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A B S T R A C T

 

The role of T-cells in the pathogenesis of chronic lymphocytic leukemia has recently 

gained much attention due to the importance of the constant interaction between 

neoplastic B-cells with microenvironment substratum and T-cells. It is believed that these 

interactions modulate the clinical course of the disease, mainly through the regulation 

of the expansion, differentiation, and survival of chronic lymphocytic leukemia B-cells. 

Importantly, this crosstalk may also change the number, function, and memory phenotype 

of normal T-cells, thereby altering the amplitude and/or efficiency of adaptive immunity 

in chronic lymphocytic leukemia patients. The present study presents an overview on 

important aspects of this immunological crosstalk, particularly on the abnormalities of 

chronic lymphocytic leukemia B-cells and the alterations in normal T-cells, with focus 

on the CD4 memory T-cell compartment that could offer survival signals to chronic 

lymphocytic leukemia B-cell clone(s) and contribute to the establishment and progression 

of the disease. The authors believe that understanding the biological consequences of the 

interaction between normal T- and neoplastic B-cells in chronic lymphocytic leukemia may 

allow for improvements in the prognostic information and therapeutic approaches for this 

disease.

© 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular.  

All rights reserved. 

Introduction

Chronic lymphocytic leukemia (CLL) is the most common 
mature B-cell neoplasm in Western countries. It is 

characterized by the appearance of monoclonal CD5+CD19+ 
mature B-cells in the peripheral blood, lymphoid system, and 
bone marrow.1 The prevalence of the disease is higher in men 
compared to women and the estimated incidence is two to six 
cases per 100,000 people annually. At the time of diagnosis, 
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approximately 31% of the patients are younger than 64 years 
and the average age is 72 years.1,2

The clinical course of CLL is heterogeneous, and survival 

can vary from months to decades. Although most patients 

have an asymptomatic disease, there is a group of patients 

with aggressive CLL characterized by autoimmune hemolytic 

anemia, recurrent infections, immunodeficiency, and 

transformation to aggressive lymphoma, with an average life 

expectancy of less than three years.1,3

Several factors play an important role in the etiology of CLL, 

such as genetic predisposition related to the familiar history, 

environmental factors, and antigens/auto-antigens promoting 

division of precursor cells and clonal evolution.1,4 Moreover, 

the study of CLL genome by sequencing approaches revealed 

novel mutated genes, such as MYD88, NOTCH1, SF3B1, and 

XPO1, among others. Importantly, some of these genes may 

be considered as prognostic factors.5-6

Another important aspect that modulates the outcome 

of the disease in CLL patients is the interaction between 

neoplastic B-cells with microenvironment substratum and 

T-cells. These interactions occur in organized structures 

termed pseudofollicular proliferative centers (PC), which 

are clusters of small lymphocytes dispersed in lymph nodes 

and bone marrow. Interestingly, PC are not visualized in 

any other B-cell neoplasm, and this structure is considered 

a hallmark of CLL.7 Data in the literature suggest that the 

crosstalk between CLL B-cells, extracellular components of 

the microenvironment, and T-cells has an important impact 

on the physiopathology and evolution of the disease, mainly 

through regulation of CLL B-cell expansion, differentiation, and 

survival. Conversely, this crosstalk may also induce qualitative 

and quantitative changes in normal T-cells that could impact 

the fitness of the immune system of CLL patients.7-10

Tables 1 and 2 summarize some characteristics of neoplastic 

B-cells and normal T-cells, respectively, that may impact in 

CLL physiopathology.

In addition to these changes in the T-cell compartment, 
recent data suggest an accumulation of memory T-cells in CLL 
patients that is associated with a more aggressive course of 
the disease.19,21,30,31 Therefore, this study aimed to discuss the 
possible involvement of memory T-cells in the physiopathology 
and clinical course of CLL.

Memory T-cells

T-cells play a crucial role in the immune system; they are 
critical for combating and controlling tumors and intracellular 
and extracellular pathogens, acting as cytotoxic cells (cytotoxic 
T-lymphocytes [CTL]) or assisting other immune cells (T-helper 
[Th] lymphocytes). Importantly, Th lymphocytes differentiate 
into subsets capable of producing different cytokine patterns 
and, therefore, exerting diverse helper functions.8

The course of immune response can be briefly summarized 
by initial antigen-specific stimulation of naïve T-cells that 
results in activation, vigorous proliferation, and differentiation 
to specific effector T-cell subpopulations, which are capable of 
fighting pathogens and tumor cells.8

After pathogen clearance, the majority of effector T-cells 
die due to lack of stimulation with participation of the pro-
apoptotic protein B-cell lymphoma 2 interacting mediator of 
cell death (BIM).32 In the case of chronic activation of T-cells, 
these may undergo activation-induced cell death (AICD), 

