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Abstract: The second-generation bioethanol employs lignocellulosic materials degraded by microbial 

cellulases in their production. The fungus Trichoderma reesei is one of the main microorganisms producing 

cellulases, and its genetic modification can lead to the optimization in obtaining hydrolytic enzymes. This 

work carried out the deletion of the sequence that encodes the zinc finger motif of the transcription factor 

ACE1 (cellulase expression repressor I) of the fungus T. reesei RUT-C30. The transformation of the RUT-

C30 lineage was confirmed by amplification of the 989 bp fragment relative to the selection marker, and by 

the absence of the zinc finger region amplification in mutants, named T. reesei RUT-C30Δzface1. The 

production of cellulases by mutants was compared to RUT-C30 and measured with substrates 

carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel®) and Whatman filter paper (PF). The 

results demonstrated that RUT-C30Δzface1 has cellulolytic activity increased 3.2-fold in Avicel and 2.1-fold 

in CMC and PF. The mutants presented 1.4-fold higher sugar released in the hydrolysis of the biomass 

HIGHLIGHTS 
 

 Enhance of Trichoderma reesei RUT-C30∆zface1. 

 Deletion of zinc finger of the repressor transcription factor cellulase ACE1. 

 Optimized fungal strain for the production of cellulase. 

 Greater efficiency in the enzymatic activity and sugarcane hydrolysis. 
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assays. These results suggest that the partial deletion of ace1 gene is an important strategy in achieving 

bioethanol production on an industrial scale at a competitive price in the fuel market. 

Keywords: Trichoderma reesei; zinc finger motif deletion; ACE1; cellulase; bioethanol. 

INTRODUCTION 

On average, 80% of the energy generated in the world comes from fossil fuels; however, these sources 
of energy are not renewable, and their reserves are rapidly depleting. Predictions estimate that in some 
decades fossil fuel reserves will suffer total depletion [1-3]. Biomass is the most abundant carbon source in 
the world and, therefore, has become one of the main sources of energy produced and consumed in the 
world [4]. 

The term “second generation fuels” refers to the production of ethanol from lignocellulosic biomass [5], 
which derived from plant residues and the production of first generation ethanol, crops intended for the 
production of bioethanol, forest residues, industrial waste, or solid waste [6,7]. However, there are relevant 
obstacles that need to be overcome, such as the cost of production, technological problems, and 
environmental problems [8]. 

In order to avoid uncontrolled expansion of cultivated areas, biotechnological techniques have been 
employed to allow the use of residual lignocellulosic biomass from sugarcane to produce bioethanol [8]. 

Second generation ethanol employs a more complex substrate, which is not easily accessible for 
microbial fermentation. The lignocellulosic materials consist mainly of cellulose (40-60% of the total dry 
weight), hemicellulose (20-40%), and lignin (10-25%) [6,9]. 

The lignocellulose is processed for bioethanol production through three major operations: (1) 
pretreatment (i.e., the delignification necessary to release cellulose and hemicellulose before hydrolysis), 
(2) cellulose and hemicellulose hydrolysis (i.e., the production of fermentable sugars, such as glucose, 
xylose, arabinose, galactose, and mannose), and (3) reducing sugars fermentation [8,10]. The enzymatic 
hydrolysis process has been performed by microorganisms that have cellulolytic enzymes secretion ability 
[1]. Cellulolytic microorganisms, like bacteria and filamentous fungi, produce a set of enzymes that 
synergically hydrolyze crystalline cellulose to small oligosaccharides and to glucose [11]. Biological 
hydrolysis can reduce approximately 40% of the production cost of ethanol from biomass [12]. 

T. reesei is a mesophilic filamentous fungus that quickly became one of the most important fungi for 
biotechnology, due to its great capacity to produce a large number of cellulolytic enzymes [13]. T. reesei 
genome comprises 9,143 genes [14]. Five important transcription factors that regulates cellulases and 
hemicellulases synthesis have been described as XYR1, ACE2, and the 2/3/5 HAP complex-like positive 
regulators and negative regulators, such as ACE1 and CRE1 (catabolic carbon repressor) [15]. ACE1 
contains three Cys2His2-type zinc finger sequences and is capable to binding in vitro to 8 sites containing 5 
'AGGCA sequence over a 1.15 kb cellobiohydrolase 1 (cbh1) promoter [16]. 

