Acessibilidade / Reportar erro

Esquizofrenia

Resumos

Neste artigo revisamos e resumimos os avanços atuais sobre o mapeamento de genes relacionados à esquizofrenia. Listamos as regiões de interesse identificadas até o momento e discutimos as dúvidas pertinentes, bem como as perspectivas para o sucesso futuro.

Esquizofrenia; genética; associação; ligação


Current progress in efforts to map susceptibility genes for schizophrenia are reviewed and summarized. Regions of interest identified to date are listed and reasons for inconsistencies discussed. Prospects for future success are discussed.

Schizophrenia; genetics; association; linkage


Esquizofrenia

K V Chowdari1 1. Western Psychiatric Institute and Clinic, Universidade de Pittsburgh, Pensilvânia (EUA). e V L Nimgaonkar1 1. Western Psychiatric Institute and Clinic, Universidade de Pittsburgh, Pensilvânia (EUA).

Resumo

Neste artigo revisamos e resumimos os avanços atuais sobre o mapeamento de genes relacionados à esquizofrenia. Listamos as regiões de interesse identificadas até o momento e discutimos as dúvidas pertinentes, bem como as perspectivas para o sucesso futuro.

Descritores

Esquizofrenia; genética; associação; ligação

Abstract

Current progress in efforts to map susceptibility genes for schizophrenia are reviewed and summarized. Regions of interest identified to date are listed and reasons for inconsistencies discussed. Prospects for future success are discussed.

Keywords

Schizophrenia; genetics; association; linkage

Introdução

Atualmente, aceita-se a existência de um componente genético na etiologia da esquizofrenia.1 A doença pode aparecer agregada em famílias. Os estudos de adoção sugerem que a agregação familiar seja decorrente de fatores genéticos comuns2,3 e a concordância em gêmeos monozigóticos (48%) é significativamente maior do que a encontrada em gêmeos dizigóticos (17%).1 As estimativas de herdabilidade variam entre 60% e 70%, levando-se em conta os fatores ambientais em comum.4,5 Entretanto, o modo de herança ainda não é conhecido. Análises complexas de segregação rejeitaram os modelos monogênicos, sustentando a hipótese de herança poligênica. 5,6

De acordo com o modelo poligênico, há vários genes causadores da patologia que podem agir de forma aditiva, aumentando a suscetibilidade à doença. Este modelo requer também a existência de um limiar de suscetibilidade, a partir do qual a doença passa a ocorrer.7 Em indivíduos acometidos, esse limiar pode ser atingido através de diferentes combinações de fatores de risco genéticos e ambientais. Dessa forma, a presença isolada de um alelo que predisponha à doença pode não ser nem necessária nem suficiente para que esta ocorra.3 Essa hipótese tem suporte em diversos achados, como a ausência de concordância completa entre gêmeos monozigóticos, o espectro de gravidade da doença e a queda abrupta na freqüência da doença entre parentes de segundo e terceiro graus em relação àqueles de primeiro grau.1 A suscetibilidade à esquizofrenia é melhor explicada pela presença de três a quatro loci que, individualmente, elevam em duas a três vezes o risco de irmãos de um probando, em relação a indivíduos não aparentados; ocorrem, possivelmente, interações epistáticas.9 Dada a complexa etiologia da esquizofrenia, ainda há ceticismo sobre a possibilidade de mapeamento dos genes de suscetibilidade.10 No entanto, essas dúvidas podem não ter mais lugar, tendo em vista os recentes sucessos no mapeamento genético de outras doenças complexas, como diabetes mellitus insulino-dependente (DMID) e doença de Hirschsprung.11,12

Estudos de ligação

As primeiras abordagens basearam-se no uso de marcadores altamente polimórficos em várias gerações de famílias grandes através de análises paramétricas de ligação. Infelizmente, essa estratégia é prejudicada pelo desconhecimento sobre a forma de herança e penetrância, pela possibilidade de heterogeneidade genética e pela variação na idade de surgimento da doença.13,14 Como esperado, surgiram numerosos dados inconsistentes.15,16 Resultados mais sólidos emergiram de análises não-paramétricas de ligação e de análises que assumiam a presença de heterogeneidade genética. Por exemplo, evidências da presença de loci de suscetibilidade nos cromossomos 13q32 e 8p21-p22 surgiram a partir de amplo rastreamento de genoma em 54 famílias americanas com vários indivíduos afetados. Estes achados foram confirmados em uma segunda amostra.17,18

Dado o desconhecimento sobre a forma de herança, os pesquisadores têm usado, progressivamente, análises de ligação que não assumem nenhum modelo a priori. Um dos desenhos de estudo mais populares baseia-se em pares de irmãos afetados que compartilham dois, um ou nenhum alelos parentais idênticos por descendência (IBD) ou por estado.19,20 Loci de suscetibilidade para esquizofrenia também foram identificados nos cromossomos 22q12-q13.21 Diferentemente de estudos prévios, esses achados foram confirmados por outros pesquisadores.22 Recentemente, evidência de ligação foi demonstrada nos cromossomos 6q e 3p26-p24.23,24

Vários rastreamentos de genomas já foram completados. Nós selecionamos os resultados de estudos com lod score acima de 3, o nível de significância convencional (tabela 1). Vale salientar que os achados dos estudos não são unânimes. Além disso, as regiões de suscetibilidade são extensas. Se, realmente, os estudos de ligação estiverem corretos, o próximo passo - a identificação do(s) gene(s) de suscetibilidade - necessitará de amostras muito maiores.15,18

