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Septic encephalopathy: does inflammation drive the brain

crazy?
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Sepsis and the multiorgan dysfunction syndrome are among the most common reasons for admission
to an intensive care unit, and are a leading cause of death. During sepsis, the central nervous system
(CNS) is one of the first organs affected, and this is clinically manifested as sepsis-associated
encephalopathy (SAE). It is postulated that the common final pathway that leads to SAE symptoms is
the deregulation of neurotransmitters, mainly acetylcholine. Thus, it is supposed that inflammation can
affect neurotransmitters, which is associated with SAE development. In this review, we will cover the
current evidence (or lack thereof) for the mechanisms by which systemic inflammation interferes with
the metabolism of major CNS neurotransmitters, trying to explain how systemic inflammation drives

the brain crazy.
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Introduction

Sepsis and the multiorgan dysfunction syndrome are
among the most common reasons for admission to an
intensive care unit, and are a leading cause of death.'
During the last decades, advances have been made in
our understanding of sepsis, but currently there is no
target-directed, FDA-approved treatment for sepsis.

The pathophysiology of sepsis has been partially
elucidated; it is a dynamic process, which involves
components of the immune system, the coagulation
pathway, parenchymal cells, and the endocrine and
metabolic pathways.® Many factors have been postulated
to trigger sepsis, including products released from
bacteria as well as products from damaged cells. Toll-
like receptor (TLR) signaling has been suggested to be a
key pathway in sepsis pathophysiology, leading to the
production of inflammatory mediators.® The activation of
this pathway depends on the interaction between TLR
and TLR ligands, which include those derived from
bacteria in addition to host-derived products such as
intracellular proteins, extracellular matrix components,
and oxidized lipids.”

During sepsis, the central nervous system (CNS) is
one of the first organs affected, and this is clinically
manifested as septic encephalopathy (SE) or sepsis-
associated delirium (SAD).8° SE has been reported to
occur in 8-70% of septic patients, with the wide varia-
tion attributable mainly to diagnostic criteria.'® Reciprocal
interactions between the immune system and the
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CNS are considered to be major components of the
host response in sepsis (Figure 1). In addition, brain
injury occurs during sepsis development, and pro-
posed mechanisms to explain it include alterations
in the blood-brain barrier (BBB), local generation of
pro- and anti-inflammatory cytokines, amino acid meta-
bolism disruption, brain ischemia, and imbalance of
neurotransmitters’’ (Figure 2). Additionally, once inflam-
mation persists, excitotoxicity and oxidative stress may
further aggravate SE and contribute to neuronal dysfunc-
tion."® In animal models of sepsis, acute encephalopathy
occurs, and survivors exhibit cognitive impairment that
could be secondary to CNS damage.'® Likewise, survi-
vors from critical care, including septic patients, have
well-documented persistent neurocognitive deficits and
develop psychiatric disorders. 423

The interaction between sepsis and the brain is an
opportunity to study how systemic inflammation affects
brain function. Most studies about the mechanisms of SE
have used animals or cell cultures, and improved our
understanding of how the CNS is affected by endotoxins
and cytokines, but whether this is related to clinical SE
remains unclear. It is postulated that the common final
pathway that drives SE symptoms is the deregulation of
neurotransmitters, mainly acetylcholine.?* In this review,
we will cover the current evidence (or lack thereof) for the
mechanisms by which systemic inflammation interferes with
the metabolism of the major CNS neurotransmitters, trying
to explain how systemic inflammation drives the brain crazy.

Evidence that systemic inflammation is
associated with brain dysfunction

Theoretically, systemic inflammation can reach the brain
through at least four different routes: 1) peripheral organs
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Figure 1 During sepsis, inflammatory mediators (e.g., TNF-a, IL-1B) are released peripherally and can drive alterations in
several organs, such as the liver, lung, kidney, cardiovascular system, and central nervous system. An imbalance between
pro- and anti-inflammatory mediators interferes with the normal function of neurotransmitters. Furthermore, alterations in
neurotransmitters can modulate the inflammatory balance, and are probably involved in the pathophysiology of brain
dysfunction. CNS = central nervous system; IL-1 = interleukin 13; SAE = sepsis-associated encephalopathy; TNF-a = tumor

necrosis factor alpha.