Natick laboratories were the pioneers in the generation of mutants from T. reesei. QM6a, the mutant 
QM9414, was the most successful and presented cellulase production up to four times greater than the 
wild-type lineage. From the line, QM9414 was created by the hypercellulolytic mutant RUT-C30, which is 
the most reported and used mutant strain of all in industrial processes involving the hydrolysis of biomass 
[13]. 

The objective of this work was to transform the RUT-C30 line by deleting the sequence that encodes 
the zinc finger of the repressor transcription factor cellulase ACE1 to obtain an optimized cell line for the 
production of cellulase. 

MATERIAL AND METHODS  

Strains and Plasmids 

The target of experiments was the T. reesei RUT-C30 strain, which was stored in a malt extract agar 

medium (MEX - 0.3% malt extract, 0.5% mycological peptone, 1.5% agar and 1% glucose with pH 5.4) until 

15 days for the strain maintenance. For deletion cassette construction were used the pRS426 vector [17], 

the hph selection marker (which confers resistance to hygromycin B), the 5' and 3' flanking regions of the 

encoding sequence of the zinc finger motif of the cellulase repressor gene ace1 and S. cerevisiae SC9721. 

The yeast strain was stored in YPD medium (1% yeast extract, 2% peptone, and 2% glucose).  
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Primers Construction and Obtaining of ace1 5’ and 3' Regions and hph Selection Marker 

In order to promote only the deletion of zinc finger motifs region in ACE1 transcription factor, specific 

primers were generated for flanking sequences of this gene region. First, the T. reesei ace1 gene sequence 

(accession number 75418 deposited at the Joint Genome Institute (JGI) website: http://genome.jgi-psf.org/) 

was translated using the BioEdit® program (version 7.1.3.0). Subsequently the zinc finger motifs sequence 

(Tyr, Phe)-X-Cys-X2-5-Cys-X3-(Tyr, Phe)-X5-Leu-X2-His-X3-5-His was searched for primers construction. 

Specific complementary sequences were added to the primers for 5' and 3' regions flanking the target 

sequence and the hph selection marker, according to the Schuster-generated database [18] (Table I). The 

5' and 3' regions were amplified from the T. reesei QM6a fungus, and the hph was amplified from pΔku70 

(provided by Dr. Roberto Nascimento Silva). The mixture PCR contained 2.5 μL of Taq DNA polymerase 

buffer (Invitrogen), 0.5 μL of phosphate deoxyribonucleotides 10 mM, 1.0 μL of MgCl2 25 mM, 0.5 μL of 

Primer Forward and Reverse 100 pmol/μL, 1 μL of DNA sample 0.2 μg/μL, 1.0 μL of High Fidelity® Taq 

DNA polymerase (Invitrogen), and 18.5 μL of Milli-Q nuclease free water. The protocol was: 1 cycle of 95°C 

for 3 min; 35 cycles of 94 °C for 30 s; 60 °C for 30 s; 72 °C for 2 min; and a final extension at 72 °C for 10 

min. The amplified sequences were purified using a PureLink® kit (Invitrogen), following the manufacturer's 

guidelines. 

Deletion Cassette Construction and Yeast Mediated Recombination  

The methodology used for the deletion cassette construction was adapted from Mota Júnior and Colot 

and coauthors [19,20] (Figure 1). Yeast pre-inoculum was prepared in 10 mL of YPD medium, which was 

incubated for 16 h at 30°C under 200 rpm orbital shaking. The following day, 2.5 mL of this pre-inoculum 

was inoculated into 100 mL of YPD medium and incubated for 4 h under the same conditions described 

before. Subsequently, the inoculum was centrifuged at 5000 g for 5 min, the supernatant was rejected, the 

pellet was resuspended in 20 mL of sterile water, and the centrifugation process was repeated. The 

precipitate was resuspended with 1 mL of lithium acetate, 1 M, and TE buffer (100 mM Tris-HCl, 100 μM 

EDTA) solution.  