Estudos de associação

Estudos de associação, usando casos e controles não aparentados, também podem ser utilizados na identificação de genes causadores de doença. As associações podem ocorrer porque: (i) o próprio gene marcador é o causador da patologia; ou (ii) o alelo do gene marcador está em desequilíbrio de ligação com a mutação do gene relacionado à doença, i.e, combinações específicas de alelos destes loci ocorrem, predizivelmente, com maior freqüência em haplótipos do que o esperado apenas pelo acaso.25,26 Os estudos de associação não assumem nada sobre a forma de herança. Ainda, através deste método, genes de "pequeno efeito" foram detectados na DMID. Por essas duas razões, os estudos de associação são potencialmente úteis no estudo da esquizofrenia. A estratégia de caso-controle, com pareamento por origem étnica e situações socioeconômicas, é importante.27-29

Vários traços herdáveis foram usados nos primeiros estudos de associação de esquizofrenia, como, por exemplo, grupos sangüíneos e componentes específicos.30 Mais recentemente, foram estudados diretamente os polimorfismos de DNA em genes candidatos, tais como os receptores de dopamina e de serotonina e as subunidades do receptor nicotínico e de GABA.31-35 Em resumo, nenhuma associação sólida foi demonstrada até o momento, apesar de meta-análises sugerirem a presença de associação da doença com os alelos dos receptores de dopamina D3, 5-HT2A e 5HT2C.38-40 A região do HLA também é de interesse.41-44 Esses trabalhos são importantes porque os genes HLA estão localizados na região de suscetibilidade do cromossomo 6p, área detectada em estudos de ligação.45,46 A falha na detecção de associações mais consistentes pode advir do uso de marcadores genéticos inapropriados, de controles pareados inadequados ou de tamanho inadequado de amostra.47-50 Associações espúrias também podem resultar da mistura de populações com diferentes freqüências de genes.51

Estudos de associação em famílias

Para superar as dificuldades decorrentes da mistura populacional, os estudos de famílias têm se tornado mais populares na pesquisa sobre esquizofrenia.39 Estão aí incluídos as análises de risco relativo de acordo com o haplótipo e o popular teste de desequilíbrio de transmissão (TDT).52-56 O haplótipo ancestral da doença pode ser identificado de forma mais confiável através do uso de diversos marcadores.57 Apesar do problema da subestrutura populacional ser superado pelo uso de controles familiares, esse tipo de amostra é de difícil recrutamento. Como a análise de TDT só utiliza famílias com parentes heterozigotos, muitas famílias acabam por ser descartadas. Esse é um fator limitante, uma vez que centenas de famílias podem ser necessárias para a identificação de genes de "efeito menor".26 Em doenças de surgimento na fase adulta, como a esquizofrenia, os parentes, freqüentemente, não estão disponíveis. Com isso, as famílias recrutadas podem constituir amostra viciada.

Estudo em populações isoladas

Uma estratégia promissora é a análise de desequilíbrio de ligação em populações geneticamente isoladas. É possível que um número menor de genes de suscetibilidade segreguem nestas populações, dado o pequeno número de fundadores. A presença de inbreeding elevado é uma vantagem adicional. No entanto, um estudo recentemente realizado na população geneticamente isolada de uma ilha (Palau) não mostrou nenhuma evidência significativa de ligação com esquizofrenia.58 Estudos semelhantes estão em andamento na Islândia.59

Estudos de ligação ou de associação?

Enquanto os estudos de ligação são francamente necessários para o mapeamento de genes, os de associação são necessários para a localização dos mesmos. O primeiro pode ser ineficiente em doenças multifatoriais/ poligênicas, ao passo que o último é superior nessas situações.26 Considerando-se um gene de suscetibilidade com efeito moderado (risco relativo genotípico de 2.0) e freqüência de alelo causador da doença de 10%, o tamanho de amostra estimado em estudos de ligação com pares de irmãos é 5.382, enquanto o estudo de associação requer apenas 695 famílias. Dada a sua natureza complementar, a combinação de estudos de ligação e de associação é mais útil para o mapeamento de genes de suscetibilidade.

Recentemente, maior atenção foi dada ao uso de estudos de desequilíbrio de ligação (DL) em todo o genoma, com o objetivo de mapear os genes patogênicos comuns.60 Esse tipo de estudo requer uma elevada densidade de marcadores de DNA distribuídos por todo o genoma 26 - problema que poderá ser solucionado com a identificação de polimorfismos de nucleotídeo único (single nucleotide polymorphisms, SNPs) nas regiões codificadoras e promotoras dos genes.61-63 Os SNPs são marcadores de bastante interesse, quando comparados às seqüências de repetição em tandem (short tandem repeat polymorphisms, STRPs), por serem mais freqüentes, apresentarem baixas taxas de mutação e pela possibilidade de automação.61,64 De acordo com simulações, aproximadamente 500 mil SNPs são necessários em amostras obtidas da população geral.65

Conclusão

A pesquisa genética em esquizofrenia sofreu importantes avanços. Os estudos de ligação iniciais sugerem ser difícil a detecção de um gene único de "efeito maior", quando realmente presente. Estudos prévios indicam ser a herança poligênica/multifatorial, com a presença de interações epistáticas entre genes de pequeno efeito. A detecção de tais genes, tarefa esta anteriormente considerada desencorajadora, torna-se possível à medida que aumenta a disponibilidade de técnicas rápidas e automatizadas de rastreamento de todo o genoma. Para que esses estudos familiares possam ser realizados, é necessário que a população estudada contenha famílias grandes e estáveis. Nesse sentido, os países sul-americanos são bastante atraentes para a pesquisa de genética da esquizofrenia.

