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Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and
cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after
multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-
implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial
direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining
momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of
convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN
techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges
and opportunities in implementing such a framework, focusing on enhancing NIN effects via a
combination of individualized cognitive interventions, using closed-loop approaches, identifying
multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage,
and using machine learning algorithms to integrate data collected at multiple biological levels and
identify clinical responders. Though promising, this framework is currently limited, as previous studies
have employed small samples and did not sufficiently explore pathophysiological mechanisms
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associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been
performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a

more “precision-oriented” practice.

Keywords: Major depressive disorder; transcranial magnetic stimulation; transcranial direct current
stimulation; electroconvulsive therapy; precision medicine

Introduction

Current psychiatric guidelines recommend several antide-
pressants and cognitive-behavioral psychotherapy (CBT) as
first-line treatments for major depressive disorder (MDD)."2
However, more than one-third of depressed patients will
not achieve remission even after four adequate medical
prescriptions of antidepressant drugs.® Moreover, des-
pite advances in psychopharmacology, even new medica-
tions can still produce several adverse effects that
reduce tolerability and increase risk.* Psychotherapy,
in turn, is costly, time-consuming, does not suit all
patients, and is not readily available in remote areas of
the world.®

One possible explanation for the limited efficacy of
mainstream antidepressant treatments is that they are
typically applied in a “one-size-fits-all” and trial-and-error
paradigm, with little biological guidance — i.e., information
is mostly observational, with almost complete disregard
for the specific neurobiological mechanisms underpinning
the corresponding depressive symptomatology. To add-
ress this significant limitation in personalizing antidepres-
sant treatments, a new field of “precision psychiatry” has
been proposed, which aims to tailor medical treatment to
the characteristics of each patient.®

Although this concept is not necessarily new (e.g.,
blood transfusion is “guided” by blood type examination),
three new emerging tools®® are involved in the precision
psychiatry framework: 1) incorporating the biological path-
ways of disease — in psychiatry, this is represented by the
National Institute of Mental Health (NIMH) Research
Domain Criteria (RDoc), a framework that evaluates
mental illness at multiple clinical, endophenotypic, and
neurobiological levels®: 2) multimodal big data collection,
i.e., acquisition of clinical and biological data at scale, as
exemplified by the opportunities presented by interna-
tional consortiums such as the Enhancing Neurolmaging
Genetics through Meta-Analysis (ENIGMA)'® and mega-
cohorts such as the UK Biobank'"; and 3) artificial intel-
ligence for analysis of multidimensional and complex
patterns in manifold data collected at multiple biological
levels.'>'3 Although precision psychiatry is still in its
infancy, the continuous, rapid development of these tools
will reshape clinical and research practice, enhancing
treatment and minimizing adverse effects.®

Non-implantable neuromodulation (NIN) interventions,
such as transcranial magnetic stimulation (TMS), tran-
scranial direct current stimulation (tDCS), electroconvul-
sive therapy (ECT), and magnetic seizure therapy (MST),
are non-pharmacological, non-psychotherapeutic inter-
ventions with distinct efficacy, safety, tolerability, and
availability profiles.''® These techniques have been
developed over multiple decades to bridge the efficacy
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and safety gaps of traditional antidepressant treatments,
with concrete results.'”

Nevertheless, major caveats remain, such as limited
efficacy and significant adverse effects. In this context,
the development of a “precision NIN” approach could
both enhance clinical usability of NIN techniques (by
improving efficacy and/or maximizing tolerability) and
unveil their neurobiological mechanisms of action, which
to date remain poorly understood. Additional challenges
for precision NIN are the ability to combine them with
other interventions'® and their spatiotemporal resolution,
as the effects of NIN can be enhanced or decreased
according to the site of application of the coils or elect-
rodes and their synchronization with ongoing neuronal
activity.'® Knowledge acquired from computer modeling
and functional neuroimaging can be directed toward this
purpose (Figure 1).

In this review, we present the concept of precision NIN
as applied to antidepressant treatment. This framework
would also be useful for other neuropsychiatric disorders.
We first provide an overview of the state of the art and of
the main NIN antidepressant modalities, and then present
challenges and recent developments and opportunities of
using NIN in the framework of precision psychiatry.

Methods

We convened a group of national and global leaders on
the topics addressed in this review, such as MDD, neuro-
imaging, noninvasive brain stimulation, machine learn-
ing, neuropsychology, and precision psychiatry. These
authors were invited to address specific parts of the
manuscript, as well as to review its content as a whole.
The PubMed, Google Scholar, and Web of Knowledge
databases were searched from inception up to August
2019. Preference was given to recent comprehensive
reviews, meta-analyses, pivotal randomized clinical trials
that concerned NIN in the treatment of MDD, and highly
cited articles in the field, with a view to offering an up-to-
date and comprehensive perspective from experts. We
focused our review on clinical articles that investigated
MDD.

Non-implantable neuromodulation
Introduction and mechanisms of action

NIN techniques use electrical or magnetic energy targeted
at the brain®® (Figure 2). They do not require surgery, are
less invasive, and involve less risk than implantable tech-
niques, such as deep brain stimulation and vagus nerve
stimulation.?? They can be categorized into subconvulsive
and convulsive modalities, the former also often described
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Figure 1 Precision non-implantable neuromodulation (NIN). In a precision NIN framework, advancements in related areas of
research and knowledge directly influence treatment protocols (parameters such as stimulation site, timing, and dose, as well
as combined behavioral/pharmacological interventions), aiming to increase individual antidepressant response.

as “non-invasive brain stimulation” (NIBS), which include
TMS and tDCS,'® while the convulsive modalities include
ECT and MST.?® Compared to the convulsive modalities,
NIBS does not require sedation or anesthesia, and pre-
sents excellent safety and tolerability profiles.?42®

The neurobiological rationale supporting NIBS in
depression is based on specific alterations of neurocir-
cuitry function, which can be normalized by targeted
stimulation of areas such as the dorsolateral prefrontal
cortex (DLPFC) — the cortical area most commonly
targeted, from early pilot studies to more recent, pivotal
NIBS trials.?*3® Besides the practical convenience of
safely targeting this area, the DLPFC is a key hub of the
frontoparietal network (FPN), which has been implicated
in the regulation of several processes, including decision-
making, working memory, and attention, and is impaired
in depression,®* particularly the left DLPFC.%® Hypoactiv-
ity of the FPN is associated with hyperactivity of the
default mode network (DMN), which may promote dep-
ressive behaviors and cognitions such as negative bias,
self-referential processing, and depressive rumination.3®
The DLPFC is also a key node of the salience network
(SN), which plays a key role in cognitive control (i.e., the
self-regulation of thought, emotion, and behavior).%”
Deficiencies in cognitive control and SN function and
structure appear not only in depression, but transdiag-
nostically across a variety of Axis | disorders,® suggest-
ing that the mechanism of action of DLPFC-NIBS may be
pertinent not only to depression, but to other forms of
mental illness in which cognitive control is impaired.

NIBS to the DLPFC is thought to modulate the activity
of this brain area, thus promoting an increase in FPN
activity and a concomitant downregulation of DMN acti-
vity, leading to the improvement of depressive symp-
toms.3® Notably, anodal tDCS and high-frequency rTMS
usually increase cortical excitability, although the net
effect is also influenced by the underlying cortical acti-
vi'[y.15 This rationale has been supported to some extent
by neuroimaging studies in depressed patients receiving
rTMS2"4° and by recent validation studies.*’

In turn, ECT and MST - both of which are performed
in a controlled environment, under general anesthesia —
induce seizures via depolarization of neuronal net-
works.*? The mechanisms underlying the striking anti-
depressant effects associated with convulsive therapies
remain poorly elucidated,*® and may include increased
brain-derived neurotrophic factor (BDNF) levels,** hippo-
campus and amygdala volumes,***¢ and hippocam-
pal functional connectivity.*” Nonetheless, it is unclear
whether the increase in hippocampal volume, a well-
documented effect,*® is an epiphenomenon or a neces-
sary mechanism underpinning therapeutic ECT effects,
as depression improvement is unrelated*® or even nega-
tively associated*® with this outcome. The inflammatory
theory associated with the convulsive NIN modalities is
promising, as inflammatory cytokines decrease after ECT
in depressed patients.>*®' As inflammation triggers the
kynurenine pathway, leading to oxidative stress and
serotonin depletion,®® rapid reduction of inflammation
could mitigate depressive symptoms.>®

Braz J Psychiatry. 2020;42(4)
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Figure 2 Examples of NIN techniques (top panel) and the corresponding electric field distribution in the brain (bottom panel):
A)tDCS using 5 x 5 cm electrodes placed over the bilateral DLPFC; electrodes are colored red and blue to distinguish anode
(red) vs cathode (blue). B) TMS using the MagVenture B70 coil over the left DLPFC. C) Right unilateral ECT; conventional ECT
uses a bipolar waveform and therefore does not distinguish between anodal vs. cathodal electrodes. Electric field strengths are
normalized to their respective maximum value (Emax); absolute field strengths are very different across the modalities (< 1 V/m
for tDCS to > 100 V/m for TMS and ECT). Figure produced using SimNIBS software.?’ DLPFC = dorsolateral prefrontal cortex;
ECT = electroconvulsive therapy; NIN = non-implantable neuromodulation; tDCS = transcranial direct current stimulation; TMS =

transcranial magnetic stimulation.

Transcranial magnetic stimulation

TMS is based on the principle of electromagnetic induction
via an electric alternating current passing through a coil.
The magnetic field, which varies over time (1.0-2.5 Tesla),
induces a secondary electric field, eliciting action potentials
when targeting the underlying cortex.>* The original
magnetic field passes through several layers (scalp, bone,
meninges, etc.), with no resistance and deflection, inducing
a relatively focal field.>*

TMS can be delivered in various modalities — namely,
high-frequency (HF, 5-20 Hz), low-frequency (LF, < 1 Hz),
theta-burst (TBS), and deep TMS (dTMS).2"®° Since the
seminal study by Pascual-Leone et al.** which showed
efficacy of HF-rTMS over the left DLPFC, many trials
have been performed. Of note, O’'Reardon et al. rando-
mized 301 patients with MDD without concomitant
antidepressant use to receive either sham or active HF-
rTMS over the left DLPFC, and showed superior improve-
ment in depression in the active group.3°®® This study
provided pivotal data for FDA clearance of rTMS as
antidepressant therapy. The effectiveness of HF-rTMS
was further confirmed in two subsequent meta-analyses,
with positive results both in accelerating clinical response
to antidepressants®” and as monotherapy in unipolar and
bipolar depression.®® Low-frequency rTMS (LF-rTMS)
over the right DLPFC has demonstrated effectiveness in
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the treatment of MDD,*® with both HF and LF being
regarded as first-line protocols.?’ LF-rTMS can be espe-
cially advantageous when there is a high risk of seizures,
poor tolerability to pain, or when the patient does not
respond to HF-rTMS.%® Intermittent TBS, on the other
hand, provides a new avenue for busy clinical services
through exploration of more time-efficient rTMS protocols.
A recent multicenter non-inferiority randomized clinical trial
showed that intermittent theta-burst stimulation (iTBS),
which lasts only 3 minutes, was non-inferior to 37.5 minutes
of treatment with HF-rTMS. Both protocols were applied
over the left DLPFC.?° Finally, deep rTMS with an H-
shaped coil has also demonstrated clinical effectiveness in
MDD; this type of coil allows for deeper penetration of the
magnetic field into the brain.®®

Network meta-analyses have further demonstrated
active rTMS to be superior to sham, albeit inferior to
ECT.""%% In these studies, it was found that priming, HF-
rTMS, LF-rTMS, bilateral rTMS, and TBS were more
effective than placebo, although no active intervention
was superior to any other.

