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ABSTRACT

The toxicity of cadmium and chromium Rseudokirchneriella subcapitad@éd Microcystis aeruginosa
was evaluated through algal growth rate during $6tposure bioassays. Free metal ion concentrations
were obtained using MINEQL4.61 and used for IC50 determination. Metal acclatons by the
microorganisms were determined and they were faarime dependent on the concentration of Guhd
Cr®*. 1C50 for P. subcapitatavere 0.60umol L' free Cd* and 20umol L* free CF*, while the IC50
values forM. aeruginosavere 0.01zmol L* Co?* and 11.07umol L* Cr®*. P. subcapitataccumulated
higher metal concentrations (0.001 - 0080l Cd mg dry wt. and 0.001 - 0.04mol Cr mg" dry wt)
than the cyanobacteria (0.001 - 0.@inol Cd mg dry wt and 0.001 - 0.02mol Cr mg* dry wt).
Cadmium was more toxic than chromium to both theeorganisms.
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INTRODUCTION vary with environmental conditions and organisms
(Lombardi et al. 2002; De Schamphelaere et al.
The release of different pollutants into the2005; Tépperwien et al. 2007).
environment has increased as result oMetals such as cadmium and chromium are often
industrialization, and thereby, lowered thepresent in industrial wastewaters. Cadmium
environment quality to alarming levels. Amongoriginates from metal plating, metallurgical
such pollutants, trace metals are most importa@loying, mining, ceramics and other industrial
because they interact with the biota and may beperations (Davis et al. 2000), and chromium from
highly toxic; they accumulate in the environmenttanning factories, steel works, industrial
and represent a potential health hazard for humarglectroplating, wood preservation and artificial
Metals may associate with some ecosysterfertilizers (Bagchi et al. 2002).
components resulting in metal complexes withl'he toxic effect of heavy metals on aquatic bista i
inorganic or organic materials. Considering theone of the main problems arising from the
amplitude of possibilities for the metal associatio contamination of natural aquatic ecosystems.
in the environment, metals bioavailability mayAlgae and cyanobacteria are the base of the
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detritus and grazing food webs in aquatic systenBhe main objective of this study was to evaluate
and in addition, cyanobacteria are importanthe toxic effects of the cadmium and chromium on
nitrogen fixers. In this sense, studies on thgreen algaePseudokirchneriella subcapitatand
response of these organisms to metals are ofanobacteria Microcystis aeruginosa using
particular relevance Microalgae constitute an growth rate inhibition as toxicity endpoint. Metal
important group of photosynthetic organisms thaaccumulation by microorganisms was also
present high sensitivity for the metals, and fas th evaluated.

reason they are frequently used for the assessment

of the impacts of these elements on aquatic

ecosystems. Besides their sensitivity, microalgaMATERIALS AND METHODS

are fast growing organisms and relatively simple

to follow and maintain under culture conditions,Microorganisms

what makes them ideal organisms for thePseudokirchneriella subcapitataas kept in batch
ecotoxicological investigations. cultures in the Laboratory of Ecotoxicology and
Cyanobacteria are an ancient, large and divergecophysiology of Aquatic Organisms of Sdo Paulo
group of prokaryotic autotrophs. The widespreadniversity (Sado Carlos, Brazil). The inoculum of
nature of cyanobacteria in different environment$. subcapitatawas obtained from the Phycology
makes them useful as the indicators ofaboratory at Universidade Federal de Sao Carlos,
environmental  pollution  (Whitton ~ 1984). gently donated by Prof. A. Vieira. A strain of the
Knowledge of the cyanobacteria’s response focyanobacteriumMicrocystis aeruginosahat did
metal additions is ecologically important due ® it not produce toxins was gently supplied by Prof.
high frequency in the aquatic environments irDr. S. Azevedo (Federal University of Rio de
several countries around the world, includinglaneiro, RJ, Brazil).