After, 100 μL of the competent cells were added to Mix 1, which contained 200 ng of both 5' and 3' 

fragments flanking the target sequence, 100 ng of selection marker (hph), 100 μg salmon sperm, and 100 

ng of linearized pRS426 vector through the digestion reaction with restriction enzymes EcoRI and XhoI. 

Also added in this mixture was 600 μL of Mix 2 (i.e., 800 μL of polyethylene glycol 3550 50%, 100 μL of 

lithium acetate 1 M, and 100 μL of Milli-Q water). Homogenization was performed by inversion, and the 

mixture was incubated at 30°C for 30 min under 200 rpm shaking. In addition, 70 μL of dimethyl sulfoxide 

(DMSO) was added, and the mixture was homogenized by inversion and incubated at 42°C for 15 min, 

followed by 2 minutes in an ice bath. Afterwards, 700 μL of Milli-Q water was added and mixed by 

inversion. Another centrifugation was performed for 30 s at 6080 g. It discarded 800 μL of the supernatant, 

and the remainder was plated in SC-URA medium (0.7% YNB [Yeast Nitrogen Base without amino acids], 

2% glucose, 1.7% agar, and the following amino acids: 0.01% leucine, 0.01% lysine, 0.01% tryptophan 

0.01%, and 0.005% histidine) with Drigalski loop aid. The incubation was performed at 30°C for three to 

four days until growth of visible yeast colonies. The experiment controls were as follows: negative control I 

(transformation only with water and yeast); negative control II (transformation with open vector and salmon 

sperm); and positive control (transformation with closed vector and salmon sperm). 

Methodology for the yeast genomic DNA extraction after the deletion cassette construction was 

followed, as described by Mota Júnior [19]. The final deletion cassette was obtained through a PCR, using 

High Fidelity® Taq DNA polymerase (Invitrogen), yeast genomic DNA, and ace1hph5F and ace1hph3R 

primers, according to the conditions described above with modifications in the 4 min extension time. 
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Figure 1. Schematic representation of yeast-mediated S. cerevisiae vector construction and confirmation of deletion 

cassette insertion, as modified from Schuster and coauthors [18]. 

T. reesei RUT-C30 Transformation  

After the deletion cassette assembly, the T. reesei RUT-C30 strain protoplasts were transformed 

according to Schuster and coauthors [18]. After transformation, the visible growth transformants were 

transferred to several plates with MEX medium and selection reagent (100 μg/mL hygromycin) and 

incubated at 30°C until sporulation. From these plates, a spore solution was prepared and inoculated in 

MEX medium plus Triton X-100 0.1% to obtain isolated colonies. The cultured colonies were inoculated on 

plates with MEX medium with selection reagent and incubated at 30°C until sporulation. 

T. reesei RUT- C30 ACE1 Deletion Confirmation  

First, the genomic DNA of each strain was extracted according to the methodology adapted from 

Cassago and coauthors, Doyle, and Plaza and coauthors [21-23]. The fungus was grown in MEX medium, 

incubated at 30°C and 150 rpm for 24 h. Approximately 0.5 mL of the mycelium, 600 μL of the extraction 

solution (0.05 M EDTA; 1% SDS) and 1 g of glass beads 212-300 m (Sigma) were transferred to a 1.5 

mL microtube and mixed in the Vortex-Genie2® for 10 min, followed by incubation at 66°C for 20 min. The 

sample was centrifuged at 16,000 g for 10 min at room temperature, and 400 μL of the supernatant was 

transferred to a new microtube.  