Based on these results, rTMS is considered a first-line
treatment for patients who have failed at least one trial
with an antidepressant medication.?"®" On the other
hand, the level of treatment resistance is known to be an
important negative predictor of response to rTMS.%? Less
is known regarding rTMS efficacy as a maintenance



treatment in depression. In patients who have responded
favorably to an acute course of rTMS, naturalistic studies
have found that relapse is more common without any
maintenance antidepressant strategy,®®®* while a meta-
analysis evaluating durability of HF-rTMS showed that the
antidepressant effects are small following a shorter acute
treatment.®® Current recommendations have not reached
a clear consensus regarding the most effective antide-
pressant maintenance protocol.2"

Side effects of rTMS include the possible occurrence
of mild headache and pain at the site of stimulation,
although these symptoms typically resolve spontaneously
and the treatment is well tolerated overall.®> The most
serious side effect of rTMS is triggering of epileptic seiz-
ures, although this phenomenon is rare in clinical practice.
In fact, seizures have been found to be extremely rare,
and mainly occurred when rTMS protocols exceeded
safety guidelines.?* Animal studies suggest that even at
high intensities and prolonged exposure durations, there
is little likelihood of damage to brain structures.®®¢”
Finally, the only absolute contraindication to rTMS is the
presence of metallic and electronic material, such as
cochlear implants, in close contact with the coil.>®

Transcranial direct current stimulation

For tDCS, an electric current of low intensity (usually 1.0-
2.5 mA) is applied to the brain, via two electrodes placed
over the scalp (anode and cathode), which is the most
common protocol.®® The current passes through the skin,
subcutaneous tissue, skull, and cerebrospinal fluid (CSF),
and into the gray and white matter. Due to the impedance
of the skull, only a fraction of the injected current reaches
the brain.®® In addition, as the conventional sponge-
electrode set is large (25 to 35 cm?) and the electrodes
are placed relatively far apart on the head, the induced
field is non-focal as the current flows from the anode to
the cathode.?® The injected electrical current does not
generate action potentials per se, but rather facilitates
or inhibits synaptic transmission, respectively, via an
increase or decrease in the frequency of action potentials
in endogenous neuronal firing.%® For depression, tDCS
montages employ anodal stimulation over the left DLPFC
(with contralateral, variable cathode sites), thus aiming to
counterbalance the hypoactivity of this brain area and
subsequent hyperactivity of the DMN.”°

tDCS is considered a safe and well tolerated technique,
especially since the standard range of current intensities
used does not induce brain injury.2®2%28 The most com-
mon side effects include itching and tingling at the scalp
application sites.’® Skin burns are uncommon, and the
risk can be further reduced with proper soaking of the
electrodes, customized sponges, and adequate use of
saline solution.”’

Due to its portability and ease of use, tDCS has been
investigated as an augmentative and substitute treat-
ment for antidepressant medications. In a factorial study
design, Brunoni et al.”? randomized 120 antidepressant-
free depressed patients to receive placebo, sertraline
only, tDCS only, or combined treatment with the two.”?
The main study finding was that the combined treatment

Precision NIN for depression

led to a faster and greater response compared to the other
treatments. Subsequently, the same group®' designed a
non-inferiority, sham-controlled design to compare tDCS
vs. full-dose escitalopram. The study failed to show non-
inferiority of tDCS vs. escitalopram, although superiority
analyses revealed that tDCS was more effective than
placebo. Accordingly, recent meta-analyses have shown
that tDCS is superior to placebo for response, remission,
and depression improvement outcomes.”>”*

Only three studies have investigated continuation of
tDCS sessions after the acute treatment phase.”>”” All
showed 6-month relapse rates varying from 25-50%.
Interestingly, the study that reported the lowest relapse
rate had tDCS performed twice a week,”® whereas the
one reporting higher relapse rates performed tDCS every
other week.” Taken together, this suggests an intensive
tDCS treatment regimen is associated with lower relapse
rates, although these studies were limited by small
sample sizes and short follow-up periods.

While future randomized clinical trials involving tDCS in
the treatment of depression should continue to investigate
maintenance phase protocols, it would also be interesting
to individualize the delivered dose using computer models,
while evaluating the feasibility and safety of home-based
sessions.”®”® Furthermore, electrical stimulation with
different wave formats, such as transcranial alternating
current stimulation (tACS)”® or transcranial random noise
stimulation (tRNS),%° could be used to target MDD-related
oscillatory brain activity in the DLPFC, possibly in combina-
tion with individualized neurofeedback strategies.®'

Convulsive modalities

ECT delivers a stimulus of alternating polarity pulses, with
an amplitude of 800-900 mA, via two electrodes placed
on the scalp.®2 Although the procedure is considered a
second-line treatment for MDD due to the risk of cognitive
side effects, it is regarded as a first-line treatment in some
cases (e.g.,, MDD with acute suicidal or psychotic
features).?'8% ECT is more effective than sham, anti-
depressant medications and psychotherapy, and rTMS,%*
achieving very high response and remission rates.?'
Historically, bitemporal (or bifrontotemporal) electrode
positioning has been used, although right unilateral (RUL)
placement has gained currency as a modality with
relatively fewer cognitive side effects.®? In fact, there is
a complex relationship between ECT “dose” (total charge
delivered — a composite measure of current pulse ampli-
tude, pulse width, frequency, and number of pulses —
indexed by the seizure threshold, ST) and electrode
placement as a determinant of cognitive and antidepres-
sant outcomes, which can be partly explained by electric
field distribution.®? In the past, there was controversy as
to the comparative efficacy of RUL vs. bitemporal ECT,
the latter being considered more effective. However,
recent meta-analyses have found that high-dose RUL and
bitemporal ECT are equally effective,'”8® and considered
that previous RUL ECT trials that used lower doses
(e.g., less than six times the seizure threshold) might
have underestimated its treatment effects. More recently,
bifrontal ECT has been introduced as a form of ECT with
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efficacy comparable to that of bitemporal ECT, but fewer
side effects.®5 Maintenance-phase ECT (weekly, biweekly,
or monthly sessions) is also considered effective and
tolerable, with increased efficacy in association with medi-
cations, especially the combinations of nortriptyline and
lithium®” and venlafaxine and lithium.®®

Despite its effectiveness, ECT is limited due to the need
for infrastructure (general anesthesia, trained personnel,
and clinical evaluation),®® social stigma,®® and potential
cognitive side effects, including postictal disorientation,
anterograde amnesia, retrograde amnesia, and impair-
ments in multiple other cognitive domains, including verbal
fluency and executive function.?'

The persistence, severity, and characterization of cog-
nitive impairment remain topics of great debate in the
current ECT literature, even after decades of research.®®
Nevertheless, most acute ECT-related adverse events —
whether cognitive or non-cognitive — are mild, transient,
and self-limited; more severe cardiovascular and neuro-
logical complications are rare, and can be managed
through prophylactic and therapeutic measures.®"

MST is a TMS variant that passes through the skull
unimpeded and results in a more focused superficial
electric field, concentrated in the cerebral cortex; hence,
there is minimal stimulation of inner brain structures, such
as the hippocampus.®? It delivers 25-100 Hz pulses for up
to 10 seconds to trigger generalized seizures.?® Poten-
tially, the more focal and limited electric field induced by
MST could be associated with a lower incidence of
cognitive side effects compared to ECT.%® Nevertheless,
MST seizures show less robust ictal expression, postictal
suppression, and generalization to the hippocampus
compared to ECT.* To date, studies that have compared
MST and ECT found promising results, with MST having
antidepressant effects comparable to those of RUL ECT
and no cognitive side effects.?3:95:9

Challenges and opportunities for precision
non-implantable neuromodulation

NIBS methods are not yet mainstream treatments for
depression. On the one hand, these techniques excel in
safety and tolerability; on the other, they have modest
antidepressant effects, are associated with variable costs,
and not widely available.’™'”:%7 ECT, although highly
effective, is limited by cognitive side effects and social
stigma, while MST is currently experimental. To promote
NIN applicability, we discuss the challenges and oppor-
tunities for increasing NIBS clinical effectiveness and
decreasing ECT- and MST-related side effects, in a
precision-oriented framework and in light of different
forms of “target engagement” (a target being either a
mechanism related to the disease or to the mode of action
of the intervention itself).%®

The “how”: combining non-invasive brain stimulation with
cognitive interventions

Evidence has demonstrated progressively that the neu-
robiological, behavioral, and antidepressant effects of
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NIBS are dependent on the “state” of the targeted neural
area at the time of stimulation.'®

For example, in depression, patients exhibiting higher
rostral anterior cingulate cortex (ACC) activity prior to
stimulation showed a better antidepressant response to
subsequent rTMS.®® This raises the prospect of experi-
mentally controlled “pre-shaping” of brain states, induced
by cognitive tasks and/or NIBS techniques, to more
effectively target stimulation to redress neurobiological
imbalances in depression. For instance, hyperconnectiv-
ity between the ACC and the medial prefrontal cortex
(mPFC) has been linked to maladaptive depressive
ruminations, and both CBT and rTMS, each alone, have
been shown to downregulate this dysfunctional brain
activity.'® Could pairing these interventions yield syner-
gistic effects? In an interesting pilot study, concurrent
rTMS and self-system therapy (SST, a modality similar to
CBT) were performed in (albeit only five) depressed
subjects, with positive results.’® Functional MRI was
used to assess brain change in the left DLPFC (which
was previously shown to be activated by SST-like tasks),
and rTMS was then targeted at this individual area while
an actual SST session was delivered.'® In a naturalistic,
open-label, multicenter study, 196 depressed patients
(most of whom were treatment-resistant) were assigned
to receive CBT sessions with simultaneous HF (10 Hz) or
LF (1 Hz) rTMS. Response rates reached 66%, with no
difference between rTMS modalities.'®’

Regarding tDCS, a study in a rodent slice model showed
that excitatory direct-current stimulation can strengthen
cellular mechanisms thought to underlie learning and
memory formation (long-term potentiation, LTP'%%). Criti-
cally, this enhancement occurred only when stimulation
was applied “online,” i.e., during LTP — there was no effect
when the identical stimulation was applied “offline,” i.e.,
prior to LTP. Behaviorally, parallel findings in rodents and
humans showed that excitatory tDCS during learning
enhanced memory for what was learned.'®® Such enhance-
ment has been shown to depend critically on stimulation
during learning — the same stimulation applied prior to
learning can have null or even antagonistic effects.'®* Such
basic neuroscience work suggests that the clinical efficacy
of tDCS could potentially be enhanced if it is applied during
learning that is designed to promote positive mood change,
e.g., CBT (so-called functional targeting).'®

The combination of tDCS with psychotherapy is
particularly appealing. As both interventions target the
prefrontal cortex, their combination might result in a
positive synergy, with tDCS potentially enhancing a range
of cognitive processes recruited during psychotherapy. '
Various forms of psychotherapy have been combined with
tDCS. In an early, open-label study, Martin et al. combined
tDCS with a task designed to improve identification of
emotional states, in treatment-resistant depressed partici-
pants, with positive results (41% of study completers
displayed treatment response).’®” In another recent pilot
study, '8 patients with treatment-resistant depression (TRD)
received active tDCS (20 min, 2 mA, applied to the left
DLPFC) on 8 consecutive days and were randomly
assigned to receive either 2 hours of mindfulness-based
cognitive therapy (MBCT) or a 30-minute relaxation



session immediately after each tDCS session. Results indi-
cate a longer lasting reduction of depressive symptoms and
enhanced cognitive processes in patients receiving the
tDCS/MBCT combination. An ongoing, multicenter study is
evaluating the efficacy of tDCS combined with group CBT.'®®
In this study, 192 depressed patients are being randomized
to 12 sessions of either: 1) CBT + active tDCS (2 mA,
30 minutes); 2) CBT +sham tDCS; or 3) CBT alone.'®®

The combination of tDCS with DLPFC activation tech-
niques, such as working memory training or combined
cognitive training, has also shown promising results in
healthy subjects,’'® schizophrenia,’" mild cognitive
impairment,’™® and cognitive impairment in Parkinson’s
disease.'"® For combined treatment, tDCS has advan-
tages over rTMS: it does not produce noise, which can be
a distracting factor in rTMS sessions, and is portable.
Cognitive remediation, such as the training of specific
cognitive control processes, can also be performed
following an intervention with TMS or iTBS in a sequential
fashion, where cognitive remediation would be timed to
take advantage of the enhanced cognitive capacities
provided by the NIBS intervention. In this direction, an
ongoing trial (PACt-MD) is comparing the efficacy of tDCS
combined with cognitive remediation vs. double placebo
in slowing cognitive decline and preventing Alzheimer’s
disease in older persons with mild cognitive impairment,
or MDD with or without mild cognitive impairment (PACt-
MD, ClinicalTrials.gov, number NCT02386670).

