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ABSTRACT

Marek’s disease (MD), a lymphoproliferative disorder of chickens 
caused by the MD virus (MDV), is economically significant. The 
resistance/susceptibility to MD is controlled by host genetics. The host 
response to different virus strains varies. The pathogenicity of REV-LTR 
deleted GX0101∆LTR MDV has been previously reported. However, 
the precise molecular mechanism of the response of chickens to 
GX0101ΔLTR remains unclear. The current study aimed at identifying 
the genes and pathways involved in the response to GX0101ΔLTR virus 
infection in specific pathogen-free chicken embryo fibroblast cells using 
global transcriptome analysis. A total of 1,633 genes associated with 
GX0101ΔLTR infection were identified. Functional analysis showed that 
the cytokine–cytokine receptor interaction plays an important role in 
the response to GX0101ΔLTR infection.

Introduction

Marek’s disease (MD) is a chicken lymphoproliferative disease 
caused by MD virus (MDV) (Witter et al., 2005). MD causes $1-2 billion 
annual losses to the industry (Morrow and Fehler, 2004). Field strains 
continue to evolve with increasing virulence (Hunt & Dunn, 2013). We 
have reported the GX0101 strain of MDV, which was the first field 
isolate with an LTR insert of REV origin (Zhang & Cui, 2005). The 
pathogenicity of the REV-LTR deleted GX0101ΔLTR virus was slightly 
higher than its parental GX0101 clone, based on growth retardation, 
immunosuppression, mortality and tumorogenicity (Sun et al., 2010). 
However, the virus-host cell interaction related to GX0101ΔLTR 
pathogenicity is still unclear.  

The high-throughput microarray is one of the widely used 
technologies in transcriptome studies (Haq et al., 2010; Liu et al., 2001; 
Sarson et al., 2008). The microarray technology was applied to analyze 
the global gene expression profile of CEF following GX0101∆LTR 
infection in the current study.

Materials and methods
Chicken embryo fibroblast (CEF) cell culture

The primary CEF cells were isolated from 10-day-old specific-
pathogen free (SPF) White Leghorn chicken embryos. Whole embryos 
were dissociated into single cell populations using 0.25% trypsin/1mM 
EDTA. The cells dissociated from the embryos were suspended in 
Dulbecco’s modified Eagle’s medium (DMEM, 0.45% glucose) plus 10% 
fetal bovine serum, 100 units/mL penicillin, 100 μg/mL streptomycin, 
and 2 mM L-glutamine in 10 cm tissue culture dishes (Corning, 
Shanghai, China). Cultured cells were grown at 37°C in a 5% CO2 
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incubator until the cells reached confluent monolayers. 
Frozen cell stocks were prepared and stored in liquid 
nitrogen for further utilization.

MDV infection and sample collection

Four chicken embryos were used in the current 
study. The primary CEF cells collected from each of the 
four embryos were seeded into two individual flasks 
at a density of 5 × 106/flask. The cells in one flask 
were infected with GX0101∆LTR (Sun et al., 2010), 
while those in the other flask were mock-infected 
with DMEM. The infected or non-infected CEF cells 
were collected at 56 h post infection and treated with 
RNeasy reagent (Qiagen, Valencia, CA) for total RNA 
extraction. A total of eight samples were collected; 
four of which were infected cells and four were non-
infected controls.

Total RNA isolation, experimental 
design, sample labeling, and microarray 
hybridization

The total RNA was isolated using the RNeasy Mini 
Kit (Qiagen, Valencia, CA) from the infected and non-
infected CEF cells, according to the instructions of the 
manufacturer. RNA concentration and integrity were 
checked using NanoDrop 2000 (Thermo Fisher Scientific 
Inc., Waltham, MA) and Agilent Bioanalyzer 2100 
(Agilent Technologies, Santa Clara, CA), respectively.

A custom chicken 4 × 44 K Agilent microarray, 
including both chicken and MDV genes, was designed 
based on the chicken genome assembly galGal4 and 
MDV annotation using Agilent earray tool (https://
earray.chem.agilent.com/earray/). A paired comparison 
was performed to compare the infected and the non-
infected (I/N) groups. Four biological replicates were 
used in each group with dye balance.