Then, 50 μL of RNase 20 mg/mL was added by inverting the mixture and followed by incubation at 

37°C for 60 min at 500 rpm. It was added to 300 μL of phenol, mixed by inversion, and followed by 

centrifugation at 16,000 g for 10 min. Next, 400 μL of the supernatant was transferred to a new microtube, 

and 400 μL of chloroform was added: isoamyl alcohol (24:1), followed by centrifugation at 16,000 g for 5 
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min. This step was repeated twice and 400 μL of the supernatant was transferred to a microtube with 63 μL 

of 5 M potassium acetate (pH 4.8) and mixed by inversion. The samples were incubated at 2°C for 35 min 

and centrifugated at 17,320 g for 5 min at 4°C. Then, 400 μL of the supernatant was transferred to a new 

microtube, and 1 mL of 100% ice cold ethanol was mixed by inversion, followed by centrifugation at 17,320 

g for 5 min at 4°C. The supernatant was discarded, and the sample was washed twice with 500 μL of 70% 

ice cold ethanol. After the sample dried, the precipitate was resuspended in 50 μL of TE/RNase buffer. 

The T. reesei strain transformation was verified by PCR performed with oligonucleotides hphNestF and 

hphNestR for hph gene amplification (see Table 1). The PCR mixture contained 12.5 μL of GoTaq® Long 

PCR Master Mix (Promega), 0.5 μL of each primer (100 pmol/μL), 1.0 μL of genomic DNA (150 ng/μL), and 

10.5 μL of Milli-Q water, at the following temperatures: 1 cycle of 95 °C for 3 min; 35 cycles of 95 °C for 30 

s, 55 °C for 30 s, and 72 °C for 1 min and 30 s; followed by a final extension of 10 min at 72 °C. A second 

reaction for confirmation was performed with the oligonucleotides ace1SC and ace1ZFSCR for 

amplification of the zinc finger coding region (see Table 1). The PCR reaction contained 1.0 μL of GoTaq® 

(Promega), 1.0 μL of each primer (100 pmol/μL), 1.0 μL of genomic DNA (100 ng/μL), 5.0 μL of 10X Taq 

Buffer, 1.0 μL dNTP (10 mM), and 40.0 μL Milli-Q Water, at the following temperatures: 1 cycle of 96°C for 

3 min, 35 cycles of 95 °C for 30 s, 48°C for 40 s, and 72 °C for 1 min, followed by 1 cycle of 10 min at 72 

°C.  

Table 1. Primers for 5’, 3’ regions, hph and zinc finger amplification. 

Primer Sequence (5' - 3') 
Tm 

(°C)1 

Expected 

fragment (pb) 

ace1hph5F 
GTAACGCCAGGGTTTTCCCAGTCACGACGGCATGA

ACAAACAAGAGCCTG 
70,8 

958 

ace1hph5R 
ATCCACTTAACGTTACTGAAATCTCCAACACAGCTC

CTCGGGGGTGGCG 
70,3 

ace1hph3F 
CTCCTTCAATATCATCTTCTGTCTCCGACGGCTGGA

CCTATGTCCGCACC 
69,6 

1021 

ace1hph3R 
GCGGATAACAATTTCACACAGGAAACAGCGCTCAAC

TCAAGCCTGCTGCTG 
70,1 

hphF GTCGGAGACAGAAGATGATATTGAAGGAGC 59,8 
1447 

hphR GTTGGAGATTTCAGTAACGTTAAGTGGAT 56,9 

hphNest F GCGATTTGTGTACGCCCGACAG 60,8 
989 

hphNest R CGCCCTTCCTCCCTTTATTTC 55,7 

ace1SC CCTTCATCATCAACGATGAGG 53,2 
479 

ace1ZFSCR CGGCTGGCCCACCGAGAAG 63,8 

1Tm (°C) – melting temperature. 

Growth Rate of Strains  

The growth characteristics was observed after inoculum of the strains on MEX agar medium, 

supplemented with 1% glucose and incubation at 28°C by 144 h. The colonies’ growth was measured every 

24 h, and the results from RUT-C30Δzface1-1, RUT-C30Δzface1-2, and RUT-C30Δzface1-3 were 

compared with the RUT-C30 strain.  