Furthermore, given that other forms of psychotherapy,
such as interpersonal therapy, have been found to be
effective in the treatment of MDD, it would also be
interesting to study the combination of these techniques
with NIN.

The “when’: combining NIBS with real-time neuroimaging
and electrophysiology

The neurobiological effects of NIBS can also be assessed
during or after application sessions,''""” in what have
been termed “online” and “offline” approaches, respec-
tively.'®

The “online” approach allows use of imaging techni-
ques to quantify local neural network properties and appli-
cation of NIBS so as to interfere with ongoing neuronal
processing, visualizing how NIBS modulates the level or
timing of neuronal activity with imaging and electrophy-
siology.""® For instance, a few studies have used fMRI to
evaluate the online propagation of TMS-induced effects
targeted to the prefrontal cortex.'®'2° Further studies are
required to explore this propagation as a potential
biomarker for rTMS efficacy in the treatment of depres-
sive patients.

In the “offline” approach, one can increase or decrease
the excitability of a brain region and measure the
consequences thereof (i.e., with tDCS).""® For instance,
a recent study of volunteers with high trait anxiety
showed, through fMRI observation, that a single session
of the typical tDCS protocol used in depression sup-
pressed hyperactive fear signaling in the amygdala and
increased activity in frontoparietal attentional top-down
control regions.'®!

Precision NIN for depression

By these approaches, different combinations of NIBS
modalities can be synchronized with neural oscillatory
network activities, through real-time EEG or fMRI read-
outs which are further analyzed, thus closing the loop
between stimulation and neurobiological response.''®

The “where”: positioning and dose quantification

Optimal coil/electrode positioning is important to decrease
within- and between-subject heterogeneity in the induced
electric field and enhance clinical efficacy. Methods for
standardizing coil/electrode positioning are commonly
used, such as scalp landmark or hotspot-based coil
placement for rTMS,'?? or headgear that secures the
electrodes in the desired location.'®® Studies have shown
that even small changes in coil/electrode positioning can
change the induced neurobiological effects and nega-
tively affect clinical outcomes.'?*'25 More sophisticated
targeting approaches use individual or group-level anato-
mical and/or functional imaging to define the stimulation
site, including the possible use of multiple electrodes
to stimulate wider brain networks in a multifocal app-
roach.'®® Targeting based on fMRI guidance has been
shown to produce stronger online rTMS effects compared
to other targeting strategies.’®” The use of neuronaviga-
tion systems can greatly improve the spatial precision
of TMS. Furthermore, robotic coil-holder systems can
provide millimeter accuracy and continuous tracking of
the TMS coil. One such robotic system recently received
FDA 510(k) clearance.

“Dose” quantification is key to determine the dose-
response gradient and to titrate the intervention para-
meters accordingly. Nonetheless, determining dose is
challenging in NIN, as various stimulation parameters are
employed (e.g., current intensity, waveform, and duration
for electrical stimulation; number, frequency, pattern, and
intensity for magnetic stimulation; frequency and duration
of treatment course), which influence one another in
complex interactions.'?® The net result (excitation, inhibi-
tion, or no effect) is influenced by other concomitant inter-
ventions (pharmacological agents, cognitive tasks, other
NIBS interventions, and psychological interventions),2°'2°
as well as by network activity (i.e., brain state). For
convulsive therapies, there might be a trade-off between
using higher doses to produce greater clinical benefits but
with additional side effects.®®

More recently, computational models have been used
to quantify electric fields (EFs) in brain regions of interest
(ROIs). In fact, there are freely available software
packages that perform electric field simulations using
high-quality MRI images (templates or individualized) via
a series of steps: 1) automated tissue segmentation of
structural MRI; 2) meshing of the different tissue compart-
ments to form a 3D model of the head and brain; 3)
processing DTI data to extract white-matter anisotropic
conductivity values; 4) incorporating electrodes and the
TMS coil on the head model; 5) assigning appropriate
electrical properties for the tissues and electrode/coil;
6) solving for the electric field and current density, via
numerical methods such as finite element or boundary
element methods; and 7) exporting, visualizing, and/or
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transforming electric field distribution to standard space
for group analysis.'®® The resulting EFs can be graphi-
cally assessed; the results of EFs per ROI can be printed
out and mapped into standard spaces, such as MNI and
FreeSurfer, for analysis of correlations between current
distribution, clinical outcomes, and structural and func-
tional neuroimaging findings. These computational mod-
els allow researchers to 1) understand the biophysics and
mechanism of action for NIN modalities; 2) benchmark
and compare different technologies; and 3) quantify
interindividual variation in the induced dose as it relates
to clinical outcome. Further work is needed to investigate
the effects of EFs on brain tissue, and whether models
can be used for treatment planning and optimization.

The “who”: identifying responders

The predictors of NIN response are mostly unknown.
Although treatment resistance in MDD is a robust clinical
predictor of poor response for most antidepressant
strategies, including NIN interventions,'3'"'3 this might
be related more to the depressive episode per se than to
the intervention. In addition, the absence of improvement
in response to rTMS early during treatment predicts
continued non-improvement with further rTMS treat-
ment,'3* whereas acute improvement with ECT predicts
final remission.'3®

Other predictors have shown mixed results. For instance,
in tDCS, higher “dose” was associated with better outcomes
in one meta-analysis,"®' but a further sham-controlled trial
using a higher dose than previous ones yielded nonsigni-
ficant findings."3® Another study that applied tDCS over the
motor cortex also concluded that enhancement of tDCS
“dose” does not necessarily increase the neurobiological
effects of stimulation, but might shift the direction of exci-
tability alterations.'®” Furthermore, tDCS responders have
been found to display greater improvements in the MADRS
dysphoria and retardation factors compared to nonrespon-
ders.”™® For rTMS, although most research to date has
focused more on testing the efficacy of different interven-
tions rather than on identifying subgroups of patients who
would respond better to a particular intervention,'® some
recent work suggests that the treatment may be most
effective for certain particular “biotypes” of depression,
detectable from whole-brain network connectivity on func-
tional MRI,"° and that the optimal rTMS parameters to
achieve antidepressant effect might vary depending on
treatment resistance, age, and sex.'*' Moreover, greater
response to a LF-rTMS protocol has been associated with
lower MADRS retardation scores at baseline.’? Regarding
ECT, even first-line recommendations such as older age,
psychosis, and melancholic features®' were not consistently
identified in a meta-analysis.”* One study reported that
ECT responders displayed higher scores on a MADRS
dysphoria factor compared to nonresponders, while the
procedure had only a small effect on a MADRS vegetative
factor.'

Although relatively large trials have been conducted in
the NIN field,2%3"1% to the best of our knowledge, there is
no published research using machine-learning algorithms
to predict NIN response based on a clinical dataset — as
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has already been done in pharmacological trials.'® For
example, using a gradient boosting model, Chekroud
et al."* identified in STAR*D a dataset of 25 variables
that predicted depression response significantly above
chance. In another STAR*D analysis, Chekroud et al.'*®
identified which pharmacotherapies would be associated
with greater depression improvement for patients grouped
according to a cluster of depressive symptoms. These
approaches are important and fundamentally different
from statistical approaches to identification of predictors,
which are based on groups, not individuals.'®'#” In fact,
statistical methods focus on inference — creating a
mathematical model that tests a hypothesis about how a
system behaves, whereas machine learning focuses on
prediction — i.e., finding generalizable predictive patterns
that aim to forecast future behaviors regardless of their
mechanistic basis'® (Figure 3). Additionally, through
employing almost no pre-assumptions and a nonlinear
function canvas, machine learning techniques can model
complex patterns that can identify relationships between
large amounts of data and data of diverse types,'*®'4°
increasing the processing speed and output of predictive
models. For instance, a machine-learning modality known
as “deep learning” provides a promising approach for
analysis of the relationship between electromagnetic
fields and biological tissues (i.e., a head model is auto-
matically generated through MRI, with correspondence
between voxels to specific tissue types with given
electrical conductivity values).'*°

One concern about such approaches is the lack of
interpretability that the resulting models usually possess.
There is no clear way of interpreting complex nonlinear
models. In many clinical applications, including selection
of treatment or prediction of side effects, the clinician
does not need to fully comprehend how the machine is
processing information. In that case, the main concern is
how effectively the model can predict a specific outcome.

Preliminary work from our group (under review) used
data from the ELECT-TDCS®' to estimate single-subject
prediction of treatment response to tDCS, escitalopram,
or placebo. A total of 245 subjects were included, of
whom 55% were women (n=166) and 29% had TRD
(n=91).3" The feature dataset included baseline clinical,
sociodemographic, somatic, treatment-related, and
depression-related variables, as well as mood and anxiety
scales. Using a XGBoost tree boosting algorithm, we
could predict response to placebo, escitalopram and
tDCS with 45% (95%CI 39-52), 56% (50-61%), and 67%
(62-71%) balanced accuracy, respectively. This prelimin-
ary work reveals that ML-based approaches can predict
NIBS response above chance, facilitating further investi-
gation of this approach in upcoming studies using clinical
and biological data.

The identification of responders could potentially be
greatly enhanced by using biomarkers.'®' For precision
NIN, biomarkers of treatment response would be espe-
cially useful, not only due to their predictive value but also —
particularly — to shed light on the mechanisms of action of
NIN. Importantly, biomarkers of disease might not be
necessarily related to treatment response, and a biomar-
ker for a pharmacological treatment might not necessarily
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apply to NIN. Among several potential biomarkers, we
propose that cognitive, neuroimaging, and neurophysio-
logical markers would be particularly useful for precision
NIN, since they are directly targeted by these techniques.
Structural and functional neuroimaging biomarkers
have indicated that the volume and thickness of certain
structures (e.g., portions of the prefrontal cortex and
anterior cingulate cortex), the resting-state connectivity of
certain networks, and the connectivity between ROls
predict and are modified by the antidepressant effects of
NIBS."®2'%% For instance, a recent study showed that
patients respond bimodally to rTMS: at the beginning of
treatment, nonresponders exhibited higher anhedonia
and lower connectivity in a brain network classically
associated with reward, consisting of the ventral teg-
mental area, striatum, and part of the VMPFC. This study
indicated that a subtype of depressive patients, identified
on the basis of syndromic and neuroimaging character-
istics, may respond better to rTMS."® Also looking at
treatment-response biomarkers, researchers found early
response to rTMS treatment to be predictable by the
integrity of an extended salience-executive system,
indexed by fronto-insular connectivity and SN connectivity
with visual processing regions, although this was not true
for sustained response at 3-month follow-up.'®” In an
exploratory analysis, researchers found that higher

