29.0 355 14 33.6 34.8 35.3 35.5 33.5 33.2 33.7 34.0 33.2 33.2 36.0
5P 30.5 362 14 34.7 36.5 37.0 36.0 35.6 37.1 37.0 36.2 34.7 36.7 35.0
6P 30.2 390 16 33.2 34.6 35.1 34.5 34.1 34.9 35.7 35.0 35.0 34.6 36.6
7P 33.6 359 15 39.3 39.7 38.5 39.1 38.6 37.6 37.8 37.9 37.4 37.3 37.5
8P 34.0 300 9 35.1 36.7 37.2 36.9 35.2 36.6 36.5 36.4 35.8 36.3 36.2
1N 36.1 360 10 35.7 37.5 37.8 37.3 36.8 37.5 37.5 37.1 36.8 37.5 36.8
2N 30.8 300 11 36.8 37.1 37.5 37.3 36.9 38.4 38.2 38.1 36.7 38.2 37.1
3N 32.1 310 11 33.2 35.9 35.5 35.3 34.0 35.7 36.0 35.0 33.6 35.0 36.4
4N 23.7 380 11 31.6 32.8 33.65 33.5 31.2 33.0 32.8 32.5 30.0 30.5 33.8
5N 27.6 388 11 35.8 34.8 36.7 35.5 35.2 36.4 36.7 35.9 35.1 36.8 36.1
6N 27.7 285 12 34.0 33.2 34.4 34.1 33.0 34.7 34.4 34.1 32.0 35.3 35.4
7N 30.9 355 9 33.3 35.5 36.0 35.4 34.1 36.4 36.8 35.9 34.7 36.6 35.9
8N 28.3 355 - 33.5 35.3 35.4 34.6 33.2 34.7 34.8 34.1 32.9 34.3 35.7
Tsg - croup; Tsn - buttocks; Tscx - gaskin; Tsp - legs; Tsc - cannons; Tspt - chest; Tsa - forearms; Tsb - arms; Tsj - knees; Tspb - neck; Tspf - nose.



4 Souza et al.

R. Bras. Zootec., 47:e20170162, 2018

assessment of treatment differences based on the output 
vector and unitary input. This is the approach suggested 
in Gomes et al. (2008).

Assuming unitary inputs is suitable for experimental 
design evaluation. Under this assumption, all experimental 
units are set on the same basis for comparisons. Therefore, 
the differences in the response vector are assumed to be 
due to error control variables (induced by the choice of 
the experimental design) and to the influence of contextual
variables. These are qualitative or quantitative variables 
that affect the experimental units and which are under the 
control of the researcher. The effects of contextual variables 
are assessed in a second stage using a linear model and the 
DEA score as the response variable. In this context, we 
postulated the classical assumptions (Steel et al., 1996) of 
the analysis of variance (covariance).

The unitary input DEA model is presented in (2), 
in which ho is the performance score (efficiency) of the
experimental unit o, with production values (1, yo). Each 
experimental unit k, k = 1...n, produces s outputs yjk, j = 1...s 
(non-negative, not all zeros). The quantities uj are the most 
favorable weights attributable to the response vector to 
calculate the performance score. 
               
                      

            
                                                                                       (2)

We observed here that it is not necessary to assume 
an underlying production function (frontier) as a data-
generating process for the output vector. We are interested 

here in a performance model instead of a production 
model. Data envelopment analysis also serves this purpose 
in general (Gomes et al., 2008; Cook et al., 2014). We 
assumed a data-generating process in which a population 
of DEA responses is determined by the experimental error, 
given that the values of covariates are fixed.

Results

The multivariate factor analysis for the performance 
indicators hematocrit, heart rate, respiratory rate, and 
superficial temperature of the horse (Table 3) indicated a
one-factor model for each dimension (Table 4).

Scores of DEA and the corresponding weights assigned 
by the DEA model were computed in the optimal solution 
for each animal (Table 5). The average weights to be applied 
to each output variable were also determined (Table 5). The 
modified DEA score is a linear combination of the ranked
output variables using these average weights, leading to 
the final performance scores and the corresponding rank
transformation (Table 6). 

Finally, we performed a nonparametric regression 
analysis of the final performance scores on the regressors
treatment effect and room temperature (Table 7). The 
statistical model used is Rij = µ + τi + βtij + εij, i = 1,2 
j = 1,...,16, in which Rij is the rank of the performance 
score of horse j under treatment i, subject to rank 
of room temperature tij. The constants µ, τi, and β are 
parameters to be estimated. Parameter µ is an overall 
mean, τi are treatment effects, and β is the decrease in 
performance resulting from the increase in one unit 
of room temperature. The model does not include an 
interaction effect in room temperature. The error term εij 
may be neither normal nor homoscedastic.