Enzymatic Production 

A methodology adapted from Ahamed and Vermette [24] was used for enzymatic production. The 

transformed RUT-C30 T. reesei cultures were inoculated in a 125 mL Erlenmeyer flask with 20 mL culture 

medium for cellulase production (1% cellulose, 1% yeast extract, 1% glucose, 0.03% MgSO4.7H2O, 0.2% 

KH2PO4, 0.14% (NH4)2SO4, 0.04% CaCl2, and 4 mL element traces solution 50X), following incubation at 

30°C under orbital shaking at 150 rpm for 24 h. Afterwards, 5 mL of medium was added for cellulase 
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induction with 25% lactose, without glucose and cellulose. It was incubated again under the same 

conditions for 24 h. The cultures obtained from the liquid media were vacuum filtered on through a Büchner 

funnel and Whatman Grade 1 filter paper, yielding a cell-free filtrate and used as enzymatic extract to 

perform the determination of activities of cellulase and other glycoside hydrolases (i.e., xylanase and 

pectinase). 

Enzyme Assays 

The cellulase activities of endoglucanase, exoglucanase, and total cellulase were performed using 

carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel®) and Whatman (PF) filter paper as 

substrates, respectively. The activities of pectinase, invertase, and xylanase were performed using pectin, 

sucrose, and xylan, respectively, according to the methodology described by Miller [25] – using a 3,5-

dinitrosalicylic acid reagent (DNS). The system was standardized by a glucose, galacturonic acid, and 

xylose calibration curves of 0.1 to 1.0 mg/mL. One enzymatic activity unit was defined as the enzyme 

amount that release 1 μmol of reducing sugar per minute under the assay conditions. 

Hydrolysis Tests 

Enzymatic Index 

The enzymatic index was measured by plate hydrolysis tests, according to the methodology adapted 

from Florencio and coauthors [26]. The strains were inoculated for 96 h at 28 °C in Petri dishes containing 

solid MEX medium and supplemented with 2% glucose and 1% CMC. After 96 h, 10 mL of Congo red 

solution (2.5 g/L) was added and incubated at room temperature for 15 min. After, the cultures were 

incubated with NaCl 1 mol/L for 15 min. After formation of the hydrolysis halo, the enzymatic index was 

calculated by measuring the diameter of the hydrolysis halo and the size of the colonies. 

Biomass Hydrolysis 

The biomass hydrolysis efficiency by enzymatic extract of each mutant was carried out according to the 

adapted methodology described by Ribeiro and coauthors [27] and compared to enzymatic extract from 

RUT-C30 strain. In addition, we used 20 mg ground sugarcane bagasse, 0.2 mg extract protein and 

sufficient amount of sodium acetate buffer 100 mM pH 5.0 for a 1.5 mL. The samples were incubated at    

30 °C and aliquots were withdrawn at 24 h, followed by boiling for 10 min. Subsequently, the samples were 

centrifuged for 10 min at 10,000 g, and the supernatant was used for reducing sugar determination 

according to Miller [25]. 

Results Reproducibility and Statistical Analysis  

The data were submitted to analysis of variance (ANOVA) in the GraphPad Prisma® 6.0, and the 

means were compared by the Bonferroni's or Dunnett's tests when significant differences were observed. 

RESULTS 

Construction of T. reesei RUT-C30 Deletion Mutants 

The deletion cassette was assembled by recombination and mediated by S. cerevisiae (SC9721) yeast 

using the purified 5' and 3' region fragments, purified hph selection marker, and previously digested and 

purified plasmid pRS426. After recombination, the yeast genomic DNA was used for the deletion cassette 

amplification. Figure 2 A shows the predicted PCR product with 3501 pb, which was purified and used in T. 

reesei RUT-C30 transformation assays. 

After the T. reesei RUT-C30 strain transformation with the ace1 deletion cassette, the genomic DNA 

was extracted in order to confirm the deletion. First, the insertion of the deletion cassette was verified on 

three mutants by amplification of the hph selection marker (Figure 2 B), which were named RUT-

C30Δzface1-1, RUT-C30Δzface1-2, and RUT-C30Δzface1-3. The observed fragment was 989 pb, which 

confirms the presence of the selection marker. After, the deletion of the sequence encoding the zinc finger 

of ACE1 was confirmed by the absence of amplification of the region containing the zinc finger sequence in 

the three mutants, whereas the RUT-C30 and QM9414 strains showed amplification of a fragment with 479 

pb (see Figure 2C). 
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(a) 