Characteristics Implications

Reduction in CD80/CD86 
expression

CLL B-cells are poor antigen presenting 
cells11

CD200 expression Inhibition of T-helper-1 and induction 
of regulatory T-cells (Tregs)12,13

Expression of FASL with 
downregulation of FAS

Protection of CLL B-cells from FAS-
mediated cell death; promotion of 
T-cell apoptosis9

Increase of soluble FAS Related to the progressive CLL14

Secretion of soluble 
interleukin-2 receptor 
and interleukin-10

Inhibition of T-helper-1 
differentiation15,16

Interleukin-6 secretion Protection of CLL B-cells from 
spontaneous apoptosis; secretion 
of interleukin-4 by T-cells and 
consequent positive impact on CLL 
B-cell survival17,18

CLL: chronic lymphocytic leukemia. 

Table 1 - Characteristics of CLL B-cells.

Changes in T-cell Comments

Increase in CD4 and CD8 T-cell 
absolute number

Due to leukocytosis9,10,19

Inversion of the CD4/CD8 ratio in 
peripheral blood

CD4 T-cells are more sensitive 
to FAS mediated cell 
death20,21

Elevated expression of FAS Increased rates of T-cell 
apoptosis induced by FASL on 
CLL B-cells20

Deficiency acquired in CD40L 
expression

CLL cells induce 
downregulation of CD40L on 
the T-cell surface22

Abnormal profile of cytokine 
and/or cytokine receptor 
expression10

-

Expansion of regulatory T-cells 
(Tregs)

Induced by CD200 expression in 
CLL B-cells12,13

Reduction in T-cell receptor 
repertoire

T-cell oligloclonal expansion23

Interleukin-4 secretion Induced by interleukin-6 
secretion of CLL B-cells17,18, 24

Cytoskeleton changes Defective immune synapse25

Alterations in genes involved in 
CD8 T-cell cytotoxicity

Inefficient CD8 T-cell 
cytotoxicity26,27

Defective lymphocyte function-
associated antigen 1-directed 
T-cell motility

CLL B-cells alter the Rho 
GTPase signaling28,29

CLL: chronic lymphocytic leukemia. 

Table 2 - Qualitative and quantitative changes in T-cells 
induced by CLL B-cells.
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a cell death regulatory mechanism mediated by the FAS/
FASL interaction.33-34 Together, this homeostatic mechanism 
attempts to restore the initial ‘baseline’ immune system and is 
defined as the contraction phase of immune response.

However, a small fraction of antigen-specific T-cells are 
resistant to cell death and become long-lived memory T-cells. 
These cells comprise a heterogeneous group that are more 
sensitive to low antigen concentrations and that survive in 
the body to give faster and more effective antigen-specific 
responses, providing immediate protection in peripheral tissues 
and the ability to confer secondary responses in lymph nodes.34

Criteria such as immediate effector function, phenotypic 
diversity, proliferative index, migratory capability, and 
anatomical location are used to define memory T-cells in 
human models and characterize them in central memory 
(TCM) and effector memory (TEM) profiles (Table 3). This 
classification was proposed in 1999 by Sallusto et al. and is now 
widely accepted in the international scientific literature.35,36

Another study demonstrated that a CLL mouse model had 
decreased naïve T-cells with concomitant increase in antigen-
experienced memory T-cells, mainly the subtypes that have 
the ability to migrate to lymph nodes.30 As the background 
of the mouse model used was the TCL1, which represents an 
aggressive CLL, it is possible that the increased numbers of 
memory T-cells are related to the aggressiveness of CLL, both 
in humans and mice.

An interesting question is how the different types of 
memory T-cells could influence CLL physiopathology. It has 
been postulated that chronic antigenic stimulation through 
the B-cell receptor (BCR) is required for the neoplastic clone 
to survive and grow.38 In this context, CD4 TCM cells have 
the capability to migrate to the lymph nodes due to their 
expression of CXCR5 (a  chemokine CXCL13-receptor produced 
by B-cells in lymph node follicles), and could interact with CLL 
B-cells, providing co-stimulatory signals, such as CD40L and 
cytokines.36 This crosstalk could contribute to a stronger BCR 
signaling, greater survival, expansion, and evolution of CLL.

In addition, according to the literature on memory T-cell 
generation, a low but sufficient activation of naïve T-cells is 
crucial to the differentiation of TCM cells.39 Associating this 
evidence with the fact that CLL B-cells are poor as antigen 
presenting cells,11 the interaction between CLL B-cells and 
naïve T-cells could result in a weak stimulation leading to the 
generation and/or accumulation of CD4 TCM cells.