Agradecimentos

Estes estudos foram em parte financiados pelos fundos de NIMH to VLN (MH01489, MH56242 e MH53459).

Referências bibliográficas

1. Gottesman I. Schizophrenia Genesis: The Origins of Madness. New York: WH Freeman; 1991.

2. Heston LL. Psychiatric Disorders in Foster-home-reared Children of Schizophrenic Mothers. British Journal of Psychiatry 1966;112:819-25.

3. Kety SS, Ingraham LJ. Genetic transmission and improved diagnosis of schizophrenia from pedigrees of adoptees. Journal of Psychiatric Research 1992;26:247-55.

4. Rao DC, Morton NE, Gottesman II, Lew R. Path analysis of qualitative data on pairs of relatives: application to schizophrenia. Human Heredity 1981;31:325-33.

5. McGue M, Gottesman II, Rao DC. The transmission of schizophrenia under a multifactorial threshold model. American Journal of Human Genetics 1983;35:1161-78.

6. Carter CL, Chung CS. Segregation analysis of schizophrenia under a mixed genetic model. Human Heredity 1980;30:350-6.

7. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences 1967;58:199-205.

8. Hodge SE, Spence MA. Some Epistatic Two-Locus Models of Disease. II. The Confounding of Linkage and Association. American Journal of Human Genetics 1981;33:396-406.

9. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. American Journal of Human Genetics 1990;46:222-8.

10. Horgan J. Eugenics revisited. Scientific American 1993;268:122-32.

11. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994;371:130-6.

12. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M, et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Human Molecular Genetics 1994;3:1217-25.

13. Baron M, Endicott J, Ott J. Genetic linkage in mental illness. Limitations and prospects. British Journal of Psychiatry 1990;157:645-55.

14. Pauls DL. Behavioural Disorders: Lessons in Linkage. Nature Genetics 1993;3:4-5.

15. Moldin SO, Gottesman, II. At issue: genes, experience, and chance in schizophrenia-positioning for the 21st century. Schizophrenia Bulletin 1997;23:547-61.

16. Levinson DF, Mowry BJ. Defining the schizophrenia spectrum: issues for genetic linkage studies. Schizophrenia Bulletin 1991;17:491-514.

17. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nature Genetics 1998;20:70-3.

18. Gottesman II. Complications to the complex inheritance of schizophrenia. [Review]. Clinical Genetics 1994;46(1 Spec No):116-23.

19. Penrose LS. The Detection of Autosomal Linkage in Data Which Consists of Pairs of Brothers and Sisters of Unspecified Parentage. Annals of Eugenics 1935;6:133-38.

20. Weeks DE, Lange K. The affected-pedigree-member method of linkage analysis. American Journal of Human Genetics 1988;42:315-26.

21. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G, et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1. American Journal of Medical Genetics 1994;54:36-43.

22. Gill M, Vallada H, Collier D. Sib-pair analysis of D22S278 genotypes in 574 pedigrees. Psychiatric Genetics 1995;5:13-14.

23. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A, et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997;43:1-8.

24. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL, et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. American Journal of Medical Genetics 1995;60:252-60.

25. Suarez BK, Hampe CL. Linkage and association. American Journal of Human Genetics 1994;54:554-9.

26. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516-7.

27. Breslow NE, Day NE. Statistical Methods in Cancer Research: International Agency for Research on Cancer; 1987.

28. Cooper DN, Clayton JF. DNA polymorphism and the study of disease associations. Human Genetics 1988;78:299-312.

29. Cox NJ, Bell GI. Disease associations. Chance, artifact, or susceptibility genes? Diabetes 1989;38:947-50.

30. McGuffin P, Sturt E. Genetic markers in schizophrenia. Human Heredity 1986;36:65-88.

31. Detera-Wadleigh SD, Miguel C, Berrettini WH, DeLisi LE, Goldin LR, Gershon ES. Neuropeptide gene polymorphisms in affective disorder and schizophrenia. Journal of Psychiatric Research 1987;21:581-7.

32. Nothen MM, Korner J, Lannfelt L, Sokoloff P, Schwartz JC, Lanczik M, et al. Lack of association between schizophrenia and alleles of the dopamine D1, D2, D3 and D4 receptor loci. Psychiatric Genetics 1993;3:89-94.

33. Williams J, Spurlock G, McGuffin P, Mallet J, Nothen MM, Gill M, et al. Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2a-receptor gene. European Multicentre Association Study of Schizophrenia (EMASS) Group [see comments]. Lancet 1996;347:1294-6.

34. Coon H, Sobell J, Heston L, Sommer S, Hoff M, Holik J, et al. Search for mutations in the beta 1 GABAA receptor subunit gene in patients with schizophrenia. American Journal of Medical Genetics 1994;54:12-20.

35. Sobell JL, Lind TJ, Heston LL, Sommer SS. Variants of the D5 dopamine receptor gene found in patients with schizophrenia: identification of a nonsense mutation and multiple missence changes. The American Journal of Human Genetics 1994;55:A165.