 

(b) 

 

(c) 

Figure 2. (A) Deletion cassette amplification. Horizontal electrophoresis by 0.7% agarose gel with amplification of the 
fragment with the hph deletion cassette with 3,500 base pairs. Symbols: (L) DNA Ladder 1Kb Ludwig® Biotec; (1) 
sample 1 and (2) sample 2.  (B) Confirmation of deletion cassette insertion into the transformed T. reesei strains. 
Horizontal electrophoresis by 0.7% agarose gel, in which amplification of a fragment of the hph selection marker 
region is observed with 989 base pairs. Symbols: (L) DNA Ladder 1 Kb Ludwig® Biotec; (M1) RUT-C30Δzface1-1; 
(M2) RUT-C30Δzface1-2; (M3) RUT-C30Δzface1-3 and (PC) positive reaction control (hph). (C) Confirmation of the 
deletion of the zinc finger encoding region of the ACE1 transcription factor. Horizontal electrophoresis by 1.5% 
agarose gel, demonstrating the amplification of a fragment of the coding region of the zinc finger, with 479 base pairs 
for the positive control and parental lineage. Because there was a deletion on the mutant strains, there was no 
amplification. Symbols: (L) DNA Ladder 1kb RTU (Reading-to-use), (PC) Positive Control, (R) RUT-C30, (M1) RUT-
C30∆zface1-1, (M2) RUT-C30∆zface1-2 e (M3) RUT-C30∆zface1-3. 

Lineage Growth Rate 

After 24 h of incubation, only the mutant strains showed growth. After 96 h of incubation, the mutants 

had a mycelial size of 2.54 times greater than the RUT-C30 strain. At 120 h, there was a significant 

difference between the mycelial sizes of the mutants and the parental strain. The RUT-C30 exceeded the 

size of the mutant strains only after 144 h of incubation (Figure 3). 

The superior growth of the mutant strains on initial incubation time can leave to an increase of the 

enzymatic secretion in a short period of time. Thus, the next assay investigated the enzymatic production 

after 24 h of induction. 

 

Figure 3. Mycelial growth of mutants, relative to RUT-C30. The colonies of the three mutant and parental lines were 
measured in millimeters every 24 hours for a total of 144 hours of incubation at 28°C. The statistical analysis was 
performed according to the Bonferroni's test using significance level of p < 0.05, in which (**) p < 0.01, (***) p < 0.001 
and (****) p < 0.0001. Error bars represent the standard deviation of the results for each variable. 

Enzymatic Production 

The results after 24 h of enzymatic induction with lactose show an increase in the cellulases and 

pectinases production by the mutant strains, when compared to the RUT-C30. The production of 

exoglucanase was greater by mutants RUT-C30Δzface1-1 and RUT-C30Δzface1-3, which show 3.2 and 

2.0-fold higher, respectively, than RUT-C30 (Figure 4). The production of total cellulase also showed an 

increase of 2.1-fold for RUT-C30Δzface1-1, 1.6-fold for RUT-C30Δzface1-2, and 1.8-fold for RUT-
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C30Δzface1-3. The RUT-C30Δzface1-1, RUT-C30Δzface1-2 and RUT-C30Δzface1-3 mutants presented 

endoglucanase production of 1.7, 2.0, and 2.1-fold higher than RUT-C30, respectively. 

In addition to the optimization of the secretion of all cellulases, it was possible to observe an increase 

of pectinase production. The mutants RUT-C30Δzface1-1, RUT-C30Δzface1-2, and RUT-C30Δzface1-3 

showed an increase of 1.9, 2.4, and 1.3-fold, in relation to RUT-C30. 

 

Figure 4. Comparison of the enzymatic production in 24 hours of lactose induction. Statistical analysis performed 
according to Dunnett's test using significance level of p < 0.05, in which (**) p < 0.01 and (****) p < 0.0001. Error bars 
represent the standard deviation of the results for each variable. 