Brazil. Cyanobacterial blooms are very frequenThe green algae was cultured in L.C. Oligo
episodes partially as a consequence of favorabtaedium that did not contain
climatic conditions, but mainly due to the over-ethylenediaminetetraacetic acid (EDTA) (AFNOR
enrichment of environment (Sotero-Santos et all980) and the cyanobacterium in ASM-1 culture
2008; Figueredo and Giani 2009). medium (Gohramet al. 1964), which contained
Literature data show that total metal concentratioBDTA. Culture media were sterilized by
is not a good predictor of bioavailability, toxicit autoclaving at 121 °C during 15 minutes. Algal
and mobility of metals in the environment (Sundeacells were grown in 1 L of media in 2 L
and Huntsman 1998), whereas the concentration bbrosilicate Erlenmeyer flasks under a 12h:12h
free ions are closely related to its bioavailapilit (light:dark cycle) using “cool-white” fluorescent
(Campbell et al. 2002; Almas et al. 2006; Wormdamps, 100 umol photons 7 for the

et al. 2007). Cadmium and chromium have higiChlorophyceae and 50 umol photondsifor the
affinity for the particles (Guéguen et al. 2004),Cyanobacteria. Controlled temperature was used
sediment(Murakami et al. 2008) and biological throughout (24 + 2 °C). Experimental conditions
surfaces (Vigneault and Campbell 2005), whicHollowed the Brazilian protocol (ABNT 2005) for
may account as significant environmental factorgreen algae and American standard practice
that modify Cd and Cr speciation, thus controllinglAPHA 1995) for the cyanobacteria.

their availability and toxicity to organisms.

Due to the environmental importance ofToxicity tests

microalgae and cyanobacteria, studies focusing dP. subcapitataand M. aeruginosawere exposed
the response of these organisms to metals are fok 96 h to a range of chromium and cadmium
particular interest. Both the cadmium andconcentrations. Due to different metal sensitigitie
chromium are present in the contaminated aquat{®@odgher 2005), each alga was submitted to a
ecosystems and pose risk to the aquatic organisntfifferent set of metal concentration range. Fiésat
At present, few information is available in thefrom the algal cultures were used for the
literature that show the sensitivity of two diffate determination of total dissolved metal
algal species (prokaryote and eukaryotic) t@oncentrations. The filtrates were obtained by
cadmium and chromium (Thompson et al. 2002)gentle vacuum filtration of 100 mL of algal culture
as well as their capacity for metal accumulation. using acid washed cellulose acetate membrane
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filters (Schleicher and Schull) with 0.486n pore with the algal cells were dried at 6C for 24 h
size. Total dissolved cadmium concentrations useahd weighed to determine the cell mass per
for the toxicity tests performed wifP. subcapitata volume of the culture (APHA 1995). The
were 0.06, 0.15, 0.29, 0.68 and 1j2@ol L, and microorganisms growth rates (ddys were
1.78, 3.24, 7.11, 14.5 and 28uinol L* for the calculated as described by Fogg (1975) and the
cyanobacteria. Initial total dissolved chromiumdata were used to obtain 96 h IC 50 for each metal.
concentrations used for the toxicity tests wih

subcapitatawere 1.82, 3.57, 7.36, 14.9 and 27.4Metal analysis _
umol L%, and those foM. aeruginosawere 1.87, 10 determine the total dissolved metals at the

3.59, 7.41, 15.2 and 29ifnol L. beginning of the experiments, the samples were

Considering that the free metal ions constitute affltered through the membrane filters (cellulose
important metal fraction related to the?acetate, Schieicher and Schiill) with Ow#8 pore
bioavailability to microalgae and cyanobacteriaSiZze and then acidified with concentrated nitric
the chemical equilibrium software MINEQK.61 acid (J. T. Baker). Total cell_metal (absorbed gnd
(MINEQL"* version4.61 2009) was used for the adsorbed by the mlcroorggnlsms) was determined
calculation of C¥ and Cd" concentrations. In the @t the end of the experiments using the cells
present study, this was particularly importanfeta'”ed m_the membrqne fl_Iters._ These were dried
because the culture medium differed in thei@nd submitted to acid digestion (3.0 mL of
composition and chromium and cadmium havéoncentrated HN©and 1.0 mL of KO, J. T.
different affinities for organic ligands. Baker). The results are expressedua®ol metal
The metals were furnished as CA@IGH,O (J. Mg" dry weight of algae (APHA 1995). Three
T. Baker) and KCr,O, (Merck) titrimetric replicates were used per metal determination.
solutions diluted to 8.9x10 mol L' cd and Analytical blank was performed using three clean
1.9x10% mol L™ Cr. Tests were carried out in 250filters according to Van Loon (1985). All the
mL borosilicate Erlenmeyer flasks containing 1005amples were analyzed by graphite furnace atomic
mL of medium to which suitable volumes of metal@bsorption spectrometry (Varian AA 220). The
standards were added to achieve the total findletection limits for Cd and Cr were calculated as
concentrations reported above. The cellsPof described by Miller and Miller (1993) and were
subcapitataand M. aeruginosain the exponential 4x107°mol L™ for Cd and 1.6x18mol L™ for Cr.
growth phase were inoculated to test flasks to