36. Owen MJ. Will schizophrenia become a graveyard for molecular geneticists? Psychological Medicine 1992;22:289-93.

37. Paterson AD. Case-control association studies in complex traits - the end of an era? Molecular Psychiatry 1997;2:277-8.

38. Williams J, McGuffin P, Nothen M, Owen MJ. Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. EMASS Collaborative Group. European Multicentre Association Study of Schizophrenia [letter]. Lancet 1997;349:1221.

39. Williams J, Spurlock G, Holmans P, McGuffin P, Owen MJ, et al. A Meta-Analysis and Transmission Disequilibrium Study of Association Between the Dopamine D3 Receptor Gene and Schizophrenia. Molecular Psychiatry 1998;3:141-9.

40. Arranz MJ, Collier DA, Munro J, Kirov G, Murray RM, Kerwin R. Alleic association studies of the 5-HT2A receptor gene in schizophrenia, clozapine response and bipolar affective disorder. American Journal of Human Genetics 1996;59(Suppl 4):A210.

41. Wright P, Donaldson P, Underhill J, Doherty D, Choudhuri K, Murray RM. Schizophrenia: a HLA class I and II association study. Psychiatric Genetics 1995;5(S35).

42. Nimgaonkar VL, Rudert WA, Zhang XR, Trucco M, Ganguli R. Negative association of schizophrenia with HLA DQB1*0602: evidence from a second African-American cohort. Schizophrenia Research 1996;23:81-86.

43. Nimgaonkar V, Zhang F, Saha N. Association between schizophrenia and HLA class II markers among the Chinese. American Journal of Medical Genetics 1998;81:517.

44. Jonsson E, Zhang F, Nimgaonkar VL, Rudert WA, Sedvall G. Lack of association between schizophrenia and HLA DQB1 alleles in a Swedish sample. Schizophrenia Research 1998;29:293-6.

45. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nature Genetics 1995;11:325-7.

46. Freymann J, Schwab SG, Knapp M, Albus M, Lerer B, Hallmayer J, et al. Association studies of HLA genes in families with linkage to chromosome 6p. American Journal of Medical Genetics 1998;81:517.

47. Kidd KK. Associations of disease with genetic markers: deja vu all over again [editorial]. American Journal of Medical Genetics 1993;48:71-3.

48. Crowe RR. Candidate genes in psychiatry: an epidemiological perspective [see comments]. American Journal of Medical Genetics 1993;48:74-7.

49. Berrettini W. On the interpretation of association studies in behavioral disorders. Molecular Psychiatry 1997;2:274-5.

50. Nimgaonkar V. In defense of genetic association studies. Molecular Psychiatry 1997;2:275-7.

51. Suarez BK, Hampe CL, van Eerdewegh P. Problems of Replicating Linkage Claims in Psychiatry. In: Gershon ES, Cloniger CR, editors. Genetic Approaches to Mental Disorders. Washington (D.C.): American Psychiatric Press; 1994. p. 23-46.

52. Falk CT, Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Annals of Human Genetics 1987;51(Pt 3):227-33.

53. Rubinstein P, Walker M, Carpenter M, Carrier C, Krassner J, Falk C, et al. Genetics of HLA Disease Associations. The Use of the Haplotype Relative Rish (HRR) and the "Haplo-delta" (Dh) Estimates in Juvenile Diabetes From Three Racial Groups. Human Immunology 1981;3:384.

54. Thomson G. Analysis of complex human genetic traits: an ordered-notation method and new tests for mode of inheritance. American Journal of Human Genetics 1995;57.

55. Thomson G. Mapping disease genes: Family-based association studies. American Journal of Human Genetics 1995;57:487-98.

56. Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. American Journal of Human Genetics 1995;57:455-64.

57. Jazwinska EC, Pyper WR, Burt MJ, Francis JL, Goldwurm S, Webb SI, et al. Haplotype analysis in Australian hemochromatosis patients: evidence for a predominant ancestral haplotype exclusively associated with hemochromatosis. American Journal of Human Genetics 1995;56:428-33.

58. Byerley W, Polloi A, Dale P, Hoff M, Rosenthal J, Tiobech J, et al. Genome-wide Linkage Analysis of a Large Schizophrenia Pedigree Ascertained From Palau, Micronesia. American Journal of Medical Genetics 1997;74:559-60.

59. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, et al. A Genome-wide Search for Schizophrenia Genes in an Internal Isolate of Finland Suggesting Multiple Susceptibility Loci. American Journal of Medical Genetics 1998;81:453-4.

60. Lander ES. The new genomics: global views of biology [see comments]. Science 1996;274:536-9.

61. Collins FS, Guyer MS, Chakravarti A. Variations on a Theme: Cataloging Human DNA Sequence Variation. Science 1997;278:1580-1.

62. Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L-R, et al. New Goals for the U.S. Human Genome Project: 1998-2003. Science 1998;282:682-9.

63. Chakravarti A. It's raining SNPs, hallelujah? [news; comment]. Nature Genetics 1998;19:216-7.

64. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Research 1998;8:769-76.

65. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics 1999;22:139-44.

66. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS. Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families [see comments]. Molecular Psychiatry 1997;2:148-55.

67. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M, et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Molecular Psychiatry 1997;2:156-60.

68. Moises HW, Yang L, Kristbiarnarson H, Byerly W, Macciardi R, Arolt V, et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genetics 1995;11:321-4.