synthesize and release cytokines that act on their
receptors present in nerve fibers of the autonomic
nervous system to modulate brain function; 2) circulating
cytokines diffuse through the BBB; 3) cytokines might
signal into the brain through specific areas that lack
the BBB, such as the circumventricular organs; or
4) cytokines might enter the brain through a saturable
transport mechanism.?®> There is no clear evidence to
explain in detail how inflammation reaches the brain
during sepsis, but both in animals and in humans,
inflammation occurs in the CNS early and late after
sepsis.?62°

The immune system is a complex, highly adaptive
system,?® and it is integrated with the CNS at several
levels to maintain homeostasis.3%*2 However, it is possible
that activation of the immune system may induce brain
dysfunction, and, in fact, sepsis is a major risk factor for
occurrence of delirium.®® It is believed that pro-inflamma-
tory cytokines, particularly interleukin (IL)-1p and tumor
necrosis factor alpha (TNF-o), are generated in the
periphery, communicate with the brain, and initiate
cytokine synthesis in the CNS.2* Fever and changes in
behavior — such as anorexia, lethargy, and depression,
collectively named sickness behavior — are observed as a
response of neurons to cytokines in several different
animal models.?*®8 |n addition, studies in healthy volun-
teers have demonstrated that systemic inflammatory
challenges impact the human brain.>***' A postmortem
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investigation found an association between brain dysfunc-
tion and astrocyte, microglia, and IL-6 activity in the human
brain.*?

However, excluding postmortem studies, a direct
relation between inflammation and brain dysfunction in
humans is limited because of the inaccessibility of the
CNS. Thus, in general, investigations are limited to
searching for a correlation between systemic inflamma-
tion markers and brain dysfunction.

High levels of procalcitonin and C-reactive protein
(CRP) at intensive care unit (ICU) admission correlate
with the duration of brain dysfunction, both in septic and
non-septic patients.*®> Krabbe et al.,*' using a human
endotoxemia model, showed that a low-grade increase in
the concentrations of TNF-a, its soluble receptor (STNF-
R), IL-6, and IL-1 receptor antagonist (IL-1RA) was
inversely associated with declarative memory perfor-
mance. This was independent of physical stress symp-
toms or activation of the hypothalamic-pituitary-adrenal
(HPA) axis, suggesting that low-level systemic inflamma-
tion had a negative effect on some areas related to
cognitive function. A recent study demonstrated that
sTNFR was independently associated with delirium in
general ICU patients.**

Pfister et al.*® found a correlation between high plasma
CRP levels, alterations in cerebrovascular autoregulation,
and SE. The cerebral arterioles of patients with SE were
less reactive to vasodilatory stimuli,*® and this was
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Figure 2 Cytokines produced in the infection site activate afferent signals to the brain, and the subsequent vagal activation
inhibits cytokine synthesis through the “inflammatory reflex” of the cholinergic pathway. Inflammation changes the structure
and function of the blood-brain barrier (BBB), increasing microvascular permeability, impairing microcirculatory blood flow, and
producing brain inflammation. During sepsis, alterations in the coagulation system results in microthrombus formation and
microinfarcts. Endothelial activation also impairs the microcirculation and worsens brain inflammation, which in turn is related
to brain dysfunction. Ach = acetylcholine; BBB = blood-brain barrier; SAE = sepsis-associated encephalopathy.

independently associated with acute brain dysfunction.*’
Healthy volunteers injected with endotoxin had
decreased cerebral blood flow, and this was associated
with peak serum concentrations of TNF-o.*® Recently, it
was demonstrated that patients with lower vascular
reactivity had increased duration of brain dysfunction.*”
The mechanisms behind endothelial dysfunction and
acute brain dysfunction remain unclear, but inflammation
could drive structural and functional alterations in the
BBB, increasing microvascular permeability and impair-
ing microcirculatory blood flow.**>2 These alterations
could be secondary to a decrease in the activity of
endothelial nitric oxide synthase induced by inflamma-
tion®? or to alterations in the coagulation system, resulting
in microthromboses and microinfarcts.>* Endothelial
activation in the brain microvasculature has been
observed after sepsis in animal models, and this was
associated with leukocyte adhesion and brain inflamma-
tion.?® In addition, BBB dysfunction induced by metallo-
proteinase (MMP) activation was also associated with
brain inflammation and cognitive impairment in an animal
model of sepsis.®® This is supported by the fact that
MMP-9 content was associated with delirium in the
general ICU patient.**

