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Abstract: This study evaluated the production of endoxylanases by Streptomyces malaysiensis AMT-3 in 
submerged fermentation using by-products of the food industry at 28ºC. In shake-flasks experiments, the 
highest endoxylanase activity of 45.8 U.mL-1 was observed within 6 days in a medium containing (w/v) 2.5% 
wheat bran and 1.2% corn steep liquor. The same culture conditions were used to evaluate the enzyme 
production in a 2 L stirred tank reactor under different agitation (300, 450 and 600 rev.min-1) and aeration 
(30 and 60 L.h-1) conditions. The use of 450 rev.min-1 coupled to an aeration of 90 L.h-1 resulted on 81.3 
U.mL-1 endoxylanase activity within 5 days. The effect of temperature and pH on endoxylanase activity and 
stability showed the highest activity at 60 ºC and pH 6.0. Zymography showed the presence of three 
xylanolytic bands with molecular masses of 690, 180 and 142 kDa. The results showed that the 
thermotolerant actinobacterial endoxylanase can be produced in high titers using by-product of the food 
industry. 

Keywords: Streptomyces malaysiensis AMT-3; thermotolerant endoxylanase; wheat bran; corn steep liquor. 

INTRODUCTION 

Xylan is an heterogeneous carbohydrate polymer of xylose molecules, consisting of an homopolymeric 

backbone of β-1,4 linked D-xylopyranose units and short chain branches of O-acetyl, -L-arabinofuranosyl 

and -D-glucuronyl residues [1,2,3]. It represents the major component of hemicelluloses found in plants, 

and plays a major role in holding the cell walls together [4]. Hemicellulose, together with cellulose and lignin 

are major components of the lignocellulosic biomass, which is the most abundant and renewable organic 

material on Earth [5]. However the lignocellulosic biomass, available as by-products from agriculture, forestry 
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and food industries, is largely unused and remains as waste. Nevertheless burning for energy generation has 

been used in some cases such as for the sugarcane biomass. The task of processing through economical 

biotechnological routes remains a challenge to be met [6]. Low cost efficient enzymes, such as xylanases, 

are one of the challenges to be faced as these enzymes, besides cellulases are of paramount importance for 

lignocelluloses breakdown, helping in the recovery of fermentable sugars [7,8]. Complete hydrolysis of xylan 

requires different xylanolytic enzymes such as endoxylanase, β-xylosidase, α-arabinofuranosidase, acetyl 

esterase, and α-glucoronidase [3]. Endoxylanases (-1,4-D-xylan xylanohydrolase; EC 3.2.1.8) and -

xylosidases (-1,4-D-xyloside xylohydrolase; EC 3.2.1.37) are the main constituents of this enzymes 

hydrolytic system. Since endoxylanases randomly cleave the xylan backbone, the reaction products are 

diverse, which may include xylose, xylobiose, xylooligomers, heterodisaccharides of xylose and glucose and 

their positional isomers [5]. Endoxylanases are produced by many mesophilic microorganisms, and have 

already been found in bacteria, such as Bacillus and Clostridium species [3,4,9], in several species of 

Streptomyces [10–12], and in fungi such as Thermomyces, Aspergillus and Trichoderma [6,13,14]. 

The use of substrates containing by-products agro-industrial xylan, such as Brewers’ spent grain (BSG) 

and wheat bran (WB) for endoxylanase production are more economical options. Brewers’ spent grain is the 

most abundant brewing by-product, and presents 30% hemicellulose, 15% cellulose, 30% lignin and 15% 

proteins [15]. Wheat bran is also an abundantly available by-product of the wheat milling industry, usually 

accounting for 14 to 19% of the wheat grain. Its major constituents are non-starch polysaccharides (about 

46%) including mainly glucuronoarabinoxylans. It also presents cellulose, a mixed linked glucan β-D-1-3 and 

β-D-1-4, starch (10–20%), proteins (15–22%), lignin (4–8%) and some minor constituents [16].  

