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ABSTRACT

The aim of this study was to test the effects tfrabfree-floating plants on zooplankton distrilmrt in a shallow
subtropical lake. First, the hypothesis that fresafing plants have an effect on physico-chemidalading to a
decrease on nutrient availability and influenciing tphytoplankton biomass and zooplankton commuaisytested.
Second, the hypothesis that free-floating plantsaa@ refuge for zooplankton was tested. Threeamabitats were
selected: free-floating plants, littoral area angem water. Results demonstrated that the effectdiffi#frent

microhabitats on phytoplankton biomass and physioemicals were not significant, indicating a weaftuence of
the plants. Zooplankton densities were higher eeffloating plants and littoral area, although tledfect of
microhabitats was weak for most of the predomingabera. The absence of free-floating plant effasts
phytoplankton and physico-chemicals showed thatg not a factor influencing the microcrustaceastrithution

in the microhabitats. Low differences in densitégooplankton among microhabitats and low abundawfdarge-
bodied cladocerans led to reject the hypothesitfile@-floating plants act as a refuge for zooplamk

Key words: macrophytes, refuge, spatial distribution, tropimoplankton

INTRODUCTION zooplankton (Timms and Moss, 1984; Lauridsen
and Buenk, 1996), and phytoplankton (van Donk
In aquatic environments, aquatic macrophytegnd van de Bund, 2001).
have been pointed as a factor causing variation orhe clear water state and the turbid water state ar
the trophic cascades (indirect effects of carnigorethe two distinct trophic conditions known in
on the plants or algae mediated by herbivores)hallow temperate lakes based on the alternative
(Timms and Moss, 1984). In shallow temperatestable states hypothesis (Sche#eral., 1993). In
lakes, these plants can influence the spatidhe clear water state, shallow lakes can be
distribution of fish (Tatrdi and Herzig, 1995; transparent with the dominance of submerged
Jacobsen and Perrow, 1998; Schindler, 1999Yyegetation. In the turbid water state, shallow sake
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can be unclear and phytoplankton-dominatedyuite frequent in the tropical and subtropical elsk
Submerged vegetation can support the clear wat@vieerhoff et al., 2003).

state by decreasing nutrient availability and/ohe aim of this study was to test the effects of
releasing allelopathic substances (bottom-upatural free-floating plant banks on zooplankton
control) (van Donk and van de Bund, 2001), andlistribution in a shallow subtropical lak@wo
providing refuges for zooplankton grazers (top-hypothesis were tested: first that free-floating
down control) (Scheffeet al., 1993). It can also plants have an effect on the physico-chemical
provide a daytime refuge for large-bodiedvariables, leading to a decrease on nutrient
zooplankton, such daphnia (Timms and Moss, availability and influencing directly the
1984, Lauridsen and Buenk, 1996; Lauridsen anghytoplankton biomass and indirectly the structure
Lodge, 1996; Burks et al., 2002) and has an effecf zooplankton community; second, that the free-
on the spatial distribution of fishes (Tatrdi andfloating plants act as a refuge for zooplankton,
Herzig, 1995; Jacobsen and Perrow, 1998specially to pelagic large-bodied size species.
Schindler, 1999) causing cascade effects in littora

area or open water.

Tropical and subtropical lakes are different fromMATERIAL AND METHODS

temperate lakes in general characteristics of the

food webs. Tropical and subtropical lakesThis study was carried out in Lake Jacaré, an
comprise few large specialist piscivorous fishegligotrophic, shallow (mean depth: 3 m),
and more numerous sit-and-wait predatorssubtropical lake with an area of 1.45 km?, located
whereas omnivores with continuous reproductiotn the Conservation Unit Ecological Station of
and small fishes are abundant, and apparentljaim, state of Rio Grande do Sul, southern Brazil
there is a lower abundance of large-bodiedFig. 1). Lake Jacaré is encircled by massive banks
zooplankton with a dominance of smaller and lesef macrophytes where free-floating plants are
efficient filtering species (Lazzaro, 1997). Free-dominant (e.g. water hyacinth. crassipeswater
floating plants, such as water hyacifibhhornia cabbage P. stratiotes and salvinia Salvinia
crassipes (Mat.) and water cabbagePistia herzogi). Farms and rice fields surround the
stratiotesL., both native from South America are Ecological Station of Taim.