It is supposed that systemic inflammation can
lead to neuronal or glial damage; however, at least in
experimental endotoxemia in humans, there is no
correlation between acute systemic inflammation and
plasma levels of brain specific proteins (S-100B, neuro-
nal enolase [NSE], glial fibrillary acidic protein [GFAP])

nor deterioration of cognitive function.®® In contrast,
S-100p is associated with SE,** and NSE is associ-
ated with delirium in general ICU patients.®” Sharshar
et al.?” demonstrated that septic shock is associated
with neuronal and glial apoptosis in autonomic cen-
ters in humans, but brain TNF-o expression did not
differ between septic shock and control patients.
Whether neuronal and glial apoptosis is sufficient
to induce clinically relevant brain dysfunction remains
unknown.

Thus, to date, there is evidence that brain inflammation
occurs during sepsis both in animals and in humans.
Inflammation is probably related to alterations in cerebral
blood flow and neuronal/glial cell damage, but a direct link
between these and SE is still lacking.

Evidence linking systemic inflammation and
deregulation of neurotransmitters

Since inflammation and alterations in neurotransmit-
ters are the major theories trying to explain brain
dysfunction we explore the evidences that links in-
flammation and major neurotransmitters system dereg-
ulation (Figure 3).

Acetylcholine (Ach)

A widely postulated mechanism to explain delirium is
cholinergic failure.®2 The first evidence for this hypothesis
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T Amines

¢ Acetylcholine

4 GABA

Favors theory

* Loss of cholinergic neurons>®8
* Cholinergic agonist improves cognitive performance®?
* LPS reduces brain choline acetyltransferase activitys®

* Cholinergic signaling protects neurons against
neurotoxicity®1-65

¢ Alterations in Trp produce neurotoxic metabolites and
alterations in serotonin and energy metabolism®©6-68

e Delirium prevention in ICU patients based on sedation
strategies aimed to reduce BZ%°

¢ Systemic inflammation increases sensitivity to BZ70

Against theory

* Suppression of cholinergic system after LPS is
associated with better working memory performance’

¢ Trials of cholinesterase inhibitors have not
demonstrated benefit in delirium72

¢ False neurotransmitters decrease central
noradrenergic pathways73.74

e Dopamine does not improve delirium in
critically ill patients75-76

¢ NRIls inhibit LPS-induced inflammation?7-80

¢ Midazolam improves neural recovery after anoxia
and ischemia®' and decreases LPS-induced cytokine
release from microglia8?

Figure 3 Facts that favors or are against the theory of neurotransmitters imbalance in the genesis of sepsis-associated
encephalopathy. LPS = lipopolysaccharide; Trp = tryptophan; ICU = intensive care unit; BZ = benzodiazepines; NRI =
norepinephrine reuptake inhibitors; GABA = gamma-aminobutyric acid; SAE = sepsis-associated encephalopathy.

came from case reports linking delirium to acute poison-
ing with anticholinergic drugs and the reversal of delirium
with cholinergic drugs. Cholinergic signaling by both
nicotinic and muscarinic receptors modulates cognitive
function, arousal, learning, and memory, the major brain
functions affected in delirium. Thus, sepsis-induced
inflammation is presumed to affect cholinergic signaling
and contribute to the genesis of SE.

In an animal model of LPS-induced long-term cognitive
deficits, neuronal loss in the hippocampus and the
prefrontal cortex occurs mainly due to reduced choliner-
gic innervation at postrolandic cortical areas. This is
consistent with the fact that the hippocampus is particu-
larly sensitive to systemic inflammation.®* We demon-
strated that the use of cholinergic agonists improves
cognitive performance in septic animals,®® and that
endotoxin is able to reduce brain choline acetyltransfer-
ase activity.>® Thus, it is possible that cholinergic neurons
are particularly sensitive to systemic inflammation. This is
the major theory behind SE, but to date there is no direct
evidence to support it.