Table 3 - Multivariate factor analysis for hematocrit, heart rate, respiratory rate, and animal superficial temperature
Hematocrit Heart rate Respiratory rate Superficial temperature

Component Communality Component Communality Component Communality Component Communality

H_r 0.3002 CF_r 0.1211 RF_r 0.4480 Tsg 0.7235
H_0 0.6842 CF_1 0.0001 RF_2 0.6620 Tsn 0.7967
H_10 0.7071 CF_2 0.6939 RF_f 0.2373 Tscx 0.9118
H_30 0.8605 CF_f 0.5228   Tsp 0.8794
H_60 0.1280     Tsc 0.8714
      Tspt 0.7916
      Tsa 0.8816
      Tsb 0.9629
      Tsj 0.7888
      Tsbp 0.8017
      Tspf 0.6004

H_r - hematocrit when resting; H_0 - hematocrit immediately after the stress test; H_10 - hematocrit 10 min after the stress test; H_30 - hematocrit 30 min after the stress test; 
H_60 - hematocrit 60 min after the stress test; CF_r - heart rate when resting; CF_1 - heart rate at time 1; CF_2 - heart rate at time 2; CF_f - final heart rate; RF_r - respiratory rate
when resting; RF_2 - respiratory rate at time 2; RF_f - final respiratory rate; Tsg - croup; Tsn - buttocks; Tscx - gaskin; Tsp - legs; Tsc - cannons; Tspt - chest; Tsa - forearms;
Tsb - arms; Tsj - knees; Tspb - neck; Tspf - nose.
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Discussion

Regarding the multivariate factor analysis, the 
hematocrit indicator had five components, heart rate
had four, respiratory rate had three, and superficial
temperature had 11 components. The likelihood ratio tests 
of orthogonality produced the statistics 43.05 (P<0.001), 
13.23 (P = 0.0395), 11.45 (P = 0.0095), and 286.89 
(P<0.0001) for the hematocrit, heart rate, respiratory rate, 
and superficial temperature, respectively. Under the null
hypothesis of independence (non-factor model), the 
distributions are chi-square with 10, 6, 3, and 55 degrees 
of freedom, respectively. These statistical tests support the 
factor model. Models with more than one factor did not 
converge under maximum likelihood estimation. Therefore, 
we used the minimum eigenvalue equal to 1 as the choice 
criterion of the number of factors, which leads to one factor 
in all cases, implying average aggregated scores calculated 
using the relative communalities as weights (Table 4). 

The performance vector, that is, the output variables 
for the DEA model, is defined by distance achieved, lactic
acid blood concentration, hematocrit score, heart rate score, 
and respiratory rate score. It is important to emphasize here 
that these data were ranked before undergoing the DEA 
analysis.

We performed a multivariate analysis of variance 
using the ranked output variables as dependent variables. 
The independent variables were treatment (positive and 
negative for EIA ), ranked room temperature, ranked animal 
weight, ranked animal age, and ranked animal superficial
temperature score. Wilks’ lambda test of treatment effect 
was not significant. In this context, DEA provides a better
insight into the performance issue, discriminating the 
responses for treatments. 

The output variables were subjected to a screening 
process before applying DEA. The very nature of DEA 
precludes negative correlations between the final
performance achieved and the output components. This was 
the case with heart rate in our application, showing a rank 
correlation of −0.326 with the distance and low correlations 
with the hematocrit score, respiratory rate, and lactic acid 
concentration. For this reason, we opted to eliminate heart 
rate and use a four-dimensional output in the DEA model.

Experimental
unit

Hematocrit
score (%)

Heart rate score
(beats per 
minute) 

Respiratory 
rate score 

(breaths per 
minute)

Superficial
temperature 
score (°C)

1P 36.0748 167.8530 30.4847 34.991
2P 36.1248 161.0071 47.0040 34.286
3P 24.9302 159.8582 42.6989 35.875
4P 29.7957 122.6627 43.5510 34.161
5P 31.2093 161.3870 40.9012 36.100
6P 34.4997 187.7760 44.0290 34.825
7P 27.2426 183.3190 53.3591 38.257
8P 31.3095 155.3134 47.3543 36.288
1N 33.4243 135.3044 60.0097 37.148
2N 33.4066 166.4014 77.9254 37.508
3N 32.3367 195.3226 63.3342 35.048
4N 33.0279 122.5718 45.3518 32.306
5N 38.1525 161.3432 48.5092 35.914
6N 38.5050 190.4081 49.3591 34.028
7N 33.1840 121.8469 62.5511 35.532
8N 33.4251 151.1256 56.2458 34.392