@  Openwater Lake Nicola

A Litonal

W Freefloating plants

Q Lake
KY Taim wetland

Figure 1 - Study area and sampling sites (free-floating pldittoral area and open water).

Three microhabitats were selected as follows: eesults influenced by the diel horizontal migration
littoral vegetated natural bank of free-floating(DHM) of the zooplankton. The free-floating plant
plants (multispecific bank dominated b¥. site was not sampled in the dry season (February).
crassipesandSalvinia herzog)i, and a site without Zooplankton samples were obtained by filtering 3
the plants both in littoral area, and an open waten® of water in 90 um plankton net with electric
area (Fig. 1). Sites were sampled in August 200gumps. Samples were composed of the three strata
(winter), November 2002 (spring), February 2003subsurface, middle and bottom in the water
(summer) and June 2003 (autumn). Samples weoelumn) to avoid the possible differences related
taken at day-time (12 p.m.) and night-time (120 vertical migration. In laboratory, samples were
a.m.) to avoid the possible differences in theoncentrated in 300 mL flasks and fixed with a
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buffered 4% formaldehyde solution. ZooplanktonTukey’s test was applied after confirming the
counting was performed in 10% aliquots of thenormality of data using Kolmogorov-Smirnov test
total sample using Bogorov (for cladocerans an@u= 0.05).

copepods) and Sedgewick-Rafter chamber (fcData were submitted to multivariate exploratory
rotifers). Cladoceran species were identifiecanalysis using the ordination method (Legendre
according to EI-Moor-Loureiro (1997), Montl andand Legendre, 1998; Podani, 2000). The
Goeden (1986), Olivier (1962), Smirnov (1974 ordination of sample units was performed using
1996); copepod species: Rocha and Matsumurthe Principal Component Analysis (PCA). The
Tundisi (1976), Reid (1985), Monti and Goedeisimilarity measure used was Euclidian distance
(1986), Dussart and Defaye (1995); rotifer specie.between sample units. These analyses were
Olivier (1965), Koste (1978), De Smet (1995).performed with data on species density
Segers (1995), Nogrady and Segers (2002). transformed to square root scale, and data on the
order to analyze if the aquatic macrophytes aet asphysico-chemical normalized. The statistical
refuge for pelagic species, the cladoceran geneprogram used was PCORD 4.0.

Bosmina, Bosminopsis, Ceriodaphnia,

Diaphanosomaand Simocephalusvere classified

as free-swimming/pelagic and the remainingﬁESULTS

genera were classified as benthic/plant-associate
Water samples were collected with a 5 L Va
Dorn sampler at the same sites of the zooplankt
sampling for the analysis of total phosphorus (TP A
total nitrogen (TN), suspended solids (SS), organi)g
matter (OM), and estimation of phytoplankton
biomass as chlorophyll-a (Chl-a) (APHA, 1998)

Conductivity (K), dissolved oxygen (DO), pH andrelatively high with lowest value of 4.28 mg'L

temperature (T) were measuréd situ with a . ) .
portable instrument (YSI 6920 probe). and hlghesIt of 7h'58 rggl L SLispeInd SQ“?E and
Transparency was estimated as Secchi disc dep‘?l';lganlc matter showed lowest vaiues in the open
water and highest in littoral area. The effect of
(SD). : ) ) »
microhabitats on the environmental conditions was
eak (p>0.05). There was a slight difference in the
ansparency results, with lower values registered
In the littoral area (vegetated and no-vegetated)

than in the open water (p<0.05).

hysico-chemical variables in Lake Jacaré were
0qparacterized by low phytoplankton biomass (Chl-
= from 3.1 to 26.8 ugl), low concentrations of

P (from 0.008 to 0.045 pg™) and TN (from
52 to 1.95 pg £), neutral to slightly alkaline pH
(from 7.2 to 7.6) and low conductivity (from 215
'to 302 puS c) (Table 1). Dissolved oxygen was

The analyses of variance (One-way ANOVA) with
Tukey's test for multiple comparison were carrie
out to detect the significant differences among th
microhabitats and sampling dates=( 0.05).