Endotoxin administration to healthy individuals in-
creases plasma acetylcholinesterase (AChE) activity,
which is associated with better performance in evocative
memory tasks, but worse performance in working
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memory.®° In addition, patients that respond to endotoxin
by suppressing the cholinergic system have a better
working memory performance as compared with patients
that enhance cholinergic activity, indicating that limited
cholinergic activation may be beneficial for cognition.®°
To date, human trials of cholinesterase inhibitors have not
demonstrated benefit to prevent or treat delirium.”’

The cholinergic pathway may be involved indirectly in
the pathogenesis of delirium. The cholinergic pathway
acts as a predictor of individual variation in systemic
inflammatory response to infection; thus, by modulating
systemic inflammation, the cholinergic system can
indirectly affect brain function.®® High plasma levels of
an alpha-7 nicotinic Ach receptor agonist correlated with
lower cytokine levels in endotoxin-treated volunteers.”?
Cholinergic signaling protects striatal, hippocampal, and
cortical neurons against neurotoxicity induced by excito-
toxic amino acids as well as other toxic insults. Several
mechanisms have been postulated to explain these
effects, from the production of growth factors®'®® to a
decrease in superoxide anion generation® to antioxidant
actions.®®%* In addition, resembling the peripheral choli-
nergic anti-inflammatory pathway, ACh and nicotine®®
have been reported to modulate LPS-induced TNF-a
release from microglia through activation of a-nAChR.



Thus, it is possible that the decrease in cholinergic
neurons during systemic inflammation decreases the
availability of an “anti-inflammatory” signal in the brain.
This is consistent with the decrease of cholinergic
neurons observed with aging®® that occurs in parallel to
microglia activation.®”

Amines

Dopamine, norepinephrine, and serotonin have a role in
arousal and the sleep-wake cycle.®® In addition, the D2
dopamine receptor subtype has been associated with
hallucinations, stereotypic behavior, and thought distur-
bances,® and norepinephrine plays an important role in
modulating attention, anxiety, and mood.® Thus, amines
could be involved in several different symptoms asso-
ciated with brain dysfunction. In fact, excess dopamine
and norepinephrine has been associated with hyperactive
delirium.®® Experimentally, this is supported by the fact
that the administration of dopamine agonists results in
frontostriatal abnormalities that correlate with delirium,
and dopamine antagonists are classically used to treat
hyperactive delirium.?®®" Furthermore, elevated CNS
serotonin activity is postulated to occur in hepatic
encephalopathy, and serotonin syndrome secondary to
the withdrawal of serotonin reuptake inhibitors resembles
the clinical picture of SE.%2%3

Brain serotonin synthesis depends on the availability of
tryptophan (Trp), and dopamine and norepinephrine
production requires tyrosine (Tyr) and phenylalanine
(Phe).®* Despite the fact that most delirium theories
suggest that an increase in amines drives delirium, in
healthy volunteers the administration of LPS increases
the cerebral delivery and influx of Phe.®® This can be
associated with the synthesis of “false” neurotransmit-
ters, such as phenylethanolamine, which in turn can
decrease central noradrenergic pathways.”>%® An ele-
vated Phe/large neutral amino acids (LNAA) ratio during
acute febrile illness is associated with delirium in hos-
pitalized elderly patients.”* The systemic inflammatory
response is associated with a decrease in the ratio of
branched-chain (valine and isoleucine) and aromatic
amino acids (mainly phenylalanine). This is associated
with an increase in the cerebral delivery and unidirec-
tional cerebral influx of phenylalanine, an abolished influx
of leucine and isoleucine, and an ammonia-independent
cerebral efflux of glutamine.®® In this context, both low
and high levels of Trp/LNAA are associated with delirium
in the general ICU patient.** Alterations in Trp concentra-
tions could lead to delirium due to the production of
neurotoxic metabolites or alterations in serotonin/melato-
nin synthesis. In fact, increased activation of the
kynurenine pathway (a neurotoxic metabolite of Trp) is
associated with mortality and brain dysfunction in ICU
patients.®” Besides its neurotoxic effect, the accumulation
of kynurenine or quinolinic acid can compromise immune
functions.®® In addition, the excessive degradation of
tryptophan, as seen in septic patients, could lead to
NAD+ depletion.®” In this context, neurons may become
functionally hypoxic (due to Krebs cycle impairment) even

Septic encephalopathy

in the presence of oxygen, and cellular hibernation may,
in part, reflect an underlying tryptophan shortage.