provide initial cell densities of approximately“10 Data analysis

cells mL™. Controls (without added chromium or The 96 h IC50 values and their 95% confidence
cadmium) were considered using the sam#tervals were determined by the Trimmed
conditions as the experiments with the metals. Thepearman-Karber method (Hamilton et al. 1977).
flasks were kept on an orbital shaker at 150 rpmlhe result for the dry weight was submitted to
Environmental conditions used for the experimentéests for normality (Shapiro-Wilk's test) and
were the same as described for algal culturd¥omogeneity (Bartlett's test). The results were
(ABNT 2005; APHA 1995). All the materials used then analyzed through ANOVA and Dunnett's test
for culture and toxicity experiments were washedvas applied to detect the significant differences
with 10% HNQ for seven days and rinsed with @mong the controls and metal treatments. Tukey’s
distilled water prior to use. All the experimentstest (post hoc test) was used in multiple
were performed with three replicates percomparisons to detect the significant differences
treatment. among the total dissolved metal and free metal ion
The samples (2.0 mL) were taken every 24 h frorgoncentrations. The above statistical tests were ru
each test flask, fixed with acid Lugol's iodine using the BioEstat 4.0 program (Ayres et al. 2005).
solution and used for the determination of cell

density. The cells were counted using an Improved

Newbauer-Bright Line hemocytometer underRESULTS

optical microscope (Carl Zeiss, Standard model

25). Dry weight of the microorganisms wereMetal speciation results are reported in Figure 1.
obtained by filtering a known volume of the The calculations showed that the presence of
culture on a pre-weighed glass-fiber filter. Fidter EDTA in ASM-1 culture medium significantly
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reduced free Cd ions concentration in the culture bioavailable fraction, toxicity evaluation (IC50)
(Tukey's testP<0.05). The concentrations of total was based on the free metal ions concentration and
dissolved cadmium used in the experiments witimot on their total dissolved concentrations.

the cyanobacteria ranged from 1.78 to 281ol The IC50 values for the metals for the
L, with its free ion concentration ranging from Omicroorganisms are shown in Table 1. Based on
to 27%. In relation to chromium, the furnishedIC50 values, it was concluded that cadmium was
range of total concentration was 1.87 to 4@mbl ~ more toxic than chromium to both the algae
L which corresponded to a free 5Cr subcapitataand cyanobacteridl. aeruginosaFor
concentration of 100%. Total dissolved metathe green algae, values of IC50 were Q| L™
concentration in L.C. Oligo culture medium, free Cd* and 20umol L* free CP*. The values
which did not contain EDTA, corresponded to aobtained for the cyanobacteria revealed an IC 50
free Cd"* ion concentration of 96% and 100% forof 0.01umol L™ free Cd*and 11.07umol L* free

Cr. Considering these different behaviors of metaCr®".

ions in the culture media and its importance as
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Figure 1 - Initial total dissolved and free metal concentmasi for the experimental treatments
with P. subcapitatd A and C) andV. aeruginosgB and D). Values are meanSb of
3 replicates. Means with different letters are Higantly different (Tukey’s test,
P<0.05).Error bars denote standard deviation.

Table 1 -Inhibition concentration values (IC50) of free aistfor microorganisms. Concentration values are
reported inpumol L. Values given in parenthesis are 95% confidermidi
Cd2+ Cr6+
P. subcapitata M. aeruginosa P. subcapitata M. aeruginosa
0.60 (0.50 - 0.72) 0.01 (0.006 — 0.02) 20 (18 - 23) 11.07 (9.60 — 12.76)
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The results of IC50 were supported by the?. subcapitata and M. aeruginosa which
reduction of dry weight for both the continued to accumulate the metal above the 20.0
microorganisms.A significant decrease of dry pmol L* free CP*. Cd accumulated byM.
weight for the green algae was observed at 0.1&eruginosadid not increase above 0.11 umot L
umol L™ free C&" (Dunnett's test,P<0.05). At Cd*, while green algae accumulated above 1.0
14.9 umol L™ free CF*, the dry weight forP. umol L free Cd*. The increase of accumulated
subcapitatawere lower than that observed in theCd by M. aeruginosain relation to free Cd was
controls (Dunnett’s tes® <0.05). A reduction of Smaller than that verified for the green algRe.
dry weight forM. aeruginosavas observed at 0.11 subcapitata  accumulated  higher ~ metal
umol L free Cd* and 7.41umol L™ free CF*  concentrations (0.001 - 0.05 pmol Cd trdyy wt
(Dunnett's testP<0.05) (Table 2). and 0.001 - 0.04 umol Cr mgdry wt) than the
Total cellular metal concentrations are shown ifyanobacteria (0.001 - 0.01 pumol Cd hrry wt
Figure 2. The total cellular metal increased wittand 0.001 - 0.02 pumol Cr igiry wt).