Table 1- Limnological variables and chlorophyll-a in diféet microhabitats of Lake Jacaré (free-floatinghfsa
littoral area and open water). Mean + SE; ANOVAutes(*statistically significant).

Free-floating plants Littoral Open water Microhabitat
Chl-a (ug 83+2.4 11.1+3.3 10.34+ 1.8 p>0.05
TP (ug LY 0.018 + 0.005 0.013 + 0.002 0.014 + 0.001 p>0.05
TN (pg LY 1.15+0.16 1.25+0.16 1.08 +0.12 p>0.05
SS (mg ) 188.25 + 7.8 191.46 +9.3 175.42 + 8.8 p>0.05
OM (mg LY 52.25 + 13.2 53.46 £ 6.9 50.55 + 9.4 p>0.05
DO (mg LY 6.59 + 0.47 6.19 + 0.63 7.04+0.25 p>0.05
pH 7.30 £ 0.06 7.35+0.05 7.43+£0.04 p>0.05
K (uS cnmt) 237 +0.010 256 + 0.012 249 +0.010 p>0.05
T (°C) 17.7+2.02 20+2.14 19.7+2.12 p>0.05
SD (m) 1.05+0.21 1.21+0.18 1.92 +£0.29 p<0.05*

A significant temporal variation the than those from the same microhabitats (Fig. 2).

environmental conditions was not observed in th@rdination axis concentrated 68 % of physico-
ANOVA analysis, although the Principal chemical data variation, where Axis 1 (horizontal)
Component Analysis showed that the samplesxplained 36% and Axis 2 (vertical) explained
from the same sampling dates were more simileé32% of this variation.
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Figure 2 - Principal Component Analysis with physico-chemicariables in Lake Jacaré.
Sampling sites are represented by P (free-flogilagts), L (littoral), O (open water)
and sampling dates by A (August), N (November)r&bfuary), J (June).

Zooplankton community was represented by 7@&hree microhabitats (p= 0.841, ANOVA)ecane,
species, 36 of which were cladocerans, 12 werelatyias, Testudinellaand Brachionuswere the
copepods and 28 were rotifers (Table 2). Amongnost abundant genera of rotifers.

the 76 species, 13 were new records for the state @lean  density of  pelagic/free-swimming
Rio Grande do SulPseudochydorus globosus cladocerans was 38.8 ind°mMean densities in
AlonacamboueiA. guttata Leydigia ipojucagL.  the microhabitats varied from 76.4 ind*rin the
propinqua Leydigiopsis curvirostris L. ornata, free-floating plants to 13.04 ind in the open
Notoalona sculpta (cladocerans), Mytilina water area (Fig. 4). There were no significant
ventralis Proales reinhardti Testudinella differences of free-swimming cladoceran densities
mucronata  Trichocerca bicristata and in the microhabitats (p= 0.264, ANOVA).
Macrochaetus collinsi(rotifers). Rotifers were Free-swimming cladocerans were represented by
represented by 15 families. Lecanidae andmall-bodied Bosmina, Ceriodaphnia,
Brachionidae were the families with the highesDiaphanosomaand Bosminopsis and by large-
richness. Lecanidae was represented by fivbodied Simocephalus Small-bodied cladocerans
species fromLecanegenera, making it the most occurred in higher densities than large-bodied
representative among the rotifers. Cladoceran$ig. 5). Pelagic large-bodieBaphnia was not
were represented by six families. Chydoridae wasegistered in Lake Jacaré. Mean density of
the family with the highest richness. Copepod®enthic/plant-associated cladocerans was 7.95 ind
were represented by three families: Diaptomidaen®. Mean densities in the microhabitats varied
(Order Calanoida) was represented byrom 18.08 ind ri in the free-floating plants to
Notodiaptomus incompositus Canthocamptidae 0.95 ind n? in the open water (Fig. 4). These
(Order Harpacticoida) was represented bylifferences were significant (p=0.004, ANOVA)
Atheyella fuhrmani and Cyclopidae (Order and the density of the cladocerans in the free-
Cyclopoida) that showed the highest richness antbating plants was higher than in the other
was represented by ten species distributed in shabitats (littoral and open water). Most of benthic
genera. cladocerans occurred in high densities in plants
Rotifers presented mean density of 23.27 ind m and littoral area and occasionally in the open
Mean densities in the microhabitats varied fronwater.  Small-bodied chydorids Chydorus,
35.94 ind 7 in the free-floating plants to 6.3 ind Picripleuroxus, Euryalona, Alonella, Macrothrix
m? in the open water (Fig. 3). There were ncand large-bodied Pseudosida dominated the
significant differences of rotifer densities in thebenthic cladocerans (Fig. 5).
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Table 2 - Zooplankton species registered in different miatutats of Lake Jacaré (free-floating plants, lat@area