Plasma levels of Tyr/LNAA are also associated with
delirium. Patients with high levels of tyrosine could have
excess dopamine or norepinephrine, which is consistent
with a neurotoxic effect of norepinephrine.®® Despite this,
the use of dopamine antagonists in critically ill patients
does not consistently improve delirium severity and
duration,”®%® and the use of vasoactive drugs is not
independently associated with increased incidence of
delirium.”® Furthermore, as described with Ach, norepi-
nephrine seems to have anti-inflammatory properties.
The administration of norepinephrine reuptake inhibitors
(NRIs) inhibits LPS-induced expression of cytokines,
chemokines and endothelial activation,®® probably
increasing norepinephrine availability to glial cells. In
addition, o2-adrenoceptor stimulation decreases vascular
endothelial cell permeability”” and reduces production of
inflammatory mediators.”® Supporting this view, dopex-
amine, an o2-adrenoceptor and dopamine 1 and 2
receptor agonist, protects against cerebral edema
induced by sepsis, and the co-administration of an o2-
adrenoceptor antagonist blunted this effect.”® In humans,
there is preliminary evidence that dexmedetomidine, an
a-agonist, exerts protective effects in septic patients,®°
but this is not supported by animal models of primary
brain injury.’® The lack of a consistent effect is also
observed with the B-adrenergic receptor; p2-adrenocep-
tor activation can induce'' or protect against brain
inflammation. 02103

Gamma-aminobutyric acid (GABA)

The most compelling evidence about delirium prevention
in ICU patients comes from sedation strategies aimed to
reduce benzodiazepine (BZ) use.'®* Despite this, little is
known about GABA neurotransmission under inflamma-
tory conditions, or of the exact mechanisms whereby
increased GABA signaling drives delirium. The cortical
type A GABA (GABA-A) and corticotrophin-releasing
factor systems are major regulatory factors of the
behavioral response to stress.®® Acute stressors such
as restraint, infection, hypoxia or combined mild stressors
influence the GABA-A complex at two different levels: by
altering BZ-1 binding sites and modulating the expression
of selective GABA-A receptor subunits.'®® Inflammatory
mediators increase the insertion of GABA-A receptors in
the neuron membrane,’® and an increase in GABA-A
receptor activity has been observed in septic rats.'?”:1%8
Thus, it could be presumed that increased sensitivity to
BZ occurs during systemic inflammation. In fact, GABA-A
agonists worsen postoperative pain only in the presence
of inflammation.'® Cerebral synaptic activity is
decreased in SE, and because GABA-A receptor
regulates synaptic transmission in most cerebral inhibi-
tory synapses, it is possible that GABA-A could be a
target for new therapeutic strategies aimed to treat or
prevent delirium. Indeed, increased GABAergic neuro-
transmission has been reported in patients with hepatic
encephalopathy.”
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On the other hand, while the expression of GABA-A
receptors is found normally in glial cells, BZ receptor non-
associated with GABA-A expression, which is low in
normal glial cells, is increased during inflammatory
conditions.*° In this context, the BZ midazolam improves
neural recovery after anoxia and ischemia.'"' Midazolam
decreases LPS-induced cytokine release from microglia
via non-GABA-A BZ receptors.®' This seems to be a
specific effect, as propofol has no such protective effect in
vitro.%2 Thus, if systemic and brain inflammation leads to
delirium, it is expected that BZ could improve delirium in
the critically ill patient.

Concluding remarks

Despite the fact that SE and brain dysfunction are highly
prevalent in ICU patients and are associated with worse
prognosis, surprisingly little is known about their patho-
physiology. The most cited theory — neurotransmitter
deregulation — lacks solid evidence to be widely
accepted, and this may partly account for the lack of
effect of clinical interventions designed to treat acute
brain dysfunction, mainly strategies based on cholinergic
drugs. Thus, the hypothesis that neurotransmission and
inflammation are connected and are major players in
brain dysfunction pathophysiology requires further critical
assessment in the future.
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