increasing of the free metal ions in the solution f

Table 2 - Dry weight (mg L) for microorganisms after exposure to metals. ¥alare mean $D of 3 replicates.
Free metals concentrations are reporteahiiol L™, *statistically different from Control (Dunnetttest,P<0.05).
P. subcapitata M. aeruginosa
cd* Dry weight cr® Dry weight cd* Dry weight Cr®  Dry weight
Control  137.1+23.4 Control  110.7+18.5 Control 222+ 4.4 Control  20.4+ 4.7
0.06 92.2+ 27.3 1.82 121.5+ 29.8 0.0001 21.9+ 3.0 1.87 21.8+6.3
0.15 89.9+ 31.0 3.57 111.9+ 39.1 0.0002 21.8+6.2 3.59 19.7+5.0

0.28 64.5+ 16.¢ 7.36 111.2+ 2.€ 0.002 17.9+ 4.2 7.41 11.3+ 1.6

0.6¢ 24.9+ 6.3 14.¢ 49.6+19.€ 0.11 6.8+ 2.C 15.2( 7.4+1.7

1.24 9.7+2.7 27.4 9.8+2.3 7.68 34+1.8 29.70 7.1+1.6
DISCUSSION The IC50 for the cadmium obtained in the present

study forP. subcapitatg0.60umol L™ free Cd")
In unpolluted freshwater environments, dissolveavas lower than the value obtained by Castaiié et
metal concentrations can reach values close &. (2003) for the same metal and same algal
4x10° mol L™ Cd and4x10” mol L™ Cr (Ochieng species. Using the culture media with EDTA in
et al. 2008). It has been detected that in ththeir algal bioassays, the authors observed that
contaminated areas, water may contain dissolved@50 value for the Cd based on MINEQL
metal concentrations as high as 9%h@ol L' Cd  calculated free Gdl ion was 1.06umol L?, lower
(Sainz et al. 2004) and 2xi0mol L* Cr than that based on the total metal concentration
(Bobrowski et al. 2004). In the present study, th¢2.25umol L™ total Cd). The present results were
concentration of Cd and Cr to which thein agreement to those of Errecalde et al. (1998),
microorganisms were exposed were similar to th@ho found 50% reduction in the growth rateRof
values observed in impacted aquatic systemgubcapitataat 0.65umol L™ free Cd" after 72 h of
However, the concentration of organic andmetal exposure. However, the IC50 value of 20
inorganic ligands in the natural waters normallyymo| L free Cf'obtained forP. subcapitatain
exceeds the trace metal concentrationghe present study was lower than that found by
(Gopalakrishnan et al. 2008), thereby forming thegrady et al. (1994). Using the test medium with
complexes and rending the metal ions IesgpTA the authors reported that the growthPof

bioavailable to the aquatic organisms. Becaus§pcapitatawas affected only at concentrations of
free metal concentrations are closely related €o thotg| Cr higher than 2x10mol L™.

bioavailable fraction of the total dissolved metalFor M. aeruginosa the results showed an I1C50

the metals toxicity was related it directly to the,,5,,e of 0.0lumol L free Cd*. This value was

free ion species in the culture media. approximately 80-fold lower than the IC50
obtained if total dissolved Cd was considered. This
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emphasized the importance of free ions estimatiothan was used in the present work. Zhou et al.
in the toxicity tests with the microorganisms.(2006) found inhibition ofM. aeruginosagrowth
Neelam and Ray (2003) found 50% inhibition ofon the basis of chlorophyll a content gtishol L™
photosynthetic pigments idicrocystissp.at 0.27 total Cd in the medium with chelator addition
umol L™ total Cd in the cultures with less EDTA (1.78pmol L™ free Cd*, MINEQL" calculation).
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Figure 2 - Metals accumulated in the microorganisms afteh @ exposure. A and C: Cd and Cr
accumulated irP. subcapitataB and D: Cd and Cr accumulated Mh aeruginosa
Error bars denote standard deviation.