and open water).

ROTIFERA
Asplanchnidae
Asplanchnasp.

Bdelloidea
Bdelloidea sp.
Brachionidae
Brachionus caudatus
Plationus patulus
Keratella tropica
Platyias quadricornis
Lepadellidae
Lepadella ovalis
Euchlanidae
Dipleuchlanis propatula
Euchlanis dilatata
Euchlanissp.
Filiniidae

Filinia longiseta
Lecanidae

Lecane bulla

Lecane leontina
Lecane luna

Lecane lunaris
Lecane unguitata
Mytilinidae

Mytilina ventralis
Notommatidae
Cephalodella gibba
Proalidae

Proales reinhardti
Scaridiidae
Scaridium longicaudum

Synchaetidae
Polyarthrasp.

Testudinellidae
Testudinella mucronata

Testudinella patina
Trichocercidae
Trichocerca bicristata
Trichocerca capuccina
Trichocercasp.
Trichotriidae
Macrochaetus collinsi
Trichotria tetractis
CLADOCERA
Bosminidae
Bosmina longirostris
Bosminopsis deitersi
Chydoridae
Subfamily Chydorinae
Chydorus eurynotus
Chydorus sphaericus
Alonella dadayi
Alonellecf. lineolata
Dunhevedia odontoplax
Ephemeroporus hibridus
Picripleuroxus (P.) denticulatus
Pseudochydorus globosus
Subfamily Aloninae
Acroperus harpae
Alona cambouei
Alona guttata
Alonacf. costata
Alonacf. quadrangularis
Alonacf. rectangula
Biapertura affinis
Biapertura karua
Biapertura verrucosa

Camptocercus dadayi

Euryalona orientalis
Kurzia latissima
Leydigia ipojucae

Leydigia propinqua
Leydigiopsis curvirostris
Leydigiopsis ornata
Notoalona sculpta
Daphniidae
Ceriodaphnia cornuta
Ceriodaphnia richardi
Simocephalus serrulatus
llyocryptidae
llyocryptus spinifer
Macrothricidae
Macrothrix laticornis

Macrothrix trisserialis
Sididae

Diaphanosamérachyurum
Diaphanosoma spinulosum

Pseudosida bidentata
COPEPODA
ORDER CYCLOPOIDA
Cyclopidae
aAihocyclops robustus
Eucyclopteensi
Eucyclops serrulatus

Mesocyclops longisetus
Mesocyclops meridianus

Mesocyclogs
cf. Metacyclops laticornis

cf. Metacyclops mendocinus

Microcyclops anceps
Paracyclops fimbriatus

ORDER CALANOIDA

Diaptomidae

Notodiaptomus incompositus
ORDER HARPACTICOIDA

Canthocamptidae
Atheyella fuhrmani

Figure 3 - Abundance of rotifers in different microhabitatd.ake Jacaré (free-floating plants,

Rotifer (ind.m-3)

1

T T
Free-floating plants Littoral

T
Open water

littoral area and open water). Symbol= mean derfsity m-3); bar= SE.
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Figure 4 - Abundance of pelagic/free-swimming and benthicfpkssociated cladocerans in
different microhabitats of Lake Jacaré (free-flogtplants, littoral area and open
water). Symbol= mean density (ind m-3); bar= SE.
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Figure 5 - Abundance of microcrustaceans (Cladocera and @uagpin the different
microhabitats of the Lake Jacaré (free-floatinghfdalittoral area and open water).
Symbol= mean density (ind m-3); bar= SE.