Table 4 - Aggregate scores

Table 5 - Data envelopment analysis (DEA) scores and output 
weights

Experimental 
unit

DEA 
score

DEA weight

Lactic 
acid Distance Hematocrit 

score
Respiratory 
rate score

1P 0.8751 0.0157 0.1505 0.0059 0.0000
2P 1.0000 0.0137 0.1317 0.0052 0.0000
3P 0.5857 0.0244 0.2439 0.0000 0.0000
4P 1.0000 0.0180 0.1439 0.0000 0.0000
5P 0.9144 0.0187 0.1498 0.0000 0.0000
6P 0.7500 0.0000 0.0000 0.0833 0.0000
7P 0.7068 0.0000 0.1064 0.0000 0.0532
8P 0.6277 0.0000 0.1863 0.0000 0.0342
1N 0.9096 0.0000 0.0000 0.0397 0.0464
2N 1.0000 0.0625 0.0000 0.0000 0.0000
3N 1.0000 0.0000 0.0752 0.0000 0.0376
4N 0.9143 0.0156 0.1563 0.0000 0.0000
5N 1.0000 0.0000 0.0340 0.0510 0.0000
6N 1.0000 0.0000 0.0000 0.0625 0.0000
7N 0.9630 0.0144 0.1382 0.0028 0.0032
8N 0.9362 0.0148 0.1421 0.0029 0.0033
Mean 0.0124 0.1037 0.0158 0.0111

Table 6 - Final performance scores

Experimental unit Final performance score (values 
normalized by the maximum)

Rank of the final
performance score

1P 0.5702 8
2P 0.9849 15
3P 0.1400 1
4P 0.4417 5
5P 0.5233 7
6P 0.3595 4
7P 0.1983 2
8P 0.2115 3
1N 0.4519 6
2N 0.6709 9
3N 0.9010 14
4N 0.8221 12
5N 1.0000 16
6N 0.8158 11
7N 0.7625 10
8N 0.8279 13

Table 7 - Nonparametric regression – bootstrap replications

Coefficient Bias
Bootstrap 
standard 

error

Bias-corrected 95% 
confidence interval

Treatment effect 6.0764 1.0000 1.5340 2.9489 8.9710
Room temperature −0.4351 0.0073 0.2026 −0.8307 −0.0253
Constant 9.1605 −0.1399 2.6542 3.7820 13.9987
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From the DEA results (Table 5), we understand that a 
null weight for a variable such as distance achieved is not 
acceptable in the calculation of a global performance score. 
An alternative within DEA models to avoid this drawback 
is to impose restrictions on the weights (Thanassoulis 
et al., 2004). Typically, these are achieved by introducing 
preferences (by means of value judgments) on the relative 
worth of the variables. We believe that a better approach in 
our case is to use average weights for each variable. The 
weights are normalized means of individual DEA solutions. 
Thus, our final performance scores were weighted averages
of rank-transformed values (Table 6). 

The box plots for rank-transformed final efficiency
score by treatment effect (Figure 1) indicate a reduction of 
more than 60% in performance from negative EIA (11.5) 
to positive EIA (4.5) horses, measured by unadjusted (for 
covariates) median responses. The five-number summaries
are: positive EIA – minimum = 1.0, Q1 = 2.5, median = 4.5, 

Q3 = 7.5, maximum = 15.0; negative EIA – minimum = 6.0, 
Q1 = 9.5, median = 11.5, Q3 = 13.5, maximum = 16.0.

All covariates correlated negatively with the 
performance score. Together, they did not lead to a significant
model. Included one at a time, they produced significant
treatment effects and P-values of 0.0819, 0.6247, 0.6336, 
and 0.0320 for animal superficial temperature, animal
weight, animal age, and room temperature, respectively. 
Including room temperature in the model was enough. 
The addition of any other covariate combinations was not 
statistically significant. Thus, the best parsimonious model
used treatment and room temperature as covariates. 

The behavior of the efficiency scores as a function
of room temperature suggests a negative effect for both 
treatments (Figure 2), more intense for the positive 
EIA horses. The difference in slopes (Figure 2) was not 
sufficient to declare an interaction effect. Correlations
induced by the computations among final performance
scores of animals were handled by a nonparametric 
bootstrap (Table 7). We performed 2,000 replications 
using Stata 14.1 (Stata, 2015).

The main point we emphasize (Table 7) is the EIA effect 
on performance adjusted by room temperature. We assessed 
this effect using the intercepts in the cases of positive and 
negative EIA . The relative reduction in performance was, 
therefore, 6.0764 / 15.2369 = 39.9%. 

Conclusions

Animal age, animal weight, and animal superficial
temperature do not significantly affect the performance
score. Given that room temperature and treatment have 
been fitted, these covariates do not increase model
significance. There is a significant treatment effect and
a significant negative slope regression coefficient for
room temperature. Adjusted for room temperature, there 
is a decrease of almost 40% in performance of positive 
EIA horses compared with horses testing negative 
for EIA. Therefore, the control of this disease in the 
Pantanal wetlands is of importance, as it may reduce 
the performance of the horses, considering the functional 
conditions of cattle management.
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