A 400-ng total RNA from each sample was used 
for labeling. The sample labeled with Cy3 or Cy5 was 
hybridized with another labeled with Cy5 or Cy3 and 
incubated for 17h at 65°C. The slides were washed 
according to the manufacturer’s recommendations. 
All procedures were performed according to Agilent’s 
recommendation and described in detail previously (Li 
et al., 2008).

Microarray data analysis

The signal intensity of each probe was filtered 
against negative controls in the microarray. Data 
normalization was performed using locally weighted 
scatter plot smoothing (Yang et al., 2002). The 
normalized natural log intensities were analyzed using 

a mixed model from SAS (SAS, Cary, NC) with a fixed 
effect of treatment (I or N) and dye (Cy5 or Cy3) and 
a random effect of slide and array. A comparison 
between the infected (I) and non-infected (N) groups 
was made. Accordingly, p<0.05 and fold change 
>1.5 were considered as significant. The microarray 
information of this experiment was deposited in NCBI’s 
Gene Expression Omnibus (GEO) database (Barrett et 
al., 2013). The accession numbers were as follows: 
platform: GPL18321; series: GSE59052.

The functional annotations of Gene ontology 
(GO) and pathway enrichment for significantly 
differentially up-regulated and down-regulated genes 
were performed using DAVID 6.7 (Huang et al., 2009, 
Huang et al., 2009). The differentially expressed genes 
were uploaded to the DAVID database as a gene list. 
The Gallus gallus whole genome was used as the 
background. Default setting was used. p<0.05 was 
considered significant.

Results
Gene expression was significantly 

different between MDV-infected and non-
infected CEF cells

A total of 1,633 genes presented significantly 
different expression between I and N groups (p<0.05, 
fold change > 1.5). Out of those genes, 952 genes 
were up-regulated and 681 were down-regulated. 
Furthermore, 15 genes of the 952 up-regulated genes 
presented higher than 100-fold change, and 39 a 
fold change higher than 20. The highest fold change 
(1046) was found for one chicken EST (BU246007), 
whereas the lowest (1.5) was found for a chicken 
EST (CR385211). Only two down-regulated genes 
presented higher than 10-fold changes [Preproinsulin 
and a chicken EST (BU236185)]. Fifty-six immune-
related genes were differentially expressed between I 
and N groups, with the highest fold change (122.9) 
for the chicken MX gene. The lowest fold change (1.5) 
was found for chicken CD44 (Additional file 1).

Gene ontology annotation analysis

The Gene ontology (GO) annotation was performed 
for the genes with significant expression using the 
DAVID database. The GO biological process (BP) 
annotation was reported in the current study.

There were 73 enriched BP terms associated with 
the up-regulated genes (Table 1). These enriched BP 
terms were roughly divided into six groups as follows: 
1) immune-related group; 2) signal transduction-
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related; 3) metabolism- related; 4) circulatory system; 
5) cell communication; and 6) others.

The four BP terms associated with the down-
regulated genes were significantly enriched (Figure 
1). Epithelial cell differentiation and epithelium 
development were related to epithelium function with 
the fold enrichments of 6.12 and 3.20, respectively. 
Cell adhesion and extracellular matrix organization 
had fold enrichments of 2.64 and 4.97, respectively.

The enriched BP terms associated with the up-
regulated genes were further clustered using the 
Categorizer tool (Figure 2). The enriched terms were 

roughly clustered into 19 groups, including 16 immune-
related groups and 3 non-immune related groups. 
Three non-immune related groups were protein 
metabolism, cell adhesion, and lipid metabolism, 
which accounted for 7.06%, 1.18%, and 1.18% of 
all groups, respectively. The top eight groups were 
lymphocyte activation, stress response, regulation of 
lymphocyte activation, T-cell activation, cell death, 
response to external stimulus, protein metabolism, 
and response to biotic stimulus, which were 12.94%, 
11.67%, 10.59%, 8.24%, 7.06%, 7.06%, 7.06%, 
and 5.88% of all groups, respectively.