functional connectivity between the DLPFC and striatum
predicted better treatment response to TMS in a group
of depressed patients.'®® In another study'*® that used
functional magnetic resonance imaging (fMRI) in a large,
multisite sample of 1,188 depressive patients, four distinct
neurophysiological subtypes (“biotypes”) were identified
on the basis of distinct patterns of dysfunctional con-
nectivity in frontostriatal and limbic networks. Patients in
“pbiotype 1” were approximately three times more likely
to benefit from rTMS over the DMPFC than those in
“biotypes” 2 or 4,'° although these findings need to
be interpreted with caution, given questions about their
replicability.’®® For tDCS, a recent study showed that
larger gray-matter volumes in the left DLPFC at baseline
were further associated with antidepressant response to
tDCS, but not to escitalopram or placebo.'®® Although the
effect sizes were small and had no individual-level
predictive value, these findings contribute to our under-
standing of the antidepressant effects of tDCS by showing
a specific association between the stimulated area and
further antidepressant response. So far, there does
not seem to be a consistent unique pattern of functional
or structural abnormality to predict the effect of non-
invasive neuromodulatory MDD interventions. In future,
combined use of biomarkers may help guide treatment
selection.’®’
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Cognitive functions are another set of biomarkers worth
exploring in NIN trials. In depression, these are often
impaired independently of mood'®?'%* and are asso-
ciated with network dysfunctions.'®1%6 With the excep-
tion of ECT, NIBS appears to be cognitively safe in
healthy adults,?>'®” with most single-session studies
indicating no cognitive decline, although exceptions have
been noted.'®®'%% |n depressed patients, recent meta-
analyses found that NIBS techniques are not associated
with cognitive side effects.’”®'”" In contrast, cognitive
adverse effects are common in convulsive therapies.®"
NIBS interventions could be designed to not only improve
mood, but to concomitantly induce cognitive enhance-
ment. The implementation of such a combined approach
would depend upon multiple factors, including NIBS
protocols, specific neurocircuitry and physiological pre-
mises, online and offline stimulation, pre-existing cogni-
tive difficulties, and other clinical and demographic
factors. For instance, NIBS administered over the PFC
induced improvement in a working memory task.'”2 Thus,
it can be supposed that, in MDD, PFC stimulation could
exert pro-cognitive effects, particularly in complex atten-
tion and working-memory domains.'”® Nevertheless,
although some studies suggested cognitive improvement
in some tasks after rTMS in depressive patients, the
majority of studies showed no cognitive benefits after
NIBS.""* Possible reasons for null findings are limitations
of specific NIBS paradigms (e.g., poor spatial targeting,
inadequate dose), practice effects, reduced sensitivity
and specificity of the tests (e.g., paper-and-pen instead of
computerized tests), ceiling effects,’”*'” and the lack of
concomitant cognitive activity. Cognitive functions could
also be leveraged to individualize treatment approaches
and predict treatment outcome. For example, baseline
cognitive performance or acute cognitive effects after the
first NIN session can predict antidepressant response to
NIN,"”®177 and could therefore be used as a potentially
straightforward method for prediction in combination with
machine-learning approaches. Cognitive functions have
also been shown to be useful predictors for outcomes of
other treatment approaches, such as psychotherapy,'”®
and more long-term outcomes, such as return to work.'”®
Moreover, evaluating cognitive changes can provide
mechanistic insights into the antidepressant mechanisms
of action of NIN — e.g., by exploring whether they mode-
rate and/or mediate depression improvement — and into
NIN-induced changes in specific brain structures.'®® In
this case, cognitive changes have been operationalized
as fundamental mechanisms of action, but also as more
translational processes, such as self-referential thoughts
and emotions (e.g., negative affect, rumination, regret,
cognitive bias). To date, most of this research is being
performed in healthy volunteers, but the transition to
clinical samples — also based on the idea of functional
targeting of similar functional and neuroanatomical
circuits using multimodal interventions — is slowly moving
forward.

Motor cortical excitability (MCE) measures were the
first neurophysiological biomarkers investigated in MDD,
as the motor cortex can be easily probed using single-
and paired-pulse TMS, which are associated with GABA
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and glutamate activity in this structure.'®'®2 Studies
have shown that baseline measures of cortical inhibition
and facilitation were associated with antidepressant
response to tDCS, rTMS, and ECT,3"'83184 although
effect sizes were small. In addition, EEG-based neuro-
physiological parameters are associated with antidepres-
sant response to rTMS."818 More recently, it has been
advocated that prefrontal excitability indexed using TMS-
evoked potentials and TMS-EEG systems might be more
a specific marker of NIN effects compared to MCE, as
these methods can probe the cortical excitability of frontal
brain areas implicated in depressive pathophysiology,
with high temporal resolution.'®” However, these techni-
ques are still novel and technically challenging, and it is
still unclear which indexes better represent GABA acti-
vity."'® These limitations notwithstanding, promising find-
ings have been observed using this biomarker modality to
predict NIN response.'8819°

Other biological markers have also been explored in
NIN, including genetic and non-genetic peripheral bio-
markers and heart rate variability.**'®''%° Although some
positive findings were found, results have been incon-
sistent, and mostly derived from open studies. In addition,
the identification of candidate genes has been challenged
by more recent studies showing that most previous
findings are likely to be false positives.?®° Likewise, the
literature on peripheral depression biomarkers is fraught
with bias.?"=%2

Limitations and perspectives

Although promising, the precision NIN framework should
be pursued and expanded with a view to improved clinical
applicability. For instance, despite the investigation of
several biomarkers, most positive findings have emerged
from poorly controlled exploratory studies using small
sample sizes, thus requiring further validation. In this
regard, properly controlled studies of biomarkers could
further expand our knowledge of their role in the
pathophysiological processes related to MDD and help
predict response to treatment. Strategies that would
enhance biomarker validity include adequately powered
sample sizes and a priori hypotheses for the role of the
markers of interest. Novel clinical trials investigating NIN
interventions should embed the investigation of biomar-
kers in their design. For certain NIN modalities in which
clinical efficacy is already proven, such as most variants
of rTMS and ECT, sham-controlled trials are not neces-
sary and, in fact, not feasible from an ethical perspective,
as equipoise to placebo cannot be assumed. Therefore,
academic centers that perform rTMS and ECT should
incorporate systematic data collection of clinical and
demographic characteristics — as well as questionnaires,
inventories and scales measuring depression and cogni-
tive changes during treatment — into their clinical routine.
Ideally, molecular and neuroimaging biomarkers should
be collected as well, and data could be shared by different
data centers. Such an approach is exemplified by the
Global ECT-MRI Research Collaboration, which already
includes more than 22 centers collecting ECT and MRI
data worldwide.*® On the other hand, for other NIN



interventions, such as tDCS and MST, phase-3 controlled
studies are still necessary, as clinical efficacy remains
unproven. For such trials, we recommend that investiga-
tors incorporate a comprehensive set of biomarkers to
be investigated within the context of the primary study
hypothesis. In this context, the framework of “target enga-
gement” and “target validation” is useful — i.e., those
biomarkers deemed most promising on the basis of
preclinical and early clinical findings should be investi-
gated as predictors and moderators of clinical response.

Likewise, even though the logic of using approaches
such as machine-learning in individual patient data and
meta-analytic datasets is sound and necessary, any
findings would still be retrospective, requiring further
validation in novel datasets distinct from those on which
the classifiers were trained, to determine generalizability.
This necessitates a global effort in scientific collaboration
and data sharing, with particular focus on overcoming
difficulties in access to the literature and primary data held
beyond paywalls. In this sense, open-access initiatives
are welcome, as are promising changes in business
models of academic publishing. In this context, one of
the leading journals of the field (Brain Stimulation) has
become fully open-access as of January 1, 2020.2%
Moreover, policies ensuring that properly anonymized
data from clinical trials (whether sponsored by public or
private institutions) can be shared under request should
be endorsed by regulatory agencies to further promote
data-sharing initiatives.

Machine learning-guided intervention trials in NIN are
still a necessary second step to further validate predictive
algorithms.?®* Cost-effectiveness analyses should also
be performed to verify whether a precision-oriented app-
roach is economically advantageous: on the one hand,
enhancing efficacy and decreasing side effects can
increase individual benefits and reduce treatment cost;
on the other, the additional costs of using precision tech-
niques should be considered. For instance, the advan-
tages of tDCS include its low cost and portability, but the
neuroimaging scans and individualized electrode posi-
tioning required before treatment could make these
advantages moot if additional gains in efficacy and effici-
ency are not achieved. Although not discussed in the
present review, computational and preclinical studies
would be useful to deepen our understanding of NIN
techniques,?®® while studies in healthy volunteers are
needed to narrow the parameter spaces of these
techniques (for instance, by using closed-loop bayesian,
adaptive optimization).2°®

Finally, it should be noted that the selection of studies
for this special article was unsystematic, i.e., publications
were deemed relevant and selected according to the
perspective of the authors, with the inherent subjective
limitations that such a narrative entails.

Conclusions

Depressive disorders are prevalent, disabling conditions.
Conventional antidepressant treatments fail to induce
remission in approximately one-third of patients with
MDD, may result in intolerable side effects (first-line

Precision NIN for depression

medications), or may be expensive and time-consuming
(psychotherapy). Moreover, such therapies are still pre-
scribed on a “trial-and-error” basis, in which achievement
of a satisfactory response can take several months.

In this context, NIN techniques are increasingly con-
sidered safe, tolerable, and effective, whether as mono-
therapy or augmented with other interventions, such as
medications and psychotherapy. Furthermore, as stimu-
lation parameters can be directed to specifically affected
brain areas, NIN is also undergoing a paradigm shift
towards a precision-oriented framework that takes into
consideration “knowledge about brain circuits that under-
lie complex cognitive, emotional and self-reflective func-
tions” in order to guide individualized patient-oriented treat-
ments.*® Ultimately, this new framework does not rely
solely on observable clinical outcome information, but also
on data from multiple biological levels, from cells to circuits.
As open-access initiatives across the globe give space to
merging and analyzing large datasets and subjects in
clinical trials are increasingly assessed via multimodal app-
roaches, a greater understanding of methods for handling
big data will be mandatory for specialists in the field.

In this context, future NIN-related research would
benefit from a focus on optimization of its parameters,
discovery of remission- and response-related biomarkers,
elucidation of cognitive safety and enhancement mechan-
isms, and advancement of scientific knowledge related to
mechanisms of NIN action.

Acknowledgements

AGA is supported by Fundagao para a Ciéncia e Tecno-
logia and Programa COMPETE, Portugal (grant PTDC/
MHC-PAP/5618/2014 [POCI-01-0145-FEDER-016836];
http://www.poci-compete2020.pt/). Z-DD is supported
by the National Institute of Mental Health Intramural
Research Program (grant ZIAMH002955) and by a
Young Investigator Award from the Brain & Behavior
Research Foundation (grant 26161). SMM receives
research support from the National Institutes of Health
(NIH) and is a consultant to Pearson Assessment. JO’S
is supported by a Sir Henry Dale Fellowship jointly
funded by the Wellcome Trust and the Royal Society
(grant 215451/2/19/Z). ICP is supported by funding
from Secretaria Nacional de Politicas sobre Drogas
(SENAD) and Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico (CNPq). LBR is supported by
Fundacdo de Amparo a Pesquisa do Estado de Sao
Paulo (FAPESP; grant 2019/07256-7). ARB is sup-
ported by productivity grants from CNPg-1B and the
Programa de Incentivo a Produtividade Académica
(PIPA), Faculdade de Medicina, Universidade de Sao
Paulo (USP).

Disclosure

Z-DD is listed as inventor on patents/patent applications
related to brain stimulation technology, assigned to
Columbia University and NEVA Electromagnetics, not
licensed, and with no remuneration. Although he is an
employee of the U.S. government, the views expressed

413

Braz J Psychiatry. 2020;42(4)


http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/
http://www.poci-compete2020.pt/

414

L Borrione et al.

are his own and do not necessarily represent the views of
the National Institutes of Health, the Department of Health
and Human Services, or the U.S. government. The other
authors report no conflicts of interest.

References

1

10

11

12

13

14

15

16

17

Kennedy SH, Lam RW, Mcintyre RS, Tourjman SV, Bhat V, Blier P,
et al. Canadian Network for Mood and Anxiety Treatments (CAN
MAT) 2016 clinical guidelines for the management of adults with
major depressive disorder: section 3. Pharmacological treatments.
Can J Psychiatry. 2016;61:540-60.

Parikh SV, Quilty LC, Ravitz P, Rosenbluth M, Pavlova B, Grigor-
jiadis S, et al. Canadian Network for Mood and Anxiety Treatments
(CANMAT) 2016 clinical guidelines for the management of adults
with major depressive disorder: section 2. Psychological treatments.
Can J Psychiatry. 2016;61:524-39.

Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW,
Warden D, et al. Acute and longer-term outcomes in depressed
outpatients requiring one or several treatment steps: a STAR*D
report. Am J Psychiatry. 2006;163:1905-17.

Carvalho AF, Sharma MS, Brunoni AR, Vieta E, Fava GA. The
safety, tolerability and risks associated with the use of newer gen-
eration antidepressant drugs: a critical review of the literature.
Psychother Psychosom. 2016;85:270-88.