69. Gurling HM. New microsatellite polymorphisms fail to confirm chromosome 5 linkage in Iceland and British schizophrenia families. Paper presented at the American Psychological Association Meeting, New York, March 1992. 1992.

70. McGuffin P, Sargeant M, Hetti G, Tidmarsh S, Whatley S, Marchbanks RM. Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11-q13 region: new data and a reanalysis of previous reports [see comments]. American Journal of Human Genetics 1990;47:524-35.

71. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 1988;336:164-7.

72. Kennedy JL, Giuffra LA, Moises HW, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, et al. Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 1988;336:167-70.

73. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nature Genetics 1995;11:287-93.

74. Daniels JK, Spurlock G, Williams NM, Cardno AG, Jones LA, Murphy KC, et al. Linkage study of chromosome 6p in sib-pairs with schizophrenia. American Journal of Medical Genetics 1997;74:319-23.

75. Levinson D. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6, and 8. Additonal support for a schizophrenia linkage to chromosomes 6 and 8. Neuropsychiatric Genetics 1996;67:580-94.

76. Garner C, Kelly M, Cardon L, Joslyn G, Carey A, LeDuc C, et al. Linkage analyses of schizophrenia to chromosome 6p24-p22: an attempt to replicate. American Journal of Medical Genetics 1996;67:595-610.

77. Riley BP, Mogudi-Carter M, Rajagopalan S, Jenkins T, Williamson R. No evidence for linkage of schizophrenia to the short arm of chromosome 6 in a sample of southern African Bantu-speaking families. Psychiatric Genetics 1995;5(Suppl 1):34S.

78. Wang S, Sun C, Walczak CA, Ziegle JS, Kipps BR, Goldin LR, et al. Evidence for a Susceptibility Locus for Schizophrenia on Chromosome 6pter-p22. Nature Genetics 1995;10:41-6.

79. Gurling H, Kalsi G, Chen AHS, Green M, Butler R, Read T, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:234-5.

80. Antonarakis S, Bouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:235-6.

81. Moises HW, Kristbjarnarson H, Yang L, Wiese C, Arolt V, Schwinger E. A two-stage genome-wide search for schizophrenia susceptibility genes. Psychiatric Genetics 1995;5:33-4.

82. Mowry BJ, Nancarrow DJ, Lennon DP, Sandkuijl LA, Crowe RR, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:233-4.

83. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996;153:1534-40.

84. Kunugi H, Curtis D, Vallada HP, Nanko S, Powell JF, Murray RM, et al. A linkage study of schizophrenia with DNA markers from chromosome 8p21-p22 in 25 multiplex families. Schizophrenia Research 1996;22:61-8.

85. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B, et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet1998;81:290-5.

86. Straub RE, MacLean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C, et al. A schizophrenia locus may be located in region 10p15-p11. Am J Med Genet 1998;81:296-301.

87. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K, et al. Further evidence for a susceptibility locus on chromosome 10p14-p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet 1998;81:302-7.

88. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G, et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl. Acad. Sci. USA 1999;96:5604-9.

89. Lin MW, Sham P, Hwu HG, Collier D, Murray R, Powell JF. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Human Genetics 1997;99:417-20.

90. Lin MW, Curtis D, Williams N, Arranz M, Nanko S, Collier D, et al. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32 [published erratum appears in Psychiatr Genet 1996;6:37]. Psychiatric Genetics 1995;5:117-26.

91. Antonarakis SE, Blouin JL, Curran M, et al. Linkage and sib-pair analysis reveal a potential schizophrenia susceptibility gene on chromosome 13q32. Am J Hum Genet Suppl 1996;59:A210.

92. Kalsi G, Chen CH, Smyth C, Brynjolfsson J, Sigmundsson TH, Curtis D, et al. Genetic linkage analysis in an Icelandic/British family sample fails to exclude the putative chromosome 13q14.1-q32 schizophrenia susceptibility locus. Am J Hum Genet 1996;59:A388.

93. Wildenauer DB, Albus M, Schwab SG, Hallmeyer J, Hanses C, Eckstein GN, et al. Searching for susceptibility genes in schizophrenia by affected sib-pair analysis (Germany) [abstract]. Am J Med Genet 1997;74:558.

94. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet 1996;67:40-5.

95. Riley B, Mogudi-Carter M, Jenkins T, Williamson R. No evidence for linkage of chromosome 22 markers to schizophrenia in southern African Bantu-speaking families. Am J Med Genet 1996;67:515-22.

96. Schwab SG, Lerer B, Albus M, Maier W, Hallmayer J, Fimmers R, et al. Potential linkage for schizophrenia on chromosome 22q12-q13: a replication study. Am J Med Genet 1995;60:436-43.

97. Kalsi G, Brynjolfsson J, Butler R, Sherrington R, Curtis D, Sigmundsson T, et al. Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families. Am J Med Genet 1995;60:298-301.

98. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M, et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees. Am J Med Genet 1994;54:72-9.

99. Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S, et al. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. Am J Med Genet 1994;54:44-50.