Table 1 – GO BP annotation for up-regulated genes
Terms Fold 

enrichment
GO:0051058~negative regulation of small GTPase-
mediated signal transduction

43.92

GO:0046580~negative regulation of Ras protein signal 
transduction

43.92

GO:0045628~regulation of T-helper 2 cell differentiation 43.92

GO:0001937~negative regulation of endothelial cell 
proliferation

32.94

GO:0001936~regulation of endothelial cell proliferation 18.82

GO:0045766~positive regulation of angiogenesis 17.57

GO:0045428~regulation of nitric oxide biosynthetic 
process

14.64

GO:0046637~regulation of alpha-beta T cell 
differentiation

13.18

GO:0030193~regulation of blood coagulation 13.18

GO:0006584~catecholamine metabolic process 11.98

GO:0045765~regulation of angiogenesis 10.98

GO:0002237~response to molecule of bacterial origin 10.46

GO:0032496~response to lipopolysaccharide 10.34

GO:0050920~regulation of chemotaxis 10.14

GO:0050818~regulation of coagulation 10.14

GO:0045580~regulation of T cell differentiation 9.76

GO:0050795~regulation of behavior 9.41

GO:0010810~regulation of cell-substrate adhesion 8.78

GO:0002819~regulation of adaptive immune response 8.78

GO:0000187~activation of MAPK activity 8.78

GO:0045619~regulation of lymphocyte differentiation 8.37

GO:0046634~regulation of alpha-beta T cell activation 8.24

GO:0006954~inflammatory response 8.24

GO:0002250~adaptive immune response 8.24

GO:0032103~positive regulation of response to external 
stimulus

7.99

GO:0019216~regulation of lipid metabolic process 7.64

GO:0051272~positive regulation of cell motion 7.08

GO:0032101~regulation of response to external stimulus 6.76

GO:0006955~immune response 6.73

GO:0002696~positive regulation of leukocyte activation 6.59

GO:0030335~positive regulation of cell migration 6.51

GO:0002684~positive regulation of immune system 
process

6.48

GO:0050867~positive regulation of cell activation 6.27

GO:0043405~regulation of MAP kinase activity 6.06

Terms Fold 
enrichment

GO:0009617~response to bacterium 5.99

GO:0006935~chemotaxis 5.86

GO:0009968~negative regulation of signal transduction 5.80

GO:0051251~positive regulation of lymphocyte activation 5.78

GO:0051051~negative regulation of transport 5.67

GO:0010648~negative regulation of cell communication 5.49

GO:0002694~regulation of leukocyte activation 5.49

GO:0007243~protein kinase cascade 5.42

GO:0048584~positive regulation of response to stimulus 5.32

GO:0050863~regulation of T cell activation 5.23

GO:0009611~response to wounding 5.23

GO:0050865~regulation of cell activation 5.07

GO:0051249~regulation of lymphocyte activation 4.88

GO:0050870~positive regulation of T cell activation 4.88

GO:0000165~MAPKKK cascade 4.88

GO:0001817~regulation of cytokine production 4.48

GO:0042060~wound healing 4.39

GO:0006952~defense response 4.39

GO:0040012~regulation of locomotion 4.32

GO:0051347~positive regulation of transferase activity 4.25

GO:0043549~regulation of kinase activity 4.23

GO:0051270~regulation of cell motion 4.18

GO:0030334~regulation of cell migration 4.14

GO:0051338~regulation of transferase activity 4.13

GO:0043062~extracellular structure organization 3.92

GO:0045859~regulation of protein kinase activity 3.80

GO:0045860~positive regulation of protein kinase activity 3.72

GO:0007626~locomotory behavior 3.51

GO:0043085~positive regulation of catalytic activity 3.28

GO:0042325~regulation of phosphorylation 3.24

GO:0008285~negative regulation of cell proliferation 3.18

GO:0019220~regulation of phosphate metabolic process 3.11

GO:0043068~positive regulation of programmed cell 
death

3.03

GO:0010942~positive regulation of cell death 2.99

GO:0010033~response to organic substance 2.95

GO:0044093~positive regulation of molecular function 2.88

GO:0042127~regulation of cell proliferation 2.66

GO:0043067~regulation of programmed cell death 2.47

GO:0042981~regulation of apoptosis 2.31
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Figure 1 – GO BP annotation associated with down-regulated genes.