Keller MB, McCullough JP, Klein DN, Arnow B, Dunner DL, Gelen-
berg AJ, et al. A comparison of nefazodone, the cognitive beha-
vioral-analysis system of psychotherapy, and their combination
for the treatment of chronic depression. N Engl J Med. 2000;342:
1462-70.

Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF,
Berk M. The new field of “precision psychiatry.” BMC Med.
2017;15:80.

Jameson JL, Longo DL. Precision medicine -- personalized, pro-
blematic, and promising. N Engl J Med. 2015;372:2229-34.
Chekroud AM, Lane CE, Ross DA. Computational psychiatry:
embracing uncertainty and focusing on individuals, not averages.
Biol Psychiatry. 2017;82:e45-7.

Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al.
Research domain criteria (RDoC): toward a new classification fra-
mework for research on mental disorders. Am J Psychiatry.
2010;167:748-51.

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA,
Renteria ME, et al. The ENIGMA Consortium: large-scale colla-
borative analyses of neuroimaging and genetic data. Brain Imaging
Behav. 2014;8:153-82.

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al.
UK biobank: an open access resource for identifying the causes of a
wide range of complex diseases of middle and old age. PLoS Med.
2015;12:e1001779.

Bzdok D, Meyer-Lindenberg A. Machine learning for precision psy-
chiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci
Neuroimaging. 2018;3:223-30.

Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches
for clinical psychology and psychiatry. Annu Rev Clin Psychol.
2018;14:91-118.

Brunoni AR, Teng CT, Correa C, Imamura M, Brasil-Neto JP,
Boechat R, et al. Neuromodulation approaches for the treatment of
major depression: challenges and recommendations from a working
group meeting. Arq Neuropsiquiatr. 2010;68:433-51.

Brunoni AR, Sampaio-Junior B, Moffa AH, Aparicio LV, Gordon P,
Klein I, et al. Noninvasive brain stimulation in psychiatric disorders:
a primer. Braz J Psychiatry. 2019;41:70-81.

Baeken C, Brem AK, Arns M, Brunoni AR, Filipéi¢ I, Ganho-Avila A,
et al. Repetitive transcranial magnetic stimulation treatment for
depressive disorders: current knowledge and future directions. Curr
Opin Psychiatry. 2019;32:409-15.

Mutz J, Vipulananthan V, Carter B, Hurlemann R, Fu CH, Young
AH. Comparative efficacy and acceptability of non-surgical brain
stimulation for the acute treatment of major depressive episodes
in adults: systematic review and network meta-analysis. BMJ.
2019;364:11079.

Braz J Psychiatry. 2020;42(4)

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Sathappan AV, Luber BM, Lisanby SH. The dynamic duo: combin-
ing noninvasive brain stimulation with cognitive interventions. Prog
Neuropsychopharmacol Biol Psychiatry. 2019;89:347-60.

Yavari F, Nitsche MA, Ekhtiari H. transcranial electric stimulation for
precision medicine: a spatiomechanistic framework. Front Hum
Neurosci. 2017;11:159.

Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis
ZJ, Downar J, et al. Canadian Network for Mood and Anxiety
Treatments (CANMAT) 2016 clinical guidelines for the management
of adults with major depressive disorder: section 4. Neurostimulation
treatments. Can J Psychiatry. 2016;61:561-75.

Thielscher A, Antunes A, Saturnino GB. Field modeling for tran-
scranial magnetic stimulation: a useful tool to understand the phy-
siological effects of TMS? Conf Proc IEEE Eng Med Biol Soc.
2015;2015:222-5.

Klooster DC, de Louw AJ, Aldenkamp AP, Besseling RM, Mestrom
RM, Carrette S, et al. Technical aspects of neurostimulation: focus
on equipment, electric field modeling, and stimulation protocols.
Neurosci Biobehav Rev. 2016;65:113-41.

Cretaz E, Brunoni AR, Lafer B. Magnetic seizure therapy for unipolar
and bipolar depression: a systematic review. Neural Plast. 2015;
2015:521398.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMS
Consensus Group. Safety, ethical considerations, and application
guidelines for the use of transcranial magnetic stimulation in clinical
practice and research. Clin Neurophysiol. 2009;120:2008-39.
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T,
et al. Safety of transcranial direct current stimulation: evidence
based update 2016. Brain Stimul. 2016;9:641-61.

Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen
R, et al. Low intensity transcranial electric stimulation: safety, ethi-
cal, legal regulatory and application guidelines. Clin Neurophysiol.
2017;128:1774-809.

Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD,
et al. Rigor and reproducibility in research with transcranial electrical
stimulation: an NIMH-sponsored workshop. Brain Stimul. 2018;
11:465-80.

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P,
et al. A technical guide to tDCS, and related non-invasive brain
stimulation tools. Clin Neurophysiol. 2016;127:1031-48.
Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y,
Giacobbe P, et al. Effectiveness of theta burst versus high-fre-
quency repetitive transcranial magnetic stimulation in patients with
depression (THREE-D): a randomised non-inferiority trial. Lancet.
2018;391:1683-92.

O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg
KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic
stimulation in the acute treatment of major depression: a multisite
randomized controlled trial. Biol Psychiatry. 2007;62:1208-16.
Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML,
Fernandes RA, et al. Trial of electrical direct-current therapy versus
escitalopram for depression. N Engl J Med. 2017;376:2523-33.
Pascual-Leone A, Rubio B, Pallardé F, Catald MD. Rapid-rate
transcranial magnetic stimulation of left dorsolateral prefrontal cor-
tex in drug-resistant depression. Lancet. 1996;348:233-7.

Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP,
Pascual-Leone A. Treatment of major depression with transcranial
direct current stimulation. Bipolar Disord. 2006;8:203-4.

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-
scale network dysfunction in major depressive disorder: a meta-
analysis of resting-state functional connectivity. JAMA Psychiatry.
2015;72:603-11.

Padmanabhan JL, Cooke D, Joutsa J, Siddigi SH, Ferguson M,
Darby RR, et al. A human depression circuit derived from focal brain
lesions. Biol Psychiatry. 2019;86:749-58.

Williams LM. Precision psychiatry: a neural circuit taxonomy for
depression and anxiety. Lancet Psychiatry. 2016;3:472-80.
Downar J, Blumberger DM, Daskalakis ZJ. The neural crossroads of
psychiatric illness: an emerging target for brain stimulation. Trends
Cogn Sci. 2016;20:107-20.

McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A.
Identification of common neural circuit disruptions in cognitive control
across psychiatric disorders. Am J Psychiatry. 2017;174:676-85.



39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Baeken C, De Raedt R. Neurobiological mechanisms of repetitive
transcranial magnetic stimulation on the underlying neurocircuitry in
unipolar depression. Dialogues Clin Neurosci. 2011;13:139-45.
Philip NS, Barredo J, van 't Wout-Frank M, Tyrka AR, Price LH,
Carpenter LL. Network mechanisms of clinical response to tran-
scranial magnetic stimulation in posttraumatic stress disorder and
major depressive disorder. Biol Psychiatry. 2018;83:263-72.
Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF,
et al. Prospective validation that subgenual connectivity predicts
antidepressant efficacy of transcranial magnetic stimulation sites.
Biol Psychiatry. 2018;84:28-37.

Loo C, Katalinic N, Mitchell PB, Greenberg B. Physical treatments
for bipolar disorder: a review of electroconvulsive therapy, stereo-
tactic surgery and other brain stimulation techniques. J Affect Dis-
ord. 2011;132:1-13.

van Buel EM, Patas K, Peters M, Bosker FJ, Eisel UL, Klein HC.
Immune and neurotrophin stimulation by electroconvulsive therapy:
is some inflammation needed after all? Transl Psychiatry. 2015;5:
e609.

Brunoni AR, Baeken C, Machado-Vieira R, Gattaz WF, Vander-
hasselt MA. BDNF blood levels after electroconvulsive therapy
in patients with mood disorders: a systematic review and meta-
analysis. World J Biol Psychiatry. 2014;15:411-8.

Wilkinson ST, Sanacora G, Bloch MH. Hippocampal volume
changes following electroconvulsive therapy: a systematic review
and meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging.
2017;2:327-35.

Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M,
Kishimoto T. Effect of electroconvulsive therapy on hippocampal
and amygdala volumes: systematic review and meta-analysis. Br J
Psychiatry. 2018;212:19-26.

Bolwig TG. Neuroimaging and electroconvulsive therapy: a review.
J ECT. 2014;30:138-42.

Oltedal L, Bartsch H, Sorhaug OJ, Kessler U, Abbott C, Dols A, et al.
The Global ECT-MRI Research Collaboration (GEMRIC): estab-
lishing a multi-site investigation of the neural mechanisms under-
lying response to electroconvulsive therapy. Neuroimage Clin.
2017;14:422-32.

Gbyl K, Videbech P. Electroconvulsive therapy increases brain
volume in major depression: a systematic review and meta-analysis.
Acta Psychiatr Scand. 2018;138:180-95.

Hestad KA, Tonseth S, Steen CD, Ueland T, Aukrust P. Raised
plasma levels of tumor necrosis factor alpha in patients with
depression: normalization during electroconvulsive therapy. J ECT.
2003;19:183-8.

Jarventausta K, Sorri A, Kampman O, Bjérkqvist M, Tuohimaa K,
Hamaélainen M, et al. Changes in interleukin-6 levels during elec-
troconvulsive therapy may reflect the therapeutic response in major
depression. Acta Psychiatr Scand. 2017;135:87-92.

Roman A, Kreiner G, Nalepa |I. Macrophages and depression —
a misalliance or well-arranged marriage? Pharmacol Rep. 2013;65:
1663-72.

Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A.
Electroconvulsive therapy, depression, the immune system and
inflammation: a systematic review. Brain Stimul. 2018;11:29-51.
Hallett M. Transcranial magnetic stimulation: a primer. Neuron.
2007;55:187-99.

McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M,
Taylor SF, et al. consensus recommendations for the clinical
application of Repetitive Transcranial Magnetic Stimulation (rTMS)
in the treatment of depression. J Clin Psychiatry. 2018;79:
16cs10905.

Lisanby SH, Husain MM, Rosenquist PB, Maixner D, Gutierrez R,
Krystal A, et al. Daily left prefrontal repetitive transcranial magnetic
stimulation in the acute treatment of major depression: clinical pre-
dictors of outcome in a multisite, randomized controlled clinical trial.
Neuropsychopharmacology. 2009;34:522-34.

Berlim MT, Van den Eynde F, Daskalakis ZJ. High-frequency
repetitive transcranial magnetic stimulation accelerates and enhan-
ces the clinical response to antidepressants in major depression:
a meta-analysis of randomized, double-blind, and sham-controlled
trials. J Clin Psychiatry. 2013;74:e122-9.

Berlim MT, Van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ.
Response, remission and drop-out rates following high-frequency

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Precision NIN for depression

Repetitive Transcranial Magnetic Stimulation (rTMS) for treating
major depression: a systematic review and meta-analysis of ran-
domized, double-blind and sham-controlled trials. Psychol Med.
2014;44:225-39.

Berlim MT, Van den Eynde F, Daskalakis ZJ. Clinically meaningful
efficacy and acceptability of low-frequency Repetitive Transcranial
Magnetic Stimulation (rTMS) for treating primary major depression:
a meta-analysis of randomized, double-blind and sham-controlled
trials. Neuropsychopharmacology. 2013;38:543-51.

Brunoni AR, Chaimani A, Moffa AH, Razza LB, Gattaz WF, Daska-
lakis ZJ, et al. Repetitive Transcranial Magnetic Stimulation for the
acute treatment of major depressive episodes: a systematic review
with network meta-analysis. JAMA Psychiatry. 2017;74:143-52.
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C,
Benninger DH, et al. Evidence-based guidelines on the therapeutic
use of repetitive transcranial magnetic stimulation (rTMS). Clin
Neurophysiol. 2014;125:2150-206.

