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ABSTRACT

In this work, we present a non-parametric method, and the appropriate computer program, for fitting nonlinear
multiparametric equations to experimental data. Our method is followed by computation of confidence limits of
the parameter estimates. Its performance has been tested on several multiparametric equations, common in the
fields of Biochemistry and Biotechnology, and it is a multiparametric expansion of the concept proposed by
others for equations having more than two parameters. Good parameter estimates were obtained without a
previous knowledge of initial parameter guessing values, and the proposed computer program converges
rapidly, in all cases examined within this work.
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INTRODUCTION

A relatively high incidence of outliers is
observed during measurements with sensors;
some of them are due to the sensing device,
others due to the chemistry of the process and
others due to sampling procedures. The outliers
are a real problem when few replicates are
provided; this is a common practice in most
kinetic determinations.

This outliers problem becomes a real nuisance
when one needs to fit such a series of
experimental data to a nonlinear
multiparametric equation, that is always the
case in Biochemistry, where best parameter
estimates are required. The problem becomes
more acute when good initial guessing values
of the parameter estimates are required.

To overcome this situation different criteria of
closeness of fit and/or different kind of fitting
algorithms can be used; rules for rejecting
outliers can, also, help but they are ineffective
in several cases (Anscombe 1960).
Alternatively, non-parametric methods have
been developed (Eisenthal & Cornish-Bowden,

1974a) where the normality, the uniform
variance and other requirements are replaced
by an assumption of equally probable positive
and negative errors. The latter is not always
correct, but it is better than the assumptions
made for the parametric methods.

In this report, we present a non-parametric
method of fitting nonlinear multiparametric
equations to experimental data, the
corresponding computer program, and its
statistical treatment. Initial guessing values for
the parameters of the multiparametric equation
under consideration are not required. Our
method is an extension of that developed
earlier (Eisenthal & Cornish-Bowden, 1974a),
and it can be applied to model equations
having more than two parameters.

PRINCIPLES

Function Transformation: In many cases the
response of a monitored process as it is the rate
of a biochemical reaction, is described by a
nonlinear multiparametric model equation of
the form:



y = f(x; a,b,c, . . ,p) (1),

where x and y are the independent variable and
dependent response, respectively and a, b, c, . .
, p the parameters. In practice the data xi,yi are

obtained experimentally. Therefore, each
experimental data point (xi,yi) should be
considered as the known, while the equation
parameters as the unknowns to be determined.

In principle, equation (1) can be transformed to
the form of a: (i) line equation, (ii) plane
equation, (iii) hyperplane equation, for a two or
three or more parameters equation,
respectively. In the general case the hyperplane
equation has the form:

P1

1ξξ
 + 

P2

2ξξ
 + . . . .+ 

Pp

pξξ
 = 1 (2),

where P = {Pi} (i = 1, 2, . . .,p) is the vector of
the axial components (unknown terms) of any
hyperplane point in a hyperspace, and ξξi (i = 1,
2, . . .,p) is the intersection of a hyperplane
with the ith axis (known terms). Consequently,
a hyperplane is defined for each experimental
data point (xi,yi) within the given hyperspace.

If errorless data points are applied to a known
multiparametric equation the estimated
parameter values a, b, c, . , p are the same for
all data points and therefore the intersection of
all defined hyperplanes is a point whose
coordinates correspond to the true parameter
values.

However, due to random experimental errors in
measurements the hyperplanes are intersected
in several ways, by two, by three, . , by p,
while only the intersection by p will give
points in a space of p dimensions.

The number of intersections: For equations
with p parameters, and n experimental data
points, the maximum total number of
hyperplane intersections is given by the
formula:
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(Binomial Coefficients, n>p).
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intersection points that correspond to
parameter estimates are collected in p columns,
and sorted in respect to their arithmetical
values. The median value of each column is
chosen as the best estimate of the
corresponding parameter a, b, c, . . .,p.