Adult cyclopoids presented mean density of 26.5td mi® in the open water to 2172.7 ind*rin the
ind mi®. Mean densities in the microhabitats variedree-floating plants (Fig. 6). Copepodit mean
from 42.11 ind i in the free-floating plants to density was 522.84 ind fnand mean densities
10.42 ind ¥ in the open water area (Fig. 6).varied from 696.75 ind tin the free-floating
There were no significant differences of adultplants to 385.76 ind thin the littoral site (Fig. 6).
cyclopoid densities in the microhabitats (p= 0.084There were no significant differences of nauplii
ANOVA). Adult calanoids presented mean densityp= 0.548, ANOVA) and copepodifp= 0.854,
of 24.62 ind 7. N. incompositusvas the unique ANOVA) densities in the three microhabitats.
species of calanoid registered in Lake Jacardtheyella fuhrmaniwas the unique species of
Mean densities in the microhabitats varied fromharpacticoid registered in the samples.
44.78 ind it in the littoral site to 11.46 ind fin  Harpacticoid mean densities varied from 15.97 ind
the open water (Fig. 6). There were no significantn® in the littoral site to 3.47 ind thin the open
differences ofN. incompositusdensities in the water (Fig. 5). There were no significant
three microhabitats (p= 0.554, ANOVA). Nauplii differences ofA. fuhrmanidensities in the three
presented mean density of 3204.04 ind Mean microhabitats (p= 0.070, ANOVA).

densities in the microhabitats varied from 4372.92
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Densities were higher in the littoral area (vegedat that, the effect of microhabitats was weak for most
and no-vegetated) for most of the zooplanktonpf the predominant genera, even though it was
such as benthic and pelagic cladoceranstrong to benthic small-bodie@hydorus (Table
harpacticoids, cyclopoids and rotifers. DespiteS).

Calanoid copepod (ind m-*)
= 8
i i

Cyclopoid copepod (ind m-%)

T T T T T
Freefioating plants Littoral Open water Free-fioating plants Littoral Open water

Copepodit (indm?)
Nauplil (ind.m-*
g

o0
2000+
200
o
T T

T T
Free-fioating plants Linoral Open water Free-floating plants Littoral Open water

Figure 6 - Abundance of copepods in the different microhabitd the Lake Jacaré (free-floating
plants, littoral area and open water). Symbol= naamsity (ind m-3); bar= SE.

Table 3 - Abundance (mean density (ind®nand SE) of the dominant zooplankton genera in ttiree
microhabitats of Lake Jacaré and ANOVA resultsgfistically significant).
Genera Size (mm)  Free-floating plants Littoral Open water  Microhabit at

Cladocerans
Free-swimming

Bosmina 0.33 2254+ 4.9 9+7.38 79.8 £50.2 p>0.05
Ceriodaphnia 0.45 134.7 +116.6 31.95+12.6 13.21+7 p>0.05
Simocephalus 1.2 19.9+11.5 8+6.8 2+1.7 p>0.05
Plant-associated

Chydorus 0.45 80.1+425 15.9+10.3 3.8%+1.6 p<0.05*
Picripleuroxus 0.32 71.2+47.9 13577 27114 p>0.05
Pseudosida 1.7 64.8+47.5 7979 1.3+ 1.3 p>0.05
Copepods

Notodiaptomu 1t 15.3+12.! 44.7 + 34, 11.4+8! p>0.0¢

The Principal Component Analysis using thedominant species, and large-bodi®deudosida
zooplankton abundance showed that the samplesas the most dominant benthic
from the same microhabitats were less similar thacladoceran,occurring at a higher density at the
those from the same sampling dates (Fig. 7). Thimacrophyte banks. In November, the pelagic
variation pattern was similar to that observed fosmall-bodied Bosmina became dominant along
the physico-chemical variables (Fig. 2), indicatingwith rotifers L. leonting P. quadricornis and T.