Berlim MT, Turecki G. What is the meaning of treatment resistant/
refractory major depression (TRD)? A systematic review of current
randomized trials. Eur Neuropsychopharmacol. 2007;17:696-707.
Cohen RB, Boggio PS, Fregni F. Risk factors for relapse after
remission with repetitive transcranial magnetic stimulation for the
treatment of depression. Depress Anxiety. 2009;26:682-8.

Dunner DL, Aaronson ST, Sackeim HA, Janicak PG, Carpenter LL,
Boyadjis T, et al. A multisite, naturalistic, observational study of
transcranial magnetic stimulation for patients with pharmacoresis-
tant major depressive disorder: durability of benefit over a 1-year
follow-up period. J Clin Psychiatry. 2014;75:1394-401.

Kedzior KK, Reitz SK, Azorina V, Loo C. Durability of the anti-
depressant effect of the high-frequency repetitive transcranial
magnetic stimulation (rTMS) In the absence of maintenance treat-
ment in major depression: a systematic review and meta-analysis of
16 double-blind, randomized, sham-controlled trials. Depress Anxi-
ety. 2015;32:193-203.

Sgro J, Stanton P, Emerson R. Theoretical and practical perfor-
mance of magnetic stimulators and coils. Electroencephalogr Clin
Neurophysiol Suppl. 1991;43:279-83.

Counter SA. Neurobiological effects of extensive transcranial elec-
tromagnetic stimulation in an animal model. Electroencephalogr Clin
Neurophysiol. 1993;89:341-8.

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A,
et al. Transcranial direct current stimulation: state of the art 2008.
Brain Stimul. 2008;1:206-23.

Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet
L, et al. Clinical research with transcranial direct current stimulation
(tDCS): challenges and future directions. Brain Stimul. 2012;5:
175-95.

Borrione L, Moffa AH, Martin D, Loo CK, Brunoni AR. Transcranial
direct current stimulation in the acute depressive episode: a sys-
tematic review of current knowledge. J ECT. 2018;34:153-63.
Palm U, Hasan A, Strube W, Padberg F. tDCS for the treatment of
depression: a comprehensive review. Eur Arch Psychiatry Clin
Neurosci. 2016;266:681-94.

Brunoni AR, Valiengo L, Baccaro A, Zando TA, de Oliveira JF,
Goulart A, et al. The sertraline vs. electrical current therapy for
treating depression clinical study: results from a factorial, rando-
mized, controlled trial. JAMA Psychiatry. 2013;70:383-91.

Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger
DM, et al. Transcranial direct current stimulation for acute major
depressive episodes: meta-analysis of individual patient data. Br J
Psychiatry. 2016;208:522-31.

Mutz J, Edgcumbe DR, Brunoni AR, Fu CH. Efficacy and accept-
ability of non-invasive brain stimulation for the treatment of adult
unipolar and bipolar depression: a systematic review and meta-
analysis of randomised sham-controlled trials. Neurosci Biobehav
Rev. 2018;92:291-303.

Valiengo L, Bensefor IM, Goulart AC, de Oliveira JF, Zanao TA,
Boggio PS, et al. The sertraline versus electrical current therapy for
treating depression clinical study (select-TDCS): results of the
crossover and follow-up phases. Depress Anxiety. 2013;30:646-53.
Aparicio LV, Rosa V, Razza LM, Sampaio-Junior B, Borrione L,
Valiengo L, et al. Transcranial direct current stimulation (tDCS) for
preventing major depressive disorder relapse: results of a 6-month
follow-up. Depress Anxiety. 2019;36:262-8.

415

Braz J Psychiatry. 2020;42(4)



416

77

78

79

80

81

82

83

84

85

86

87

88

89
90
91

92

93

94

95

96

97

L Borrione et al.

Martin DM, Alonzo A, Ho KA, Player M, Mitchell PB, Sachdev P,
et al. Continuation transcranial direct current stimulation for the
prevention of relapse in major depression. J Affect Disord. 2013;
144:274-8.

Alonzo A, Fong J, Ball N, Martin D, Chand N, Loo C. Pilot trial of
home-administered transcranial direct current stimulation for the
treatment of depression. J Affect Disord. 2019;252:475-83.
Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C,
Rubinow DR, et al. Double-blind, randomized pilot clinical trial tar-
geting alpha oscillations with transcranial alternating current stimu-
lation (tACS) for the treatment of major depressive disorder (MDD).
Transl Psychiatry. 2019;9:106.

Chan HN, Alonzo A, Martin DM, Player M, Mitchell PB, Sachdev P,
et al. Treatment of major depressive disorder by transcranial ran-
dom noise stimulation: case report of a novel treatment. Biol Psy-
chiatry. 2012;72:€9-10.

Mirski A, Pachalska M, Moskala M, Orski M, Orska M, Miaskiewicz
M, et al. Neuromarkers of anxiety and depression in a patient after
neuro-ophthalmic surgery of the meningioma-effect of individually-
tailored tDCS and neurofeedback. Ann Agric Environ Med. 2015;22:
718-23.

Peterchev AV, Rosa MA, Deng ZD, Prudic J, Lisanby SH. Electro-
convulsive therapy stimulus parameters: rethinking dosage. J ECT.
2010;26:159-74.

Weiner RD, Reti IM. Key updates in the clinical application of
electroconvulsive therapy. Int Rev Psychiatry. 2017;29:54-62.

UK ECT Review Group. Efficacy and safety of electroconvulsive
therapy in depressive disorders: a systematic review and meta-
analysis. Lancet. 2003;361:799-808.

Kolshus E, Jelovac A, McLoughlin DM. Bitemporal v. high-dose right
unilateral electroconvulsive therapy for depression: a systematic
review and meta-analysis of randomized controlled trials. Psychol
Med. 2017;47:518-30.

Dunne RA, McLoughlin DM. Systematic review and meta-analysis of
bifrontal electroconvulsive therapy versus bilateral and unilateral
electroconvulsive therapy in depression. World J Biol Psychiatry.
2012;13:248-58.

Sackeim HA, Haskett RF, Mulsant BH, Thase ME, Mann JJ, Petti-
nati HM, et al. Continuation pharmacotherapy in the prevention of
relapse following electroconvulsive therapy: a randomized con-
trolled trial. JAMA. 2001;285:1299-307.

Prudic J, Haskett RF, McCall WV, Isenberg K, Cooper T, Rosen-
quist PB, et al. Pharmacological strategies in the prevention of
relapse after electroconvulsive therapy. J ECT. 2013;29:3-12.
Sienaert P. Based on a true story? The portrayal of ECT in interna-
tional movies and television programs. Brain Stimul. 2016;9:882-91.
Ingram A, Saling MM, Schweitzer |. Cognitive side effects of brief
pulse electroconvulsive therapy: a review. J ECT. 2008;24:3-9.
Andrade C, Arumugham SS, Thirthalli J. Adverse effects of elec-
troconvulsive therapy. Psychiatr Clin North Am. 2016;39:513-30.
Deng ZD, Lisanby SH, Peterchev AV. Electric field strength and
focality in electroconvulsive therapy and magnetic seizure therapy:
a finite element simulation study. J Neural Eng. 2011;8:016007.
McClintock SM, Tirmizi O, Chansard M, Husain MM. A systematic
review of the neurocognitive effects of magnetic seizure therapy. Int
Rev Psychiatry. 2011;23:413-283.

Deng Z, Peterchev AV, Krystal AD, Luber B, McClintock SM, Husain
MM, et al. Topography of seizures induced by electroconvulsive
therapy and magnetic seizure therapy. In: 6th International IEEE/
EMBS Conference on Neural Engineering (NER); 2013; San Diego:
USA. p. 577-80.

Fitzgerald PB, Hoy KE, Herring SE, Clinton AM, Downey G, Das-
kalakis ZJ. Pilot study of the clinical and cognitive effects of high-
-frequency magnetic seizure therapy in major depressive disorder.
Depress Anxiety. 2013;30:129-36.

Fitzgerald PB, Hoy KE, Elliot D, McQueen S, Wambeek LE, Chen L,
et al. A pilot study of the comparative efficacy of 100 Hz magnetic
seizure therapy and electroconvulsive therapy in persistent
depression. Depress Anxiety. 2018;35:393-401.

Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J,
et al. Regulatory considerations for the clinical and research use of
transcranial direct current stimulation (tDCS): review and recom-
mendations from an expert panel. Clin Res Regul Aff. 2015;32:
22-35.

Braz J Psychiatry. 2020;42(4)

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Insel TR. The NIMH experimental medicine initiative. World Psy-
chiatry. 2015;14:151-3.

Li CT, Hsieh JC, Huang HH, Chen MH, Juan CH, Tu PC, et al.
Cognition-modulated frontal activity in prediction and augmentation
of antidepressant efficacy: a randomized controlled pilot study.
Cereb Cortex. 2016;26:202-10.

Neacsiu AD, Luber BM, Davis SW, Bernhardt E, Strauman TJ,
Lisanby SH. On the concurrent use of self-system therapy and
functional magnetic resonance imaging-guided transcranial magnetic
stimulation as treatment for depression. J ECT. 2018;34:266-73.
Donse L, Padberg F, Sack AT, Rush AJ, Arns M. Simultaneous
rTMS and psychotherapy in major depressive disorder: clinical
outcomes and predictors from a large naturalistic study. Brain
Stimul. 2018;11:337-45.

Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG,
et al. Direct current stimulation promotes BDNF-dependent synaptic
plasticity: potential implications for motor learning. Neuron.
2010;66:198-204.

Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E,
et al. Noninvasive cortical stimulation enhances motor skill acqui-
sition over multiple days through an effect on consolidation. Proc
Natl Acad Sci U S A. 2009;106:1590-5.

O’Shea J, Revol P, Cousijn H, Near J, Petitet P, Jacquin-Courtois S,
et al. Induced sensorimotor cortex plasticity remediates chronic
treatment-resistant visual neglect. Elife. 2017;6.

Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC,
et al. Animal models of transcranial direct current stimulation:
methods and mechanisms. Clin Neurophysiol. 2016;127:3425-54.
Bajbouj M, Padberg F. A perfect match: noninvasive brain stimula-
tion and psychotherapy. Eur Arch Psychiatry Clin Neurosci.
2014;264 Suppl 1:527-33.

Martin DM, Teng JZ, Lo TY, Alonzo A, Goh T, lacoviello BM, et al.
Clinical pilot study of transcranial direct current stimulation com-
bined with cognitive emotional training for medication resistant
depression. J Affect Disord. 2018;232:89-95.

Monnart A, Vanderhasselt MA, Schroder E, Campanella S, Fontaine
P, Kornreich C. Treatment of resistant depression: a pilot study
assessing the efficacy of a tDCS-mindfulness program compared
with a tDCS-relaxation program. Front Psychiatry. 2019;10:730.
Bajbouj M, Aust S, Spies J, Herrera-Melendez AL, Mayer SV,
Peters M, et al. PsychotherapyPlus: augmentation of cognitive
behavioral therapy (CBT) with prefrontal transcranial direct current
stimulation (tDCS) in major depressive disorder--study design and
methodology of a multicenter double-blind randomized placebo-
controlled trial. Eur Arch Psychiatry Clin Neurosci. 2018;268:
797-808.

Brem AK, Almquist JN, Mansfield K, Plessow F, Sella F, Santar-
necchi E, et al. Modulating fluid intelligence performance through
combined cognitive training and brain stimulation. Neuropsycholo-
gia. 2018;118:107-14.

Nienow TM, MacDonald AW 3rd, Lim KO. TDCS produces incre-
mental gain when combined with working memory training in
patients with schizophrenia: a proof of concept pilot study. Schi-
zophr Res. 2016;172:218-9.

Martin DM, Mohan A, Alonzo A, Gates N, Gbadeyan O, Meinzer M,
et al. A pilot double-blind randomized controlled trial of cognitive
training combined with transcranial direct current stimulation
for amnestic mild cognitive impairment. J Alzheimers Dis. 2019;71:
503-12.

Lawrence BJ, Gasson N, Johnson AR, Booth L, Loftus AM. Cog-
nitive training and transcranial direct current stimulation for mild
cognitive impairment in Parkinson’s disease: a randomized con-
trolled trial. Parkinsons Dis. 2018;2018:4318475.