The error structure: For an infinite number
of independent observations (xi,yi), errors ei
are supposed to be equally probable either
positive or negative. Correspondingly, the true
parameter values a, b,   , p, are the coordinates
of a point lying below or above of each
hyperplane defined by each (xi,yi) data point.
This supports our choice to define the median
values as the estimates of a, b,   , p.

The sample median is regarded as a more
reliable estimate of the population average
value than the sample mean, and alternative
approaches to this mater could be certainly
found (Cornish-Bowden & Eisenthal, 1974b).
This is outside of the purpose of this
manuscript. Herein, we would like to put the
idea of non-parametric curve fitting of the
multiparametric nonlinear equations; at least,
good initial guessing values of the parameters
were estimated. The latter being sometimes as
the Ancient Greek proverb "The begining (is)
the Half of Everything" (Platonis opera,
Leges).

An example:



As an example it will be used a three parameter
equation, which represents the calibration
curve of chemiluminescence generated from
oxidized pyrogallol by periodate (Papamichael
& Evmiridis, 1988), the following:

y =
ax

bx +  c x  +1

2

(4).

Having a sufficient number n of experimental
points we will compute estimates of the true
values of parameters a, b and c without the
knowledge of initial guessing values. For each
experimental observation (xi,yi), equation (1)
could be written as:

yi =
ax

bx  +  c xi  +1
i
2

i

(5),

which is transformed to:

a
x

y
i
2

i

 - bxi -c x
i  = 1 (6),

for yi ≠≠ 0. Equation (6) falls into a general

form of plane Equation (7),
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 (yi ≠≠ xi xi ≠≠ 1) for i

=1,2, . . ,n.

Due to experimental errors in measurements of
the response, equation (5) can be written as:

yi =
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bx  + c x
i
 +1

i
2

i

+ ei (8),

where a, b, and c are the true but unknown
values of the a, b, and c parameters, xi are the
errorless values of the independent variable,
and ei is the difference between observed and
true response values independently where
errors are confined. The total number of
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 are considered as

intersection points.

All mentioned herein, are referred to
transformable equations to a suitable form of a
hyperplane equation. On the other hand any
equation can generally be transformed by
arbitrary replacements and proper restrictions.

Equation (9a) can be transformed if an integer
value is given, temporarily, to the parameter d
(i.e. d=1, or d=2), and equation (9b) by making
more than one transformations

CONFIDENCE REGIONS OF THE
PARAMETER ESTIMATES

Number of regions: In a finite experiment
with n data points, n hyperplanes can be drawn
according to equation (2) which divide the

hyperspace into 2n regions at the most. No one
hyperplane could be parallel to another and/or
do not pass through the origin. These
restrictions are in line with the concept of
generating hyperplanes from experimental data
points that include random errors ei. This is

illustrated in Fig.1 for n=10 and p=3.

Relative positions of regions and
hyperplanes: According to theory there should
not one single point of intersection of all n
hyperplanes defined by the (xi,yi) data points,
due to random experimental errors ei (Eq, 8).

On the other hand, hyperplanes as they
intersected each other divide hyperspace in
regions.



Thus, each hyperplane associated with a
specific experimental point is either above (ei
positive) or below (ei negative) of the point the

coordinates of which are the true parameter
values a, b, c, . , p. That point is, obviously,
within these regions and it can be used to
define the confidence limits of the parameter
estimates (Cornish-Bowden & Eisenthal,
1974b).

Designation of regions: Each ei error will be

either positive(+) or negative(-) and it is
associated to a specific region. Therefore, the
total number of ei will be n, i.e. e1, e2,   , en.

Furthermore, if plus(+) and minus(-) signs of
the errors ei are replaced by 1 and 0
respectively, the designation of the hyperspace
regions becomes numerical. Thereafter, regions
can be labeled either in a binary or in a decimal
form. For example, a region in Fig. 1, labeled
24 in decimal form, corresponds to binary
0000011000 for n=10 data points or to binary
11000 for n=5 data points. In Fig. 2 a region
labeled 696, in decimal form, corresponds to
binary  1010111000.