Regarding TEM cells, cytokine production of interleukin-4 
(IL-4) and interferon-gamma (IFN-γ) could also participate 
in CLL progression, mainly through the up-regulation of 
BCL-2 and protection of CLL cells from apoptosis.40,41 It was 
demonstrated that, in in vitro co-culture assays, the apoptosis 
rate of CLL B-cells in the presence of CD4 TEM cells was lower 
than in other conditions, such as in the presence of either 
naïve CD4 T-cells or peripheral blood mononuclear cells. 
Moreover, the protection conferred by CD4 TEM cells seems 
to depend on IL-4.19

Considered together, the existence of an intrinsic feedback 
mechanism involved in the physiopathology of the CLL is 
supported, in which CLL B-cells could induce the generation 
and/or accumulation of CD4 memory T-cells, which, in turn, 
would help them achieve better survival and expansion 
(Figure 1). Indeed, it was demonstrated that CD4 memory 
T-cell generation is impaired in mice that are deficient in 
B-cells.37,42

CLL and memory T-cells

As previously mentioned, constant interaction with the 
microenvironment substratum and T-cells is essential for 
CLL B-cells in order to avoid apoptosis and acquire favorable 
growing conditions. As a result of this crosstalk, some changes 
in T-cells are well documented, but a recent observation that 
CLL is able to interfere in naïve and memory T-cell status 
deserves more discussion.19,21,30,31

It has been demonstrated that CLL patients have a 
significant skewing only in the CD4 T-cell compartment 
towards TCM and TEM cells.37 Interestingly, this altered T-cell 
profile was associated with a more aggressive course of the 
disease, as shown by the positive association with unmutated 
human immunoglobulin heavy chain variable genes (IgVH), 
advanced regent admission index clinical stage, and shorter 
treatment-free survival. Conversely, there was no correlation 
between the increase in CD4 memory T-cells and CD38 
expression or genomic aberrations in CLL patients.19

Central memory  
T-cells

Effector memory  
T-cells

Anatomical location Lymph nodes Liver, lung, and gut

Effector function Low High/immediate

Proliferative index High Low

Migratory capability Secondary 
lymphoid organs 
(CD62LhighCCR7high)

Non-lymphoid tissues 
(CD62LlowCCR7low)

Cytokine pattern IL-2 CD4: IFN-y, IL-4, and 
IL-17

CD8: perforin and 
granzyme

Co-stimulatory 
molecule

High expression of 
CD40L

-

CLL: chronic lymphocytic leukemia. 

Table 3 - Central and effector memory T-cell 
characteristics.

Figure 1 – Immunological crosstalk between chronic lymphocytic 
leukemia B-cells and CD4 T-cells.



	 REV BRAS HEMATOL HEMOTER. 2014;36(1):60-64	 63

At the lymph node site, neoplastic B-cells interact with 
naïve and activated CD4 T-cells, resulting in generation/
accumulation of CD4 memory T-cells in peripheral blood. 
Through the lymph node homing receptors, chemokine 
receptors and co-stimulatory CD4 central memory T-cells could 
offer survival signals to chronic lymphocytic leukemia B-cells 
at lymph node sites. In addition, cytokines produced by CD4 
effector memory T-cells, such as interleukin-4 and interferon-
gamma, could also participate in this survival process.

Unpublished data from our group supports the 
aforementioned information. Briefly, we analyzed the 
peripheral blood T-cells of 21 CLL patients, and evaluated 
whether the distribution of naïve and memory T-cells was 
related to the ZAP-70 expression, a well-established prognosis 
factor in CLL.43 Interestingly, this analysis demonstrated that 
ZAP-70 positive patients with neoplastic B-cells presented 
increased frequency and absolute numbers of CD4 TCM cells 
compared to the ZAP-70 negative patients and 17 age-matched 
healthy individuals (Correia RP, unpublished data). Although 
other clinical and laboratorial prognostic markers were not 
analyzed at this point, the results are in accordance with the 
literature that shows alterations in the memory CD4 T-cell 
subpopulations. Importantly, it is suggested that this alteration 
is restricted to the T-helper compartment, since no significant 
differences were observed among memory CD8 T-cells.

To the authors’ knowledge, there is no study that evidences 
associations between genetic factors and T-cell skewing 
towards memory status. Because the authors believe that this 
information is critical for a better evaluation of the prognostic 
value of analyzing the memory T-cell compartment, as well 
as for the understanding of the involvement of CD4 memory 
T-cells in the pathophysiology of CLL, studies with this focus 
are underway in this laboratory.

Conclusions

Abnormalities in T-cell subsets may be associated with the 
progression of CLL. Particularly, the increased CD4 memory 
T-cells could help CLL B-cells to achieve better fitness, i.e., more 
survival and proliferation signals. Therefore, understanding 
and unraveling this mechanism could improve the prognostic 
information and therapeutic approaches in CLL.
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