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Sickle cell disease (SCD) is a monogenetic disorder caused by single amino acid change 
in the beta globin gene. This mutation facilitates the production of unstable sickle hemoglobin 
(Hb S) which upon deoxygenation forms higher order aggregates which cause erythrocyte 
rigidity. These rigid cells block the microvasculature resulting in vaso-occlusion, tissue ischemia, 
organ damage, pain and death. The rigid cells tend to lyse easily, releasing hemoglobin, a 
protein with oxidant properties related to its heme-bound iron. Therefore, the pathophysiology 
of SCD is driven by the molecular properties of Hb S, the amount of vaso-occlusion, 
and the rate of hemolysis. All of these three features are implicated in the induction of oxidative 
stress in SCD: The unstable Hb S has a high rate of spontaneous auto-oxidation inducing 
superoxide(1). Intravascular hemolysis results in high levels of free hemoglobin and free 
heme that have the potential to facilitate hydroxyl-radical formation(2).Vaso-occlusion results 
in repeated ischemia-reperfusion cycles that likely strongly induce tissue oxidative stress 
throughout the body. High levels of xanthine oxidase and nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase activities produce oxygen radicals as part of their normal 
activities(3). It also is possible that arginase-catalyzed depletion of the arginine substrate for 
nitric oxide synthase induces its uncoupling with consequent production of reactive oxygen 
species(4). Markers of oxidative stress such as advanced glycation end products are related to 
organ damage in SCD(5). Taken together there is no doubt that oxidative stress is prominent in 
the pathophysiology of SCD.

Currently, hydroxyurea (HU) is the only disease-modifying therapy approved for 
SCD. Administration of HU increases the synthesis of fetal Hb (Hb F), which inhibits the 
polymerization of Hb S. In sickle cell mice, augmented Hb F expression reduces oxidant 
stress(6). In SCD patients higher Hb F reduces the number of painful vaso-occlusive crises 
and appears to reduce hemolysis(7,8). By reducing vaso-occlusion and hemolysis alone, 
administration of HU could have a major impact on total oxidative stress in SCD. However, 
there might also be direct effects of HU on the balance between oxidative stress and anti-oxidant 
capacity. For instance, it has been shown that HU induces glutathione peroxidase, an 
important anti-oxidant in sickle erythrocytes(9). Glutathione peroxidase activity plays a role 
in reducing membrane lipid peroxidation, promoting membrane stability and thereby likely 
reducing hemolysis. 

HU has both direct oxidant and indirect antioxidant properties. Its azide moiety can oxidize 
hemoglobin to methemoglobin and nitrosyl hemoglobin(10). Sickle erythrocytes even tend to 
be more sensitive to this effect of HU(11). In SCD, however, the production of methemoglobin 
might not be problematic. Although methemoglobin cannot carry oxygen, it inhibits Hb S 
polymerization with a potential benefit to reduce hemolysis and vaso-occlusion(12). HU can be 
metabolized to nitric oxide, which has antioxidant properties of its own(13).

These complex effects of HU create a difficulty in predicting the net effect of total oxidant 
stress with the administration of this medication in SCD patients. In this edition of the Revista 
Brasileira de Hematologia e Hemoterapia, Torres et al. evaluate plasma markers of oxidative 
stress between SCD patients on and off HU, a topic that has been only lightly investigated 
previously(14). In a previous study, the same group showed that comparing SCD patients on 
chronic transfusion and chelation therapy to SCD patients on HU and chelation therapy, the 
latter had lower levels of markers of lipid peroxidation(15). Another study found no difference 
in the expression of genes related to oxidative stress in peripheral blood mononuclear cells of 
SCD patients on and off HU(16).

In the current study, Torres et al. show a clear difference in the amount of thiobarbituric 
acid reactive species (TBARS), a commonly applied assay to quantify lipid peroxidation in the 
plasma of SCD patients on and off HU. They show that SCD patients that are using HU have less 
lipid peroxidation than SCD patients that do not take HU. They also show a negative correlation 
in the Hb F level with lipid peroxidation, a finding that parallels previously published results in 
SCD mice(6).The authors apply the trolox equivalent antioxidant capacity (TEAC) to measure the 
antioxidant capacity of plasma. This assay gives a global impression of the antioxidant capacity 



406

Scientific Comments

Rev Bras Hematol Hemoter. 2012;34(6):401-10

of plasma but is influenced for instance by bilirubin levels and uric 
acid(17). Torres et al. find that SCD plasma has a higher TEAC than 
control plasma and this TEAC is even higher in SCD patients using 
HU, suggesting that plasma antioxidant capacity rises in SCD as an 
adaptation to chronic oxidative stress and that HU further augments 
antioxidant capacity. 

It is even more difficult to interpret the increased plasma 
levels of glutathione in patients with SCD compared to controls. 
Glutathione levels in plasma tend to be about 100-fold lower than 
intracellular erythrocyte levels and are lower in SCD erythrocytes 
compared to normal erythrocytes(18,19). Recently, sickle 
erythrocytes have been shown to export oxidized glutathione at a 
higher rate than normal erythrocytes(20). Some of this extracellular 
oxidized glutathione might be reduced back to glutathione by 
glutathione reductase in the plasma, some might be released 
from lysed sickle erythrocytes, and thus might more reflect the 
activity of this enzyme rather than total body glutathione levels. 
These complexities make these differences in plasma glutathione 
difficult to interpret.

Although the results of Torres et al. might be influenced by 
selection bias of different SCD patients in the HU group (referred 
to as confounding by indication), results from research by them 
and others supports the idea that HU attenuates oxidative stress in 
SCD patients. The strong correlation between Hb F and markers 
of lipid peroxidation suggest that the anti-oxidant effects of 
HU are largely attributable to increased Hb F. Whether patients 
without an increase in Hb F upon administration will benefit from 
the possible other anti-oxidant effects of HU remains a question.
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