Hydrolysis Tests 

Enzymatic Index and Biomass Hydrolysis 

All mutant strains showed a higher hydrolysis index than RUT-C30, after growth by 96 h in Petri dishes 

containing solid MEX medium. The RUT-C30Δzface1-1 shows a higher result, with 1.42-fold greater than 

the parental strain. The mutants RUT-C30Δzface1-2 and RUT-C30Δzface1-3 presented the enzymatic 

index, increased by 1.21 and 1.16-fold than RUT-C30 lineage (Figure 5 A). 

 

 

(a) 

 

(b) 

Figure 5. Hydrolysis tests. (A) Comparison between enzymatic indices in 96 hours of incubation. Petri dishes 
containing mutant and parental lines were incubated at 28 ° C for 96 hours. After this period, the colonies were stained 
with Congo red (2.5 g/L), and the diameters of hydrolysis and colony were measured. The division of the diameter of 
hydrolysis by the diameter of the colony estimated the enzymatic index. Statistical analysis was performed according 
to Dunnett's test using significance level of p < 0.05, in which (*) p < 0.05 and (**) p < 0.01. (B) Hydrolysis of crushed 
sugarcane bagasse by mutant strains compared to RUT-C30. Statistical analysis was performed according to 
Dunnett's test using significance level of p < 0.05, in which (*) p <0.05 and (**) p <0.01. Error bars represent the 
standard deviation of the results for each variable. 
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In order to verify the efficiency in the biomass hydrolysis, the enzymatic extracts of the mutants and 

RUT-C30 strain were incubated with sugarcane bagasse for 24 hours. After that, the reducing sugar 

released was measured, and the values from mutant strains were compared to the RUT-C30 strain. The 

mutants, RUT-C30Δzface1-1 and RUT-C30Δzface1-2, presented an increased hydrolysis that was 1.3 

times the size of the RUT-C30 strain. The RUT-C30Δzface1-3 was the one that obtained the best result, 

presenting a hydrolysis value of the biomass that was 1.4 times greater than the hyper-productive RUT-

C30 strain (Figure 5 B). 

DISCUSSION 

Advances in genetic transformation techniques have made important contributions to molecular 

genetics. Molecular strategies have been developed with the aim to obtain efficient strains in the production 

of cellulolytic enzymes [28]. The overexpression of the bgl1 gene in T. reesei RUT-C30, for example, was 

one of the techniques that significantly increased the production of β-glycosidase and total cellulose [29]. In 

this way, the assays of this work demonstrate an increase of enzymatic secretion by the T. reesei RUT-

C30Δzface1 strains with the codifying zinc finger domain of ACE1 deletion when compared with the RUT-

C30 parental strain. 

The results of lineage growth rate assays show a significant difference between the mycelial sizes of 

the mutants and the parental strain and corroborate with the work described by Aro and coauthors [16]. The 

authors describe that the growth of lineages with the deletion of ACE1 was superior when compared to the 

growth of the lineages without deletion. Furthermore, Shah and coauthors [30] characterized several 

species of this fungus and found that all analyzed strains differed in both the mycelial growth rate and the 

appearance of the colonies. Hermosa and coauthors [31] also found different degrees of sporulation in 

relation to the different species of T. reesei.  

The T. reesei RUTC-30 strain produces more cellulases when compared to the wild QM6a strain, 

because it has the truncated CRE transcription factor [32]. The mutant strains described in this work show 

the zinc finger motif of the cellulase expression repressor ACE1, deleted in addition to the truncated CRE 

and observed in the RUTC-30 strain. This deletion leads to an increase in cellulase and pectinase 

production and suggest a probable action of ACE1 on expression regulation of further glycoside hydrolases 

beyond cellulases. However, a significative effect on xylanase or invertase production by the mutants was 

not observed. The cellulase values produced by the mutants demonstrate success in the optimization of the 

cellulolytic capacity of T. reesei, and, consequently, stand out as an important ally for the increase of 

bioethanol production. Ivanova and coauthors [33] report that lactose is the only source of soluble carbon 

that induces T. reesei cellulases at an industrial level. Herpoël-Gimbert and coauthors [34] also 

demonstrated lactose as a source of carbon to improve the yield of cellulases in the RUT-C30 and CL847 

lines. According to Aro and coauthors [16], strains with deleted ace1 are able to degrade cellulose more 

efficiently. This report corroborates with the results in the present study, in which increased production of 

cellulases occurred in mutants when compared to RUT-C30. In addition, this result demonstrates that the 

ace1 gene is linked to the regulation of cellulase production, corroborating with the literature [15,35]. 