Figure 1: Intersection of ten lines referred to the
Michaelis-Menten equation; data were from our
laboratory. Dark-shadowed is region 24
(0000011000), and shadowed is region 696
(1010111000).

Permutations: If each ei value has a median

expectation of zero, and all ei-values are

independent, then all possible permutations of
signs among ei values are equally likely. Since

the possible permutations of n signs is 2n the

probability for each permutation to occur is 2-

n. Confidence regions, as just defined, are
rigorous but they extend to infinity and include
estimates of the true parameter values that
must be rejected as absurd.

Table 1 illustrates the way of calculation of
Binomial Coefficients and Probabilities with
different number of positive and/or negative

signs of n errors ei from the 2n possible

permutations. Calculations are given for an
equation with three parameters having n=10,
and for zero positive and ten negative signs, for
one positive and nine negative signs, and so on
up to ten positive and zero negative signs.

From Table 1 we conclude that there is a
probability of about 25% for five positive and
five negative signs, moreover there is a greater
probability for four to six positive and six to
four negative signs. This result provides a
confidence region of about 66% for a, b, and c
within experiment comprising those regions
that predict about equal number of positive
and/or negative signs of the ei values.

Figure 2: Intersection of five planes (P) referred to
equation (4). P1-Cyan, P2-Blue, P3-White
(appeared as shadowed), P4-Orange, and P5-Yelow.
Region 24 (11000) is indicated in the graph; region
12 (01100) is in the right side between cyan, blue,
and orange planes.



Runs: Another way to define confidence
regions is that of considering the number of
runs, which is the number of separate strings of
0s and 1s, in the binary notation, of a
confidence region.

Any objection raised on defining confidence
regions with the concept of permutations, can
be removed by considering the number of runs
of positive and negative signs in the series of
errors, instead of the total number of positive
and negative signs (Cornish-Bowden &
Eisenthal, 1974b).

Table 1: Probabilities for + or - signs of errors, for a
three parameters equation, and ten experimental
points.

Number of Binomial
Coefficients

Probability

10

0






 =  1    (0!=1)
1

210 % = 0.1%

10

1






 =  10
10

210 % = 1.0%

10

2






 =  45
45

210 % = 4.4%

10

3






 =  120
120

210 % = 11.7%

10

4






 =  210
210

210 % = 20.5%

10

5






 =  252
252

210 % = 24.6%

10

6




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 =  210
210

210 % = 20.5%

10

7






 =  120
120

210 % = 11.7%

10

8






 =  45
45

210 % = 4.4%

10

9






 =  10
10

210 % = 1.0%

10

10






 =  1
1

210 % = 0.1%

SUMS 1024 100.0 %

For a region 24 corresponds a sequence of
signs   - - - - - + + - - -   containing three runs
(for n=10) whereas for a region 696
corresponds a sequence of signs  + - + - + + + -
- -  containing six runs. The number of runs in
random sequence of binary digits obey to
Binomial Distribution and for n digits they are

2
n 1

m 1

−
−
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permutations with m runs. The

probability that there are m runs in n digits is

then 

n 1

m 1
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−
−
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



− .

In Table 2 is illustrated the calculation of the
probabilities for positive and/or negative signs
using the same example as in Table 1. A
probability of about 50% is calculated for five
or six positive (or negative) signs, whereas the
probability for four to seven positive (or
negative) signs is over than 80%. Conclusions
about confidence regions are about the same,
using both methods, the latter being more
convenient and useful since may give enclosed
confidence regions, and relatively small in
extent.

CALCULATIONS

The median estimates of the parameters a, b, c,
. , p  are well calculated by solving successive
systems of p equations, in p unknowns. For the
example of equation (4), and for y ≠≠ 0 we may
write:

a
x

y
i
2

i

 - bxi - c x
i  = 1 (10),

a
x

y
j
2

j

 - bxj - c x
j  = 1 (11),



a
x

y
k
2

k

 - bxk - c x
k  = 1 (12),

where i, j, k =1, 2, 3, . ., n.
Table 2: Probabilities for + or - signs of errors, for a
three parameters equation, and ten experimental
points.