a weak effect of free-floating plants over time.patina In February and June, rotifers dominated
Ordination axis concentrated 583 % ofthe zooplankton community being represented by
zooplankton data variation, where Axis 1T. pating C. gibba,P. quadricornis L. bulla, and
(horizontal) explained 44 % and Axis 2 (vertical) Testudinellasp. Copepodites and nauplii were the
explained 15 % of this variation. In August, thecommonly dominant zooplankton in three
pelagic small-bodiedCeriodaphniawas the most microhabitats during all the sampling dates.
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Figure 7 - Principal Component Analysis (PCA) of zooplanktoommunity in Lake Jacaré.
Sampling dates are represented by A (August), N'éNtber), F (February), J (June).

DISCUSSION free-floating plants was found on the physico-
chemical variables (Table 1). Nutrient availability
The effect of vegetation on water clarity can be @nd chlorophyll-a did not change significantly in
result of different mechanisms: resuspension dhe vegetated and no-vegetated littoral area
bottom material is reduced by vegetation; aquatiéccordingly, the hypothesis that free-floating
plants provide a refuge to zooplankton againgplants had an effect on the physico-chemical
planktivorous fish; vegetation suppresses algatariables was rejected.
growth due to a reduction of nutrient availability; Few studies have been shown the impact of
plants release allelopathic substances that aie toxaquatic plants on zooplankton in subtropics. These
to algae and invertebrates (Scheffer et al., 1993tudies were conducted in submerged plants of
Scheffer et al., 1998). Several studies in shallowutrophic lakes (Meerhoff et al., 2003; Iglesias et
temperate lakes found the impact of submergedl., 2007), and in laboratory (Meerhoff et al.,
plants on water clarity by these mechanism@006). The present study was the first to
(Scheffer et al., 1994; Moss et al., 1996; Jeppesenvestigate the effect of vegetation on zooplankton
et al., 1999; Scheffer, 1998; van Donk and van d# natural free-floating plants in an oligotrophic
Bund, 2001). Nevertheless, there are very fewubtropical lake.
studies about the effects of aquatic macrophyte cfooplankton community in Lake Jacaré was
the physico-chemicals in shallow tropical anddominated by the small-bodied cladocerans, such
subtropical lakes (Meerhoff et al., 2003; Meerhoffas Bosmina, Ceriodaphniaand Diaphanosoma
et al., 2007; Iglesias et al., 2007). Meerhoff let aNo large-bodiedDaphnia was registered in the
(2003), comparing the effects of submergedake. A study comparing the effect of the plant
(Potamogeton pectinatuys and free-floating beds on zooplankton in the temperate and
(E. crassipep plants on water chemistry in a subtropical lakes have shown that the communities
shallow hypertrophic lake (Uruguay) did not findwith higher species richness of large-bodied taxa
any significant bottom-up process related to théincluding Daphnia spp.) occurred in the
plants. Similarly, Bachmann et al. (2002) havéemperate lakes, whereas small-bodied taxa
shown that the presence of aquatic plantsharacterized the subtropical lakes (Meerhoff et
(emergent, floating-leaved, and submerged) hawal., 2007). Other studies have observed that large-
no effect on the nutrient availability in the bodied pelagic cladocerans, particulabphnia
subtropical shallow lakes from Florida. spp., were uncommon in the (sub) tropics (Pinto-
In the present study, except for the lowerCoelho et al., 2005; Meerhoff et al., 2003; Iglesia
transparency in macrophyte banks, no effects dft al., 2007).
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Iglesias et al. (2007) have found a communityabundance of large-bodied cladocerans observed
dominated by small-sized zooplankton, such am the present study led to reject the hypothesis
nauplii, copepodits, rotifers, arBbsminaas well that free-floating plants act as a refuge for
as Diaphanosoma and N. incompositusin a zooplankton.

shallow eutrophic lake in Uruguay, which was

very similar to the community observed in the
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