Correspondência

V.L. Nimgaonkar

Western Psychiatric Institute and Clinic - 3811 O'Hara Street, Pittsburgh, PA 15213

Tel: +1 (412) 624-0823

Fax: 412-624-0446

Email: VishwajitNL@MSX.UPMC.EDU

  • 1. Gottesman I. Schizophrenia Genesis: The Origins of Madness. New York: WH Freeman; 1991.
  • 2. Heston LL. Psychiatric Disorders in Foster-home-reared Children of Schizophrenic Mothers. British Journal of Psychiatry 1966;112:819-25.
  • 3. Kety SS, Ingraham LJ. Genetic transmission and improved diagnosis of schizophrenia from pedigrees of adoptees. Journal of Psychiatric Research 1992;26:247-55.
  • 4. Rao DC, Morton NE, Gottesman II, Lew R. Path analysis of qualitative data on pairs of relatives: application to schizophrenia. Human Heredity 1981;31:325-33.
  • 5. McGue M, Gottesman II, Rao DC. The transmission of schizophrenia under a multifactorial threshold model. American Journal of Human Genetics 1983;35:1161-78.
  • 6. Carter CL, Chung CS. Segregation analysis of schizophrenia under a mixed genetic model. Human Heredity 1980;30:350-6.
  • 7. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences 1967;58:199-205.
  • 8. Hodge SE, Spence MA. Some Epistatic Two-Locus Models of Disease. II. The Confounding of Linkage and Association. American Journal of Human Genetics 1981;33:396-406.
  • 9. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. American Journal of Human Genetics 1990;46:222-8.
  • 10. Horgan J. Eugenics revisited. Scientific American 1993;268:122-32.
  • 11. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994;371:130-6.
  • 12. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M, et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Human Molecular Genetics 1994;3:1217-25.
  • 13. Baron M, Endicott J, Ott J. Genetic linkage in mental illness. Limitations and prospects. British Journal of Psychiatry 1990;157:645-55.
  • 14. Pauls DL. Behavioural Disorders: Lessons in Linkage. Nature Genetics 1993;3:4-5.
  • 15. Moldin SO, Gottesman, II. At issue: genes, experience, and chance in schizophrenia-positioning for the 21st century. Schizophrenia Bulletin 1997;23:547-61.
  • 16. Levinson DF, Mowry BJ. Defining the schizophrenia spectrum: issues for genetic linkage studies. Schizophrenia Bulletin 1991;17:491-514.
  • 17. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nature Genetics 1998;20:70-3.
  • 18. Gottesman II. Complications to the complex inheritance of schizophrenia. [Review]. Clinical Genetics 1994;46(1 Spec No):116-23.
  • 19. Penrose LS. The Detection of Autosomal Linkage in Data Which Consists of Pairs of Brothers and Sisters of Unspecified Parentage. Annals of Eugenics 1935;6:133-38.
  • 20. Weeks DE, Lange K. The affected-pedigree-member method of linkage analysis. American Journal of Human Genetics 1988;42:315-26.
  • 21. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G, et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1. American Journal of Medical Genetics 1994;54:36-43.
  • 22. Gill M, Vallada H, Collier D. Sib-pair analysis of D22S278 genotypes in 574 pedigrees. Psychiatric Genetics 1995;5:13-14.
  • 23. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A, et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997;43:1-8.
  • 24. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL, et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. American Journal of Medical Genetics 1995;60:252-60.
  • 25. Suarez BK, Hampe CL. Linkage and association. American Journal of Human Genetics 1994;54:554-9.
  • 26. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516-7.
  • 27. Breslow NE, Day NE. Statistical Methods in Cancer Research: International Agency for Research on Cancer; 1987.
  • 28. Cooper DN, Clayton JF. DNA polymorphism and the study of disease associations. Human Genetics 1988;78:299-312.
  • 29. Cox NJ, Bell GI. Disease associations. Chance, artifact, or susceptibility genes? Diabetes 1989;38:947-50.
  • 30. McGuffin P, Sturt E. Genetic markers in schizophrenia. Human Heredity 1986;36:65-88.
  • 31. Detera-Wadleigh SD, Miguel C, Berrettini WH, DeLisi LE, Goldin LR, Gershon ES. Neuropeptide gene polymorphisms in affective disorder and schizophrenia. Journal of Psychiatric Research 1987;21:581-7.
  • 32. Nothen MM, Korner J, Lannfelt L, Sokoloff P, Schwartz JC, Lanczik M, et al. Lack of association between schizophrenia and alleles of the dopamine D1, D2, D3 and D4 receptor loci. Psychiatric Genetics 1993;3:89-94.
  • 33. Williams J, Spurlock G, McGuffin P, Mallet J, Nothen MM, Gill M, et al. Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2a-receptor gene. European Multicentre Association Study of Schizophrenia (EMASS) Group [see comments]. Lancet 1996;347:1294-6.
  • 34. Coon H, Sobell J, Heston L, Sommer S, Hoff M, Holik J, et al. Search for mutations in the beta 1 GABAA receptor subunit gene in patients with schizophrenia. American Journal of Medical Genetics 1994;54:12-20.
  • 35. Sobell JL, Lind TJ, Heston LL, Sommer SS. Variants of the D5 dopamine receptor gene found in patients with schizophrenia: identification of a nonsense mutation and multiple missence changes. The American Journal of Human Genetics 1994;55:A165.
  • 36. Owen MJ. Will schizophrenia become a graveyard for molecular geneticists? Psychological Medicine 1992;22:289-93.
  • 37. Paterson AD. Case-control association studies in complex traits - the end of an era? Molecular Psychiatry 1997;2:277-8.