The mutant strains obtained in this work showed higher hydrolysis index than RUT-C30 strain. In this 

way, Lopes and coauthors [36], using the same technique to determinate enzymatic indices, obtained 

results of approximately 1.04 and 1.08 for the T666 and T300 strains, respectively. Florencio [26] evaluated 

the hydrolytic potential of 78 strains of the genus Trichoderma, belonging to the Embrapa Agroindústria 

Tropical (Fortaleza, CE), Embrapa Meio Ambiente (Jaguariúna, SP), and Embrapa Recursos Genetics and 

Biotechnology (Brasília, DF). Florencio [26] also concluded that the RUT-C30 was a lineage with a greater 

power of hydrolysis of cellulases. The RUT-C30Δzface1 mutant strains described in this work presented a 

higher power of hydrolysis than RUT-C30 and, therefore, is a lineage that deserves attention in the search 

for cellulase optimization by T. reesei. 

The hydrolysis of biomass was a crucial result to confirm the creation of strains that could be used in 

the ethanol production from the lignocellulosic residue. In this assay, it was possible to observe a significant 

difference between all the mutants, in relation to parental lineage, especially the RUT-C30Δzface1-3 

lineage, which showed 1.4 times more biomass hydrolysis than the strain RUT-C30. The conversion of 

plant-derived carbohydrates into bioethanol is one of the main sources of renewable energy to obtain 

biofuels. One step for producing this fuel is the hydrolysis of the cell wall polysaccharides by using 

enzymes, such as cellulases [37]. The cellulose hydrolysis produces glucose that will be used in the 

bioethanol production process [38]. In this regard, some strategies are currently being developed to reduce 

the cost of bioethanol production, such as improving the biological pretreatment of lignocellulosic biomass 
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with optimized strains of cellulase producers [39]. Thus, the production enhancement of cellulase, due to 

the genetic modification of the T. reesei RUT-C30 fungal strain, will certainly improve the viability of the 

bioethanol production.  

The RUT-C30 is reported as hyper-productive of cellulase [13], and the mutants elaborated in this work 

present both plate hydrolysis and biomass hydrolysis, which are larger than the RUT-C30 strain. 

Considering that the hydrolysis process can account for 40% of the total value of bioethanol production 

[12], RUT-C30Δzface1 mutants are of great importance for the use of biomass as a source to become 

economically viable on an industrial scale. 

CONCLUSION 

Cellulose and hemicellulose represent the largest source of renewable energy on earth and could be 

widely used for biofuel production. Although there are chemical processes for the hydrolysis of these 

compounds, the cost and low yield of these processes are a major problem for the use of biomass on an 

industrial scale.  

Currently, the RUT-C30 lineage is the most industrially used lineage and, therefore, is the target of 

research for the creation of strains that have to produce cellulolytic enzymes more efficiently. For this 

purpose, the RUT-C30Δzface1-1, RUT-C30Δzface1-2, and RUT-C30Δzface1-3 strains were created by 

partial deletion of the cellulase repressor gene ACE1 in the RUT-C30 strain. The mutants of this work 

showed greater efficiency in the enzymatic activity and sugarcane hydrolysis when compared to the RUT-

C30 hyper-productive strain. 

The increase of the enzymatic production by the mutants of this work shows that the strains—now 

known as cellulase hyperproducers—can have their enzymatic production optimized through genetic 

engineering. Thus, the T. reesei lines of RUT-C30Δzface1 are promising when applied in biorefineries, in 

an attempt to leverage the use of sugarcane residue as a renewable energy source, thus, contributing to 

the establishment of bioethanol as a viable alternative in the fuel market. 
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