Figure 2 – GO term classification count using the Categorizer. The GO terms were 
classified based on the Immune_class classification method in Categorizer tool.

Pathway annotation for the significantly-
expressed genes

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway annotation results showed that four 
KEGG pathways associated with the up-regulated 
genes were significantly enriched (Table 2). These 
enriched pathways were the cytosolic DNA-sensing 
pathway, Toll-like receptor (TLR) signaling pathway, 
cytokine-cytokine receptor interaction, and focal 

adhesion with fold enrichments of 9.37, 3.89, 3.64, 
and 2.24, respectively. The enriched cytokine-cytokine 
receptor interaction pathway included IL6, IL1b, IL15, 
IL4R, IL17RA, CC5, CXCL14, TGFBR2, and the TNF 
family (i.e., TNFRSF21, TNFRSF15, and TNFSF10).

No enriched pathway was associated with the 
down-regulated genes.

Validation of microarray results using 
quantitative real-time PCR

The quantitative real-time PCR (qRT-PCR) was 
performed to validate the microarray data. The 
same RNA samples were used. Twelve differentially-
expressed genes associated with immune response 
functional terms were selected for the qRT-PCR 
validation. The qRT-PCR results of the 11/12 validated 
genes were consistent with the microarray results in 
terms of significance and regulation direction (Table 
3). The BCL6 showed up-regulation in both microarray 
and qRT-PCR results, but did not present significant 
expression by qRT-PCR. All the validated down-
regulated genes presented higher fold changes in the 
qRT-PCR test compared with the microarray analyses. 
Five of the eight up-regulated genes presented higher 
fold changes in the microarray analysis than in the qRT-
PCR test.

Discussion and conclusions

The high-throughput microarray is one of most 
widely-used technologies to identify the transcriptome 
associated with a specific trait (Chiang et al., 2008; Lee 
et al., 2010; Li et al., 2010; Li et al., 2011; Sandford 
et al., 2011, Allen et al., 2012; Sandford et al., 2012, 
Subramaniam et al., 2013). Several studies have been 
performed to identify the gene expression profile in 
in-vivo and in-vitro MDV infections using microarray 
analysis (Yonash et al., 1999; Morgan et al., 2001; 
Sarson et al., 2006; Kano et al., 2009; Heidari et al., 
2010; Smith et al., 2011; Lian et al., 2012, Subramaniam 
et al., 2013).. The molecular mechanism of the host 
response to GX0101∆LTR MDV was elucidated in the 
current study.

Table 2 – KEGG pathway annotation for up-regulated genes

Terms Genes
Fold 

enrichment

gga04623: cytosolic DNA-sensing pathway IL6, IRF7, IL1B, NFKBIA, CCL5, ADAR 9.37

gga04620: Toll-like receptor signaling pathway IL6, STAT4, MAP2K3, IRF7, IL1B, NFKBIA, CCL5, STAT1 3.89

gga04060: cytokine–cytokine receptor interaction
TNFRSF21, IL6, TGFBR2, TNFSF15, IL15, CCL5, IL17RA, TNFSF10, CNTF, CXCL14, 

IL4R, LOC777589, IL1B
3.64

gga04510: focal adhesion
ACTB, CAV2, CAV1, TNC, MYLK2, VAV2, FLNB, LOC777184, ACTG1, LOC776858, 

LOC768344, THBS1, LOC776816, FN1
2.24
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Table 3 – Comparison of gene expression levels (fold 
change) between microarray and qRT-PCR results

Accession nos. Gene symbol
Fold change (I/N)