Streptomyces malaysiensis AMT-3 was isolated from Brazilian cerrado soil as an endoxylanase-

producing strain [10,11] with enzyme levels that were compared favourably to reported data. So, the aim of 

the present work was to optimize endoxylanase production by Streptomyces malaysiensis, using WB or BSG 

as low cost xylan-containing substrates, coupled to the use of yeast extract (YE) or corn steep liquor (CSL) 

as a main nitrogen source. 

MATERIAL AND METHODS 

Microorganism propagation and maintenance 

Streptomyces malaysiensis AMT-3, a non-antibiotic producer strain, was grown on agar plates containing 

(g.L−1): malt extract, 10.0; yeast extract, 4.0; glucose, 4.0 and agar, 15.0 at 28 ºC for 10 days. Spore 

suspension was maintained in 20% (v/v) glycerol at –20 ºC [17]. 

Fermentation conditions and culture sampling 

The actinobacterial strain was cultivated in 250-mL Erlenmeyer flasks containing 50 mL of the culture 

medium (pH 7.0) which was inoculated with 50 L of a spore suspension (4109 sporesmL-1) obtained from 

a 12-days culture in malt extract–yeast extract agar [18]. Cells were cultivated in a salt mineral medium 

containing (g.L-1): KH2PO4, 9.0; K2HPO4, 1.5; MgSO4.7H2O, 0.2; CaCl2, 0.05; MnSO4.7H2O, 0.01; 

ZnSO4.7H2O, 0.001 added of different concentrations of WB and BSG, as main substrate, and YE and CSL, 

as supplement substrate. A combination of the different carbon and nitrogen sources was performed in order 

to optimize the production of endoxylanase by S. malaysiensis AMT-3. WB and BSG at 0.5 and 2.5% (w/v), 

were separately combined to either YE or CSL at 0.1 and 1.2% to study the enzyme production in 16 shake-

flasks fermentation runs (Table 1).  
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Table 1. Media composition used in the different submerged fermentation conditions 

Medium 

Nitrogen Sources Carbon Sources 

Yeast Extract 
(YE) 

% (w/v) 

Corn Steep Liquor 
(CSL) 

% (w/v) 

Wheat Bran 
(WB) 

% (w/v) 

Brewer´s Spent Grain 
(BSG) 

% (w/v) 

1 0.1 - 0.5 - 

2 0.1 - 2.5 - 

3 1.2 - 0.5 - 

4 1.2 - 2.5 - 

5 - 0.1 - 0.5 

6 - 0.1 - 2.5 

7 - 1.2 - 0.5 

8 - 1.2 - 2.5 

9 0.1 - - 0.5 

10 0.1 - - 2.5 
11 1.2 - - 0.5 

12 1.2 - - 2.5 

13 - 0.1 0.5 - 

14 - 0.1 2.5 - 

15 - 1.2 0.5 - 

16 - 1.2 2.5 - 

All media were supplemented with a salt mineral solution (see Material and Methods) 

Cultures were incubated at 28 ºC (orbital shaker) at 200 rev.min-1 during 6 days with periodical sampling 

where the whole content of a shake flask was collected centrifuged for 10 min at 2,096 g at 4 ºC, and the 

supernatant passed over a 0.45 µm filtration unit. All experiments were carried out in duplicate. 

Batch fermentation in 2-L bioreactor  

The batch fermentation was carried out in a 2-L bioreactor (Setric Genie Industriel – France) equipped 

with two four-bladed disc impellers, oxygen, and pH electrodes, under the following conditions: mineral salt 

medium volume 1.0 L, WB 2.5% (w/v), CSL 1.2% (w/v), 30 ºC, pH 6.8. The values for aeration rate and 

agitation speed tested were 30 and 90 L.h-1, and 300, 450 and 600 rev.min-1 respectively, combined 

-1). Fermentation was conducted during 6 days. At periodical intervals 15.0 mL of the culture 

broth were collected, centrifuged for 10 min at 2,096 g at 4 ºC, and the supernatant, passed over a 0.45 µm 

filtration unit, was used for enzymatic assay. 