Health Quality Ontario. Psychotherapy for major depressive dis-
order and generalized anxiety disorder: a health technology
assessment. Ont Health Technol Assess Ser. 2017;17:1-167.
Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner
HR. Combining non-invasive transcranial brain stimulation with
neuroimaging and electrophysiology: current approaches and future
perspectives. Neuroimage. 2016;140:4-19.

Thut G, Bergmann TO, Fréhlich F, Soekadar SR, Brittain JS,
Valero-Cabré A, et al. Guiding transcranial brain stimulation by
EEG/MEG to interact with ongoing brain activity and associated
functions: a position paper. Clin Neurophysiol. 2017;128:843-57.



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Karabanov AN, Saturnino GB, Thielscher A, Siebner HR. Can
transcranial electrical stimulation localize brain function? Front
Psychol. 2019;10:213.

de Lara LI, Windischberger C, Kuehne A, Woletz M, Sieg J, Best-
mann S, et al. A novel coil array for combined TMS/fMRI experi-
ments at 3 T. Magn Reson Med2015;74:1492-501.

Tik M, Hoffmann A, Sladky R, Tomova L, Hummer A, Navarro de
Lara L, et al. Towards understanding rTMS mechanism of action:
stimulation of the DLPFC causes network-specific increase in
functional connectivity. Neuroimage. 2017;162:289-96.

Vink JJ, Mandija S, Petrov PIl, van den Berg CA, Sommer IE,
Neggers SF. A novel concurrent TMS-fMRI method to reveal pro-
pagation patterns of prefrontal magnetic brain stimulation. Hum
Brain Mapp. 2018;39:4580-92.

Ironside M, Browning M, Ansari TL, Harvey CJ, Sekyi-Djan MN,
Bishop SJ, et al. Effect of prefrontal cortex stimulation on regulation
of amygdala response to threat in individuals with trait anxiety:
a randomized clinical trial. JAMA Psychiatry. 2019;76:71-8.
Mir-Moghtadaei A, Caballero R, Fried P, Fox MD, Lee K, Giacobbe
P, et al. Concordance between beamF3 and MRI-neuronavigated
target sites for repetitive transcranial magnetic stimulation of the left
dorsolateral prefrontal cortex. Brain Stimul. 2015;8:965-73.

Seibt O, Brunoni AR, Huang Y, Bikson M. The pursuit of DLPFC:
non-neuronavigated methods to target the left dorsolateral pre-
frontal cortex with symmetric bicephalic transcranial direct current
stimulation (tDCS). Brain Stimul. 2015;8:590-602.

Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A.
Efficacy of transcranial magnetic stimulation targets for depression
is related to intrinsic functional connectivity with the subgenual
cingulate. Biol Psychiatry. 2012;72:595-603.

Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham
MP. On the importance of precise electrode placement for targeted
transcranial electric stimulation. Neuroimage. 2018;181:560-7.
Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A.
Optimization of multifocal transcranial current stimulation for
weighted cortical pattern targeting from realistic modeling of electric
fields. Neuroimage. 2014;89:216-25.

Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W,
et al. Effects of online repetitive transcranial magnetic stimulation
(rTMS) on cognitive processing: a meta-analysis and recommen-
dations for future studies. Neurosci Biobehav Rev. 2019;107:47-58.
Huang YZ, Lu MK, Antal A, Classen J, Nitsche M, Ziemann U, et al.
Plasticity induced by non-invasive transcranial brain stimulation:
a position paper. Clin Neurophysiol. 2017;128:2318-29.

Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A,
Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol.
2015;126:1847-68.

Truong D, Adair D, Bikson M. Computer-based models of tDCS and
tACS. In: Brunoni AR, Nitsche M, Loo CK, editors. Transcranial
direct current stimulation in neuropsychiatric disorders: clinical
principles and management. New York: Springer; 2016. p. 47-66.
Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger
DM, et al. Transcranial direct current stimulation for acute major
depressive episodes: meta-analysis of individual patient data. Br J
Psychiatry. 2016;208:522-31.

Brakemeier EL, Wilbertz G, Rodax S, Danker-Hopfe H, Zinka B,
Zwanzger P, et al. Patterns of response to repetitive transcranial
magnetic stimulation (rTMS) in major depression: replication study
in drug-free patients. J Affect Disord. 2008;108:59-70.

Hagq AU, Sitzmann AF, Goldman ML, Maixner DF, Mickey BJ.
Response of depression to electroconvulsive therapy: a meta-ana-
lysis of clinical predictors. J Clin Psychiatry. 2015;76:1374-84.
Feffer K, Lee HH, Mansouri F, Giacobbe P, Vila-Rodriguez F,
Kennedy SH, et al. Early symptom improvement at 10 sessions as
a predictor of rTMS treatment outcome in major depression. Brain
Stimul. 2018;11:181-9.

Birkenhager TK, Roos J, Kamperman AM. Improvement after two
sessions of electroconvulsive therapy predicts final remission in in-
patients with major depression. Acta Psychiatr Scand. 2019;140:
189-95.

Loo CK, Husain MM, McDonald WM, Aaronson S, O’Reardon JP,
Alonzo A, et al. International randomized-controlled trial of tran-
scranial direct current stimulation in depression. Brain Stimul.
2018;11:125-33.

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Precision NIN for depression

Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially
non-linear stimulation intensity-dependent effects of direct current
stimulation on motor cortex excitability in humans. J Physiol.
2013;591:1987-2000.

Alonzo A, Chan G, Martin D, Mitchell PB, Loo C. Transcranial direct
current stimulation (tDCS) for depression: analysis of response
using a three-factor structure of the Montgomery-Asberg depression
rating scale. J Affect Disord. 2013;150:91-5.

Cocchi L, Zalesky A. Personalized transcranial magnetic stimulation
in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;
3:731-41.

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng
Y, et al. Resting-state connectivity biomarkers define neurophysio-
logical subtypes of depression. Nat Med. 2017;23:28-38.

Kedzior KK, Azorina V, Reitz SK. More female patients and fewer
stimuli per session are associated with the short-term anti-
depressant properties of repetitive transcranial magnetic stimulation
(rTMS): a meta-analysis of 54 sham-controlled studies published
between 1997-2013. Neuropsychiatr Dis Treat. 2014;10:727-56.
Poulet E, Galvao F, Haffen E, Szekely D, Brault C, Haesebaert F,
et al. Effects of smoking status and MADRS retardation factor on
response to low frequency repetitive transcranial magnetic stimu-
lation for depression. Eur Psychiatry. 2016;38:40-4.

Okazaki M, Tominaga K, Higuchi H, Utagawa |, Nakamura E,
Noguchi M, et al. Predictors of response to electroconvulsive ther-
apy obtained using the three-factor structure of the Montgomery and
Asberg depression rating scale for treatment-resistant depressed
patients. J ECT. 2010;26:87-90.

O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg
KE, Nahas Z, et al. Reply regarding “efficacy and safety of tran-
scranial magnetic stimulation in the acute treatment of major
depression: a multisite randomized controlled trial.”. Biol Psychiatry.
2010;67:e15-7.

Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK,
Trivedi MH, et al. Cross-trial prediction of treatment outcome in
depression: a machine learning approach. Lancet Psychiatry.
2016;3:243-50.

Chekroud AM, Gueorguieva R, Krumholz HM, Trivedi MH, Krystal
JH, McCarthy G. Reevaluating the efficacy and predictability of
antidepressant treatments: a symptom clustering approach. JAMA
Psychiatry. 2017;74:370-8.

Bzdok D, Altman N, Krzywinski M. Statistics versus machine
learning. Nat Methods. 2018;15:233-4.

Passos IC, Mwangi B, Kapczinski F. Big data analytics and machine
learning: 2015 and beyond. Lancet Psychiatry. 2016;3:13-5.
Passos IC, Ballester PL, Barros RC, Librenza-Garcia D, Mwangi B,
Birmaher B, et al. Machine learning and big data analytics in bipolar
disorder: A position paper from the International Society for Bipolar
Disorders Big Data Task Force. Bipolar Disord. 2019;21:582-94.
Rashed EA, Sakai T, Gomez-Tames J, Hirata A. Brain Al: deep
learning for brain stimulation. IEEE Pulse. 2019;10:3-5.

Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M.
Towards a classification of biomarkers of neuropsychiatric disease:
from encompass to compass. Mol Psychiatry. 2015;20:152-3.
Boes AD, Uitermarkt BD, Albazron FM, Lan MJ, Liston C, Pascual-
Leone A, et al. Rostral anterior cingulate cortex is a structural cor-
relate of repetitive TMS treatment response in depression. Brain
Stimul. 2018;11:575-81.

Furtado CP, Hoy KE, Maller JJ, Savage G, Daskalakis ZJ, Fitz-
gerald PB. An investigation of medial temporal lobe changes and
cognition following antidepressant response: a prospective rTMS
study. Brain Stimul. 2013;6:346-54.

Lan MJ, Chhetry BT, Liston C, Mann JJ, Dubin M. Transcranial
magnetic stimulation of left dorsolateral prefrontal cortex induces
brain morphological changes in regions associated with a treatment
resistant major depressive episode: an exploratory analysis. Brain
Stimul. 2016;9:577-83.

Hayasaka S, Nakamura M, Noda Y, Izuno T, Saeki T, Iwanari H,
et al. Lateralized hippocampal volume increase following high-fre-
quency left prefrontal repetitive transcranial magnetic stimulation in
patients with major depression. Psychiatry Clin Neurosci. 2017;71:
747-58.

Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S,
McAndrews MP, et al. Anhedonia and reward-circuit connectivity

417

Braz J Psychiatry. 2020;42(4)



418

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

L Borrione et al.

distinguish nonresponders from responders to dorsomedial pre-
frontal repetitive transcranial magnetic stimulation in major depres-
sion. Biol Psychiatry. 2014;76:176-85.

Iwabuchi SJ, Auer DP, Lankappa ST, Palaniyappan L. Baseline
effective connectivity predicts response to repetitive transcranial
magnetic stimulation in patients with treatment-resistant depression.
Eur Neuropsychopharmacol. 2019;29:681-90.

Avissar M, Powell F, llieva |, Respino M, Gunning FM, Liston C,
et al. Functional connectivity of the left DLPFC to striatum predicts
treatment response of depression to TMS. Brain Stimul. 2017;10:
919-25.

Dinga R, Schmaal L, Pennix BW, van Tol MJ, Veltman DJ, van
Velzen L, et al. Evaluating the evidence for biotypes of depression:
methodological replication and extension of Drysdale et al. (2017).
Neuroimage Clin. 2019;22:101796.

Bulubas L, Padberg F, Bueno PV, Duran F, Busatto G, Amaro E Jr,
et al. Antidepressant effects of tDCS are associated with prefrontal
gray matter volumes at baseline: Evidence from the ELECT-TDCS
trial. Brain Stimul. 2019;12:1197-204.

Dunlop K, Talishinsky A, Liston C. Intrinsic brain network bio-
markers of antidepressant response: a review. Curr Psychiatry Rep.
2019;21:87.

Doumas M, Smolders C, Brunfaut E, Bouckaert F, Krampe RT. Dual
task performance of working memory and postural control in major
depressive disorder. Neuropsychology. 2012;26:110-8.
Reppermund S, Zihl J, Lucae S, Horstmann S, Kloiber S, Holsboer
F, et al. Persistent cognitive impairment in depression: the role of
psychopathology and altered hypothalamic-pituitary-adrenocortical
(HPA) system regulation. Biol Psychiatry. 2007;62:400-6.

Snyder HR. Major depressive disorder is associated with broad
impairments on neuropsychological measures of executive function:
a meta-analysis and review. Psychol Bull. 2013;139:81-132.

Gotlib IH, Joormann J. Cognition and depression: current status and
future directions. Annu Rev Clin Psychol. 2010;6:285-312.