Fractions of
Binomial

Coefficients

Permutations and
Probabilities

9

0

29







 = 
1

29    (0!=1)

1

29 2
10 

= 2

0.19 %

9

1

29







 = 
9

29

9

29 2
10 

= 18

1.76 %

9

2

29







 = 
36

29

36

29 2
10 

= 72

7.03 %

9

3

29







 = 
84

29

84

29 2
10 

= 168

16.41 %

9

4

29







 = 
126

29

126

29 2
10 

= 252

24.61 %

126

29
252

24.61%

84

29
168

16.41%

36

29
72

7.03%

9

29
18

1.76 %

1

29
2

0.19 %

SUMS 1024
100.00 %

When it happens to be k=j or k=i or j=i then
the respective counter is increased by one and
we proceed so that to have always i ≠≠ j ≠≠ k.
Another constraint for such a system should be

x
y

2

≠≠ -x ≠≠ - x  (for all counters). These non-

equalities are important for the presented
method. The only constraint for this technique
is the equation under consideration to be
transformable in a form like that of equation
(2).

A variety of methods could be chosen to solve
a system of p equations in p unknown; in this
work we preferred to use the Cholesky's or
Croutãs method (Shoup, 1983). In the example,
equation (10) could be solved to one unknown
term, successively, and written as:

a = 
y

x
i

i
2  + b

y

x
i

i
 + c

yi
x

i

(13a)

b = -
1

ix
 + a

x

y
i

i
 -c

1

x
i

(13b)

c = -
1

xi
+ a

x
i

x
i

yi
-b x i (13c).

The above equations represent, one plane in a
space of three dimensions which intersects (i)

Z-axis at the point
y

x
i

i
2

, (ii) Y-axis at the point -

1

ix
 and (iii) X-axis at the point -

1

x
i

.

Consequently, intersections by three-planes
will be defined by the planes of equations (11)
and (12), of which the coordinates of their
intersection points give suitable estimates of
the a, b, and c parameters.

THE PROGRAM

The program is written in BASIC  and has been
developed under ZBASIC  compiler for
Macintosh computers. The user have to edit
several program lines before "RUNning" it, as
follows:



(a) Input the number of (a) data pairs and
(b) parameters, of the used equation
(constants ndp and npr).
(b) Select the binomial coefficient (binco),
from a suitable TABLE, according to the
data inputted just above, and assign that
value to the appropriate constant. Edit
DIM, and CLEAR statements.
(c) Edit program lines that describe the
system of the linear simultaneous equations,
which should correspond to the
transformations of the used nonlinear
equation; they found within multiple FOR -
NEXT nested loops.
(d) Add as many as FOR - NEXT nested
loops as it is the number of the parameters
of the used nonlinear equation; add, also,
the appropriate IF - THEN statements
within nested loops, and edit the end of the
last IF - THEN statement.
(e) Finally, add as many as [dx( )=...]
assignments, of the loop counters, as it is
the number of the parameters of the used
equation, run the program and collect
results.

RESULTS AND DISCUSSION

The presented method gave excellent results
when applied to several multiparametric
equations, common in Chemistry and
Biochemistry; such as:

y =
ax

bx +  c x  +1

2

(i);

it is described thoroughly in this manuscript
(Papamichael & Evmiridis, 1988; Papamichael
& Evmiridis, 1991) as equation (4).

y =
x(1 x)

a+bx +cx2

−
(ii);

it describes the rate of chlorinating of 1,2-
dichloroethane to 1,1,2-trichloroethane, and
1,1,1,2- and 1,1,2,2-tetrachloroethanes
(Kafarof 1976).

y =
ax +bx

1 + cx + dx

3

5
(iii);

it describes the rate of substrate depletion by
an enzyme that displays non-Michaelis-Menten
kinetics.

y =
a +bx

1 + cx + dx + ex

2

2 3
(iv);

it is similar that the above one, and describes a
different situation of non-Michaelis-Menten
kinetic behavior.

y =
x(1 x)

ax +bx2

−
(v);

it describes the same procedure as in (ii), by
using two parameters, for a more convenient
curve fitting.