Microarray result qRT-PCR result

AB088533 MX 253.48** 9.77**

AF139097 IL15 3.07* 1.69*

BX929269 BCL10 1.53** 2.54**

AJ719545 BCL6 1.57* 1.52

AJ309540 IL6 3.39** 8.79**

Y15006 IL1B 1.92* 2.67*

AF222690 MMP9 1.63** 1.41**

L18784 TGFBR2 1.91* 1.63*

U66463 MMP16 -1.59** -1.85*

D14459 CDH4 -1.67** -1.82**

AF459439 CDH20 -3.12* -3.57**

AF055342 CDH11 -2.17** -2.63**

*represents a significant difference (p<0.05); ** represents a significant different 
(p<0.01)

The CEF is a reasonable model for studying the 
reaction to MDV infection (Subramaniam et al., 2013). 
MDV infection includes the three following stages: 
early cytolytic infection starting at 2-7 dpi (day post 
infection), a latent phage initiated around 7-10 dpi, 
and a late cytolytic phase causing inflammation and 
transformation of latently-infected lymphocytes into 
tumor cells triggered between 14 and 21 dpi (Calnek, 
1986, Calnek, 2001). Various expression profiles 
were discovered at different stages of MDV infection. 
The genes related to inflammation, cell growth, and 
differentiation and antigen presentation (e.g., MIP, IL-
13R, MHC I, and MHC II) are induced both at 2 and 
4 dpi when the CEFs are infected with MDV (Morgan 
et al., 2001). More than one thousand genes in the 
present study were significantly expressed in the 
GX0101ΔLTR-infected CEF. MDV infection induced 
gene expression. It has been reported that more genes 
are up-regulated in CEF at 24, 48, and 96 h post 
MDV infection in both MD-resistant and -susceptible 
chicken lines (Subramaniam et al., 2013). More up-
regulated genes have been observed in the spleen at 
2 and 5 days post MDV infection (Smith et al., 2011). 
More genes are up-regulated on 5 and 10 days post 
infection in both MD-resistant and -susceptible chicken 
lines (Yu et al., 2011). However, the opposite result has 
been found on 21 days post infection, where more 
genes were down-regulated in both MD-resistant 
and -susceptible lines (Yu et al., 2011). The global 
gene expression associated with MDV infection shows 
temporal characteristics. The number of induced genes 
is greater at the early stage (2-10 dpi) and decreases at 
the late stage of MDV infection.

Cytokines are important mediators involved in cell-
mediated immune responses to MDV infection and 

secreted as a result of antigen presentation to T cells 
(Haq et al., 2013). The enriched cytokine-cytokine 
receptor interaction pathways are associated with 
the up-regulated genes in the chicken CEF, which 
indicated that the host proinflammatory response 
was stimulated at the early stage but weakened in 
the chicken spleen at the late tumor transformation 
phase following MDV infection (Lian et al., 2012, 
Smith et al., 2011). IL-6 and IL-18 are significantly 
up-regulated in the MDV-infected splenocytes of 
genetically susceptible chickens (Kaiser et al., 2003), 
whereas IL-1b and IL-8 are up-regulated in resistant 
birds (Jarosinski et al., 2005). IL-6 and IL-18 seem to be 
associated consistently with MD susceptibility, whereas 
both IL-1b and IL-8 were significantly expressed in the 
MDV-infected SPF CEF. 

The TNF receptor superfamily and their ligands 
are mainly expressed on immune cells. Their 
immunomodulatory functions include the enhancement 
of dendritic cell survival and priming capacity for T cells, 
optimal generation of effector T cells, optimal antibody 
responses, and amplification of inflammatory reactions 
(Kwon et al., 2003). The expression of the TNF (ligand) 
superfamily member 10 increases at 5 days post MDV 
infection, while the TNF (ligand) superfamily members 
11 and 13b decrease at 15 dpi (Heidari et al., 2010). 
TNFSF10, TNFSF13b, and TNFSF 18 are up-regulated at 
5 dpi (Smith et al., 2011). TNFRSF10, TNFRSF21, and 
TNFRSF15 are also up-regulated post MDV infection. 
In conclusion, we have identified the differentially 
expressed genes and pathways associated with 
GX0101∆LTR infection in CEFs. The present findings 
will add to the current understanding of the mechanism 
behind MDV infection. The cytokine-cytokine receptor 
interaction plays important roles in the response to 
GX0101ΔLTR infection.
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