Gyurak A, Patenaude B, Korgaonkar MS, Grieve SM, Williams LM,
Etkin A. Frontoparietal activation during response inhibition predicts
remission to antidepressants in patients with major depression. Biol
Psychiatry. 2016;79:274-81.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS
Consensus Group. Safety, ethical considerations, and application
guidelines for the use of transcranial magnetic stimulation in clinical
practice and research. Clin Neurophysiol. 2009;120:2008-39.
Brunoni AR, Zanao TA, Ferrucci R, Priori A, Valiengo L, de Oliveira
JF, et al. Bifrontal tDCS prevents implicit learning acquisition in
antidepressant-free patients with major depressive disorder. Prog
Neuropsychopharmacol Biol Psychiatry. 2013;43:146-50.

Sellers KK, Mellin JM, Lustenberger CM, Boyle MR, Lee WH,
Peterchev AV, et al. Transcranial direct current stimulation (tDCS) of
frontal cortex decreases performance on the WAIS-IV intelligence
test. Behav Brain Res. 2015;290:32-44.

limori T, Nakajima S, Miyazaki T, Tarumi R, Ogyu K, Wada M, et al.
Effectiveness of the prefrontal repetitive transcranial magnetic sti-
mulation on cognitive profiles in depression, schizophrenia, and
Alzheimer's disease: a systematic review. Prog Neuropsycho-
pharmacol Biol Psychiatry. 2019;88:31-40.

Martin DM, Moffa A, Nikolin S, Bennabi D, Brunoni AR, Flannery W,
et al. Cognitive effects of transcranial direct current stimulation
treatment in patients with major depressive disorder: an individual
patient data meta-analysis of randomised, sham-controlled trials.
Neurosci Biobehav Rev. 2018;90:137-45.

Brunoni AR, Vanderhasselt MA. Working memory improvement
with non-invasive brain stimulation of the dorsolateral prefrontal
cortex: a systematic review and meta-analysis. Brain Cogn. 2014;
86:1-9.

Martin DM, McClintock SM, Forster JJ, Lo TY, Loo CK. Cognitive
enhancing effects of rTMS administered to the prefrontal cortex in
patients with depression: A systematic review and meta-analysis of
individual task effects. Depress Anxiety. 2017;34:1029-39.

Tortella G, Selingardi PM, Moreno ML, Veronezi BP, Brunoni AR.
Does non-invasive brain stimulation improve cognition in major
depressive disorder? A systematic review. CNS Neurol Disord Drug
Targets. 2014;13:1759-69.

Brunoni AR, Tortella G, Benseior IM, Lotufo PA, Carvalho AF,
Fregni F. Cognitive effects of transcranial direct current stimulation

Braz J Psychiatry. 2020;42(4)

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

in depression: results from the SELECT-TDCS trial and insights for
further clinical trials. J Affect Disord. 2016;202:46-52.

Martin DM, McClintock SM, Aaronson ST, Alonzo A, Husain MM,
Lisanby SH, et al. Pre-treatment attentional processing speed and
antidepressant response to transcranial direct current stimulation:
results from an international randomized controlled trial. Brain
Stimul. 2018;11:1282-90.

Vanderhasselt M, De Raedt R, Leyman L, Baeken C. Immediate
effects of repetitive transcranial magnetic stimulation on attentional
processes are associated with antidepressant treatment outcome.
Brain Stimul. 2008;1:249.

Beaudreau SA, Rideaux T, O’Hara R, Arean P. Does cognition
predict treatment response and remission in psychotherapy for late-
life depression? Am J Geriatr Psychiatry. 2015;23:215-9.

Hellstrém LC, Eplov LF, Nordentoft M, Ostergaard SD, Bech P. The
Diagnostic Apathia Scale predicts the ability to return to work fol-
lowing depression or anxiety. Acta Neuropsychiatr. 2014;26:364-71.
Harty S, Sella F, Kadosh RC. Transcranial electrical stimulation and
behavioral change: the intermediary influence of the brain. Front
Hum Neurosci. 2017;11:112.

Roick H, von Giesen HJ, Benecke R. On the origin of the post-
excitatory inhibition seen after transcranial magnetic brain stimula-
tion in awake human subjects. Exp Brain Res. 1993;94:489-98.
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di lorio R,
et al. Non-invasive electrical and magnetic stimulation of the brain,
spinal cord, roots and peripheral nerves: basic principles and pro-
cedures for routine clinical and research application. An updated
report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126:
1071-107.

Oliveira-Maia AJ, Press D, Pascual-Leone A. Modulation of motor
cortex excitability predicts antidepressant response to prefrontal
cortex repetitive transcranial magnetic stimulation. Brain Stimul.
2017;10:787-94.

Bajbouj M, Lang UE, Niehaus L, Hellen FE, Heuser |, Neu P. Effects
of right unilateral electroconvulsive therapy on motor cortical excit-
ability in depressive patients. J Psychiatr Res. 2006;40:322-7.
Arns M, Drinkenburg WH, Fitzgerald PB, Kenemans JL. Neuro-
physiological predictors of non-response to rTMS in depression.
Brain Stimul. 2012;5:569-76.

Shalbaf R, Brenner C, Pang C, Blumberger DM, Downar J, Das-
kalakis ZJ, et al. Non-linear entropy analysis in EEG to predict
treatment response to repetitive transcranial magnetic stimulation in
depression. Front Pharmacol. 2018;9:1188.

Hui J, Tremblay S, Daskalakis ZJ. The Current and future potential
of transcranial magnetic stimulation with electroencephalography in
psychiatry. Clin Pharmacol Ther. 2019;106:734-46.

Sun Y, Blumberger DM, Mulsant BH, Rajji TK, Fitzgerald PB, Barr
MS, et al. Magnetic seizure therapy reduces suicidal ideation and
produces neuroplasticity in treatment-resistant depression. Transl
Psychiatry. 2018;8:253.

Voineskos D, Blumberger DM, Zomorrodi R, Rogasch NC, Farzan
F, Foussias G, et al. Altered transcranial magnetic stimulation-
electroencephalographic markers of inhibition and excitation in the
dorsolateral prefrontal cortex in major depressive disorder. Biol
Psychiatry. 2019;85:477-86.

Sun Y, Farzan F, Mulsant BH, Raijji TK, Fitzgerald PB, Barr MS,
et al. Indicators for remission of suicidal ideation following magnetic
seizure therapy in patients with treatment-resistant depression.
JAMA Psychiatry. 2016;73:337-45.

Brunoni AR, Machado-Vieira R, Zarate CA, Vieira EL, Valiengo L,
Bensenor IM, et al. Assessment of non-BDNF neurotrophins and
GDNF levels after depression treatment with sertraline and tran-
scranial direct current stimulation in a factorial, randomized, sham-
controlled trial (SELECT-TDCS): An exploratory analysis. Prog
Neuropsychopharmacol Biol Psychiatry. 2015;56:91-6.

Brunoni AR, Machado-Vieira R, Zarate CA Jr, Vieira EL, Vander-
hasselt MA, Nitsche MA, et al. BDNF plasma levels after anti-
depressant treatment with sertraline and transcranial direct current
stimulation: Results from a factorial, randomized, sham-controlled
trial. Eur Neuropsychopharmacol. 2014;24:1144-51.

Brunoni AR, Padberg F, Vieira EL, Teixeira AL, Carvalho AF, Lotufo
PA, et al. Plasma biomarkers in a placebo-controlled trial comparing
tDCS and escitalopram efficacy in major depression. Prog Neu-
ropsychopharmacol Biol Psychiatry. 2018;86:211-7.



194

195

196

197

198

199

Brunoni AR, Kemp AH, Shiozawa P, Cordeiro Q, Valiengo LC,
Goulart AC, et al. Impact of 5-HTTLPR and BDNF polymorphisms
on response to sertraline versus transcranial direct current stimu-
lation: implications for the serotonergic system. Eur Neuropsycho-
pharmacol. 2013;23:1530-40.

Noda Y, Silverstein WK, Barr MS, Vila-Rodriguez F, Downar J, Rajji
TK, et al. Neurobiological mechanisms of repetitive transcranial
magnetic stimulation of the dorsolateral prefrontal cortex in
depression: a systematic review. Psychol Med. 2015;45:3411-32.
Silverstein WK, Noda Y, Barr MS, Vila-Rodriguez F, Rajji TK, Fitz-
gerald PB, et al. Neurobiological predictors of response to dor-
solateral prefrontal cortex repetitive transcranial magnetic stimula-
tion in depression: a systematic review. Depress Anxiety. 2015;32:
871-91.

Brunoni AR, Kemp AH, Dantas EM, Goulart AC, Nunes MA, Boggio
PS, et al. Heart rate variability is a trait marker of major depressive
disorder: evidence from the sertraline vs. electric current therapy
to treat depression clinical study. Int J Neuropsychopharmacol.
2013;16:1937-49.

Brunoni AR, Baeken C, Machado-Vieira R, Gattaz WF, Vander-
hasselt MA. BDNF blood levels after non-invasive brain stimulation
interventions in major depressive disorder: a systematic review and
meta-analysis. World J Biol Psychiatry. 2015;16:114-22.

Fidalgo TM, Morales-Quezada JL, Muzy GS, Chiavetta NM, Men-
donca ME, Santana MV, et al. Biological markers in noninvasive

200

201

202

203

204

205

206

Precision NIN for depression

brain stimulation trials in major depressive disorder: a systematic
review. J ECT. 2014;30:47-61.

Border R, Johnson EC, Evans LM, Smolen A, Berley N, Sullivan PF,
et al. No support for historical candidate gene or candidate gene-by-
interaction hypotheses for major depression across multiple large
samples. Am J Psychiatry. 2019;176:376-87.

Carvalho AF, Kohler CA, Brunoni AR, Miskowiak KW, Herrmann N,
Lanctét KL, et al. Bias in peripheral depression biomarkers. Psy-
chother Psychosom. 2016;85:81-90.

Carvalho AF, Kohler CA, Fernandes BS, Quevedo J, Miskowiak
KW, Brunoni AR, et al. Bias in emerging biomarkers for bipolar
disorder. Psychol Med. 2016;46:2287-97.

George MS. Brain Stimulation’s expanding impact -- Now immedi-
ately free to download by anyone, anywhere and at anytime. Brain
Stimul. 2020;13:277-9.

Passos IC, Mwangi B. Machine learning-guided intervention trials to
predict treatment response at an individual patient level: an important
second step following randomized clinical trials. Mol Psychiatry. 2018
Sep 21. doi: 10.1038/s41380-018-0250-y. [Epub ahead of print]
Brunoni AR, Fregni F, Pagano RL. Translational research in tran-
scranial direct current stimulation (tDCS): a systematic review of
studies in animals. Rev Neurosci. 2011;22:471-81.

Lorenz R, Simmons LE, Monti RP, Arthur JL, Limal S, Laakso |, et al.
Efficiently searching through large tACS parameter spaces using
closed-loop Bayesian optimization. Brain Stimul. 2019;12:1484-9.

419

Braz J Psychiatry. 2020;42(4)


http://dx.doi.org/10.1038/s41380-018-0250-y

	title_link
	Introduction
	Methods
	Non-implantable neuromodulation
	Introduction and mechanisms of action

	Figure�1Precision non-implantable neuromodulation (NIN). In a precision NIN framework, advancements in related areas of research and knowledge directly influence treatment protocols (parameters such as stimulation site, timing, and dose, as well as combin
	Transcranial magnetic stimulation

	Figure�2Examples of NIN techniques (top panel) and the corresponding electric field distribution in the brain (bottom panel): A) tDCS using 5 multi 5 cm electrodes placed over the bilateral DLPFC; electrodes are colored red and blue to distinguish anode (
	Transcranial direct current stimulation
	Convulsive modalities

	Challenges and opportunities for precision non-implantable neuromodulation
	The ''how'': combining non-invasive brain stimulation with cognitive interventions
	The ''when'': combining NIBS with real-time neuroimaging and electrophysiology
	The ''where'': positioning and dose quantification
	The ''who'': identifying responders

	Figure�3Example of a machine learning pipeline. Analysis pipeline. A) Treatment outcomes of group are predicted according to the feature dataset. B) Models are trained to classify responders and non-responders at the study endpoint. Performance is evaluat
	Limitations and perspectives
	Conclusions
	ACKNOWLEDGMENTS
	Disclosure

	REFERENCES