Table 3. Illustration of the proposed method.
Parameter Estimates from fitting of used Equations
to Experimental and/or Simulated data.

Parameter Estimates from

Eq. Non-Parametric Fitting Ordinary Fitting

(i)
a = 106.32

b = 0.80

c = -1.58

a = 100.78

b = 0.76

c = -1.53

(ii)
a = 0.07

b = 1.31

c = -0.81

a = 0.08

b = 1.30

c = -0.60

(iii)

a = 53.07

b = 0.75

c = 4.70

d = 9.44

a = 53.15

b = 0.68

c = 4.71

d = 9.43

(iv)

a = 38.99

b = 11.47

c = -0.16

d = 0.58

e = 0.19

a = 39.00

b = 11.41

c = -0.16

d = 0.58

e = 0.19

(v) a = 0.13

b = 0.90

a = 0.12

b = 0.96

Experimental (xi,yi) data pairs were used for
both the ordinary and the non-parametric
fitting of the above equations (i) to (iii); for



equations (iv) and (v) were used simulated data
produced accordingly (Papamichael &
Evmiridis, 1991). For the ordinary fitting were
used either commercial curve fitting packages
(UltraFit, 1991), or self-written programs
(Papamichael & Evmiridis, 1988).

The results are summarized in Table 3.
Estimates of the parameters of all equations
were found very close to their true values. The
program was converged after few seconds in
most cases; in case of equation (iv) of Table 3
the program converged after 1.6 h, most
probably due to the large number of parameters
and data points. In difficult situations, when
the number of data points are relatively few
compared to the number of parameters of the
used equation, the program was given
parameter estimates which can be used as good
initial guessings for other methods.

Objections could be raised on the efficiency
and/or the usefulness of the proposed method
and program. At a first glance, (a) the method
is not applicable for certain nonlinear

equations e.g. the Gompertz equation y = ae-

be-cx
 (Ratkowsky, 1983), or (b) all linear

forms of nonlinear multiparametric equations
can be fitted to any set of data points by
multivariate linear regression methods without
need of initial guessed values for their
parameters.

Any equation can be generally transformed to
a suitable form like equation (2) by arbitrary
replacements and proper restrictions including
the Gompertz one (Ratkowsky, 1983). On the
other hand, in linear regression we make
assumptions on which we based in order to
accept that the minimum variance estimators
are unbiased and normally distributed.
However, to do so in nonlinear situations we
need a very large number of data which are
unavailable as far as it is concern the fields of
Biochemistry and/or Biotechnology, in most
cases (Ratkowsky, 1983).

Based on the above we can conclude that the
efficiency, the statistical robustness, and the
usefulness of the proposed method and
program have been verified.

REMARKS

The Program Listing is available on request. It
is written under Z-BASIC for Macintosh;
however, there is a version of the Z-BASIC
compiler for IBM compatibles. Alternatively,
authors could help on transformation of the
Program Listing under any available compiler.

RESUMO

Neste trabalho, apresentamos um método não-
paramétrico, e o programa de computação
apropriado, para ajustar equações
multiparamétricas não lineares para dados
experimentais. Nosso método é seguido pelo
cálculo dos limites de confiança dos
parâmetros estimados. Seu desempenho tem
sido testado em várias equações
multiparamétricas, comuns nos campos da
Bioquímica e Biotecnologia, e é uma expansão
multiparamétrica do conceito proposto por
outros, para equações que tenham mais de dois
parâmetros. Obtivemos estimativas de
parâmetros confiáveis sem um conhecimento
prévio de parâmetros iniciais de valores
esperados, e o programa de computação
proposto converge rapidamente, em todos os
casos examinados dentro deste trabalho.
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