  • 38. Williams J, McGuffin P, Nothen M, Owen MJ. Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. EMASS Collaborative Group. European Multicentre Association Study of Schizophrenia [letter]. Lancet 1997;349:1221.
  • 39. Williams J, Spurlock G, Holmans P, McGuffin P, Owen MJ, et al. A Meta-Analysis and Transmission Disequilibrium Study of Association Between the Dopamine D3 Receptor Gene and Schizophrenia. Molecular Psychiatry 1998;3:141-9.
  • 40. Arranz MJ, Collier DA, Munro J, Kirov G, Murray RM, Kerwin R. Alleic association studies of the 5-HT2A receptor gene in schizophrenia, clozapine response and bipolar affective disorder. American Journal of Human Genetics 1996;59(Suppl 4):A210.
  • 41. Wright P, Donaldson P, Underhill J, Doherty D, Choudhuri K, Murray RM. Schizophrenia: a HLA class I and II association study. Psychiatric Genetics 1995;5(S35).
  • 42. Nimgaonkar VL, Rudert WA, Zhang XR, Trucco M, Ganguli R. Negative association of schizophrenia with HLA DQB1*0602: evidence from a second African-American cohort. Schizophrenia Research 1996;23:81-86.
  • 43. Nimgaonkar V, Zhang F, Saha N. Association between schizophrenia and HLA class II markers among the Chinese. American Journal of Medical Genetics 1998;81:517.
  • 44. Jonsson E, Zhang F, Nimgaonkar VL, Rudert WA, Sedvall G. Lack of association between schizophrenia and HLA DQB1 alleles in a Swedish sample. Schizophrenia Research 1998;29:293-6.
  • 45. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nature Genetics 1995;11:325-7.
  • 46. Freymann J, Schwab SG, Knapp M, Albus M, Lerer B, Hallmayer J, et al. Association studies of HLA genes in families with linkage to chromosome 6p. American Journal of Medical Genetics 1998;81:517.
  • 47. Kidd KK. Associations of disease with genetic markers: deja vu all over again [editorial]. American Journal of Medical Genetics 1993;48:71-3.
  • 48. Crowe RR. Candidate genes in psychiatry: an epidemiological perspective [see comments]. American Journal of Medical Genetics 1993;48:74-7.
  • 49. Berrettini W. On the interpretation of association studies in behavioral disorders. Molecular Psychiatry 1997;2:274-5.
  • 50. Nimgaonkar V. In defense of genetic association studies. Molecular Psychiatry 1997;2:275-7.
  • 51. Suarez BK, Hampe CL, van Eerdewegh P. Problems of Replicating Linkage Claims in Psychiatry. In: Gershon ES, Cloniger CR, editors. Genetic Approaches to Mental Disorders. Washington (D.C.): American Psychiatric Press; 1994. p. 23-46.
  • 52. Falk CT, Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Annals of Human Genetics 1987;51(Pt 3):227-33.
  • 53. Rubinstein P, Walker M, Carpenter M, Carrier C, Krassner J, Falk C, et al. Genetics of HLA Disease Associations. The Use of the Haplotype Relative Rish (HRR) and the "Haplo-delta" (Dh) Estimates in Juvenile Diabetes From Three Racial Groups. Human Immunology 1981;3:384.
  • 54. Thomson G. Analysis of complex human genetic traits: an ordered-notation method and new tests for mode of inheritance. American Journal of Human Genetics 1995;57.
  • 55. Thomson G. Mapping disease genes: Family-based association studies. American Journal of Human Genetics 1995;57:487-98.
  • 56. Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. American Journal of Human Genetics 1995;57:455-64.
  • 57. Jazwinska EC, Pyper WR, Burt MJ, Francis JL, Goldwurm S, Webb SI, et al. Haplotype analysis in Australian hemochromatosis patients: evidence for a predominant ancestral haplotype exclusively associated with hemochromatosis. American Journal of Human Genetics 1995;56:428-33.
  • 58. Byerley W, Polloi A, Dale P, Hoff M, Rosenthal J, Tiobech J, et al. Genome-wide Linkage Analysis of a Large Schizophrenia Pedigree Ascertained From Palau, Micronesia. American Journal of Medical Genetics 1997;74:559-60.
  • 59. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, et al. A Genome-wide Search for Schizophrenia Genes in an Internal Isolate of Finland Suggesting Multiple Susceptibility Loci. American Journal of Medical Genetics 1998;81:453-4.
  • 60. Lander ES. The new genomics: global views of biology [see comments]. Science 1996;274:536-9.
  • 61. Collins FS, Guyer MS, Chakravarti A. Variations on a Theme: Cataloging Human DNA Sequence Variation. Science 1997;278:1580-1.
  • 62. Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L-R, et al. New Goals for the U.S. Human Genome Project: 1998-2003. Science 1998;282:682-9.
  • 63. Chakravarti A. It's raining SNPs, hallelujah? [news; comment]. Nature Genetics 1998;19:216-7.
  • 64. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Research 1998;8:769-76.
  • 65. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics 1999;22:139-44.
  • 66. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS. Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families [see comments]. Molecular Psychiatry 1997;2:148-55.
  • 67. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M, et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Molecular Psychiatry 1997;2:156-60.
  • 68. Moises HW, Yang L, Kristbiarnarson H, Byerly W, Macciardi R, Arolt V, et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genetics 1995;11:321-4.
  • 69. Gurling HM. New microsatellite polymorphisms fail to confirm chromosome 5 linkage in Iceland and British schizophrenia families. Paper presented at the American Psychological Association Meeting, New York, March 1992. 1992.