Only few studies have been reported in literaturéhat the behavior of metals was influenced by the
about Cf* toxicity to cyanobacteria. Thompson etexperimental conditions used for algal bioassays
al. (2002) found growth inhibition of and suggested working with EDTA free medium
Synechococcusp. andNostocsp. at 1.0x18 mol  to avoid complexation with the metals, especially
L*and 750umol L* total Cr, respectively. Thus, for cadmium. Moreover, as shown by the results,
the present study represented an attempt to fill the chelating effect of EDTA varied according to
gap in the information about the toxic effect ofthe metal, so special care should be taken when
chromium on cyanobacteria. interpreting the results.

In the present investigation, EDTA was kept in thel'he population growth rate is one of the important
experiments with M. aeruginosa because endpoints used in the toxicity tests since toxic
preliminary studies demonstrated that ASM-leffects are reflected in cell growth. The growth of
medium without this metal chelator was notP. subcapitateand M. aeruginosadecreased with
suitable for the growth of the tested cyanobacterisacreasing the cadmium and  chromium
(Rodgher 2005). It is known that EDTA is concentrations. Reduction in the growth rate
necessary to maintain Fe in the solution, aecaused by exposure to metals can be attributed to
important oligoelement for microalgae (Lewisthe loss of cellular constituents and poor nutrient
1995). Chemical speciation modeling of theuptake, which may be a consequence of altered
present results showed that the presence of suotembrane permeability and inhibition of the
ligand reduced free Gtions in the medium, but photosynthesis (Pistocchi et al. 2000).

not CF*. Guéguen et al. (2003) also demonstrated
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The accumulation of metals B subcapitateand The results of the present study demonstrated the
M. aeruginosawas dependent on external freeimportance of using free metal ion concentrations
metal ion concentrations, with higher metalto evaluate the metal toxicity to phytoplankton
accumulation by the green algae when comparezklls. This is most important when metal ligands
to the cyanobacteria.Similarly, a positive are added to the culture media, since it is
correlation between the accumulated Cd by greemecessary to optimize the growth of the
algae and the concentration of free Cd in thenicroorganisms.

solution has been described by Wang and Déiinally, it is important to consider two points:
(2006). The authors showed the accumulation ahetal accumulation by the microorganisms and
Cd by Chlamydomonas reinhardtiat a medium difference in sensitivity. The accumulation of the
concentration over 1.mol L™ free Cd*. Also, metals byP. subcapitataandM. aeruginosacould
Brady et al. (1994) reported thatbe considered a potential contamination source in
Pseudokirchneriellasp. was the most efficient Cr the aquatic system$he metal accumulated by the
accumulator at 2xI® mol L™ in comparison to cell could be interpreted as the total particulate
Chlorella sp. andScenedesmusp., but all the metal (metal species as quantified in this study).
three species have accumulated the metal. For example, the metal that is transported with the
In relation to the cyanobacteria, the present studsell to other trophic levels, as demonstrated in
disagreed with those of Klimmek et al. (2001) anditerature (Fisher and Hook 2002; Wilding and
Zeng et al. (2009). Zeng et al. (2009) observed thdaltby 2006; Geffard et al. 2008). In additidvi,
accumulation of Cd byM. aeruginosa at aeruginosashowed higher sensibility to the metals
concentrations higher than 0.3@mol L' free in comparison to the green algae, showing that the
Cd?*, while Klimmek et al. (2001) showed thdt  Cyanobacterium was more suitable for monitoring
aeruginosa accumulated Cd at a mediumthe contaminated aquatic bodies with Cd and Cr.
concentration of 9xIbH mol L* total Cd. The However, other factors might influence the metal
present results showed that Cd accumulatiomby toxicity to the microorganisms in the environment.
aeruginosareached a saturation level at Opirhol ~ Future studies should be performed in order to
L' free Cd', above which no increase wasbetter assess the sensitivity of the green algde an
observed. This difference could be explained bgyanobacteria to the metals.

the longer exposure time employed in the present

study (96 h) as compared to lower exposure time
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