  • 70. McGuffin P, Sargeant M, Hetti G, Tidmarsh S, Whatley S, Marchbanks RM. Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11-q13 region: new data and a reanalysis of previous reports [see comments]. American Journal of Human Genetics 1990;47:524-35.
  • 71. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 1988;336:164-7.
  • 72. Kennedy JL, Giuffra LA, Moises HW, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, et al. Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 1988;336:167-70.
  • 73. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nature Genetics 1995;11:287-93.
  • 74. Daniels JK, Spurlock G, Williams NM, Cardno AG, Jones LA, Murphy KC, et al. Linkage study of chromosome 6p in sib-pairs with schizophrenia. American Journal of Medical Genetics 1997;74:319-23.
  • 75. Levinson D. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6, and 8. Additonal support for a schizophrenia linkage to chromosomes 6 and 8. Neuropsychiatric Genetics 1996;67:580-94.
  • 76. Garner C, Kelly M, Cardon L, Joslyn G, Carey A, LeDuc C, et al. Linkage analyses of schizophrenia to chromosome 6p24-p22: an attempt to replicate. American Journal of Medical Genetics 1996;67:595-610.
  • 77. Riley BP, Mogudi-Carter M, Rajagopalan S, Jenkins T, Williamson R. No evidence for linkage of schizophrenia to the short arm of chromosome 6 in a sample of southern African Bantu-speaking families. Psychiatric Genetics 1995;5(Suppl 1):34S.
  • 78. Wang S, Sun C, Walczak CA, Ziegle JS, Kipps BR, Goldin LR, et al. Evidence for a Susceptibility Locus for Schizophrenia on Chromosome 6pter-p22. Nature Genetics 1995;10:41-6.
  • 79. Gurling H, Kalsi G, Chen AHS, Green M, Butler R, Read T, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:234-5.
  • 80. Antonarakis S, Bouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:235-6.
  • 81. Moises HW, Kristbjarnarson H, Yang L, Wiese C, Arolt V, Schwinger E. A two-stage genome-wide search for schizophrenia susceptibility genes. Psychiatric Genetics 1995;5:33-4.
  • 82. Mowry BJ, Nancarrow DJ, Lennon DP, Sandkuijl LA, Crowe RR, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nature Genetics 1995;11:233-4.
  • 83. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996;153:1534-40.
  • 84. Kunugi H, Curtis D, Vallada HP, Nanko S, Powell JF, Murray RM, et al. A linkage study of schizophrenia with DNA markers from chromosome 8p21-p22 in 25 multiplex families. Schizophrenia Research 1996;22:61-8.
  • 85. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B, et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet1998;81:290-5.
  • 86. Straub RE, MacLean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C, et al. A schizophrenia locus may be located in region 10p15-p11. Am J Med Genet 1998;81:296-301.
  • 87. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K, et al. Further evidence for a susceptibility locus on chromosome 10p14-p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet 1998;81:302-7.
  • 88. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G, et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl. Acad. Sci. USA 1999;96:5604-9.
  • 89. Lin MW, Sham P, Hwu HG, Collier D, Murray R, Powell JF. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Human Genetics 1997;99:417-20.
  • 90. Lin MW, Curtis D, Williams N, Arranz M, Nanko S, Collier D, et al. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32 [published erratum appears in Psychiatr Genet 1996;6:37]. Psychiatric Genetics 1995;5:117-26.
  • 91. Antonarakis SE, Blouin JL, Curran M, et al. Linkage and sib-pair analysis reveal a potential schizophrenia susceptibility gene on chromosome 13q32. Am J Hum Genet Suppl 1996;59:A210.
  • 92. Kalsi G, Chen CH, Smyth C, Brynjolfsson J, Sigmundsson TH, Curtis D, et al. Genetic linkage analysis in an Icelandic/British family sample fails to exclude the putative chromosome 13q14.1-q32 schizophrenia susceptibility locus. Am J Hum Genet 1996;59:A388.
  • 94. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet 1996;67:40-5.
  • 95. Riley B, Mogudi-Carter M, Jenkins T, Williamson R. No evidence for linkage of chromosome 22 markers to schizophrenia in southern African Bantu-speaking families. Am J Med Genet 1996;67:515-22.
  • 96. Schwab SG, Lerer B, Albus M, Maier W, Hallmayer J, Fimmers R, et al. Potential linkage for schizophrenia on chromosome 22q12-q13: a replication study. Am J Med Genet 1995;60:436-43.
  • 97. Kalsi G, Brynjolfsson J, Butler R, Sherrington R, Curtis D, Sigmundsson T, et al. Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families. Am J Med Genet 1995;60:298-301.
  • 98. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M, et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees. Am J Med Genet 1994;54:72-9.
  • 99. Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S, et al. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. Am J Med Genet 1994;54:44-50.
  • 1.
    Western Psychiatric Institute and Clinic, Universidade de Pittsburgh, Pensilvânia (EUA).
  • Datas de Publicação

    • Publicação nesta coleção
      04 Out 2000
    • Data do Fascículo
      Out 1999
    Associação Brasileira de Psiquiatria Rua Pedro de Toledo, 967 - casa 1, 04039-032 São Paulo SP Brazil, Tel.: +55 11 5081-6799, Fax: +55 11 3384-6799, Fax: +55 11 5579-6210 - São Paulo - SP - Brazil
    E-mail: editorial@abp.org.br