Table 2. Different conditions used in bioreactor to conduct the submerged fermentation by Streptomyces malaysiensis 
AMT-3 grown on CSL 1.2% (w/v) and WB 2.5% (w/v) 

Fermentation Condition Aeration Rate (L.h-1) Agitation Speed (rev.min-1) 

1 30 300 
2 90 300 
3 90 450 
4 30 600 
5 90 600 

Enzymatic assays 

The endoxylanase (EC 3.2.1.8) activity was measured in a reaction mixture containing 750 L of a 

solution of 1.5% oat spelts xylan (SIGMA®) in 50 mM sodium citrate buffer (pH 5.3) plus 0.25 

supernatant. This system was incubated for 6 min at 50 ºC. The resulting reducing sugars concentration was 

determined by the dinitrosalicylic acid (DNS) method [19]. One unit (U) of enzymatic activity corresponded to 

lose equivalents released per minute, under the assay conditions [20]. All 

enzymatic assays were carried out in triplicate. 

Optimal temperature and pH, thermostability and influence of metal ions 

The culture supernatant of 6-day fermentation [WB 2.5% (w/v) and CSL 1.2% (w/v)] was used to 

investigate the temperature effect on enzymatic activity. The assay for endoxylanase was performed in the 
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temperature range of 20–90ºC, at pH 5.3, as described above. For the optimum pH determination, 50 mM 

buffer solutions ranging from pH 2.0 to 10.0 were used at the optimal temperature previously determined. 

Glycine–HCl buffer was used for pH 2.0–3.0, sodium citrate buffer for pH 3.0–6.0, phosphate buffer for pH 

6.0–8.0 and tris-HCl buffer for pH 8.0–9.0, glycine–NaOH buffer for pH 9.0–10.0. To study the endoxylanase 

thermal stability, enzyme preparations, in 50 mM phosphate buffer pH 6.0, were incubated at 50 and 60 ºC. 

The residual enzymatic activity was assayed at the optimal conditions (pH 6.0 and 60 ºC). 

The influence of several metal ions on endoxylanase activity was evaluated performing the enzymatic 

assay at pH 6.0 and 60 ºC after addition of each ion (magnesium, calcium, manganese, zinc, copper, 

potassium, iron, cobalt and sodium in the chloride form) at 10 mM final concentration. The experiment was 

carried out in duplicate. 

Zymograms 

The extract obtained on the best growth condition in bioreactor was analysed by electrophoresis on 

denaturing 10% sodium dodecyl sulphate (SDS)-polyacrylamide gel, with 0.2% (w/v) copolymerized oat 

spelts xylan (Sigma) as substrate. Electrophoresis was performed at constant voltage (100 V) at 4 ºC for 3 

h. Samples containing 150 mU of activity were loaded. After electrophoresis, gel was incubated with Triton 

X-100 sodium acetate 1% buffer for 30 min in ice-bath, for SDS removal, and then incubated with 50 mM 

glycine-HCl buffer pH 1.5 for 10 min at 65 ºC. For the endoxylanase activity detection, the gel strip was 

submerged in 0.1% (w/v) Congo Red solution for 10 min, and then washed with 1M NaCl until visualisation 

of enzyme bands. Molecular masses were calculated from mobility of standards ranging from 67 to 669 kDa 

(HMW electrophoresis calibration kit – Pharmacia Biotech), and the corresponding gel was stained using the 

Comassie blue staining method [10,21,22]. 

RESULTS AND DISCUSSION 

The time course for endoxylanase production by S. malaysiensis AMT-3 is presented in Figures 1 and 

2. The highest endoxylanase production (45.8 U.mL-1) was observed within 6-days fermentation in the 

medium presenting WB 2.5% (w/v) and CSL 1.2% (w/v) as substrates (Figure 1A). The activity observed in 

these conditions was also 1.9-fold higher than the one observed in culture medium when using these same 

substrates, but with WB concentration at its minimum level (0.5% w/v), and after 5 days fermentation. 

 

(a)                                                              (b) 

Figure 1. Fermentations time-course for endoxylanase production by S. malaysiensis AMT-3 at 28oC on culture media 

containing (A) WB and CSL; (B) WB and YE in different concentrations as described above: line 1 [WB 0.5% (w/v) and 

CSL or YE 0.1% (w/v)], (--); line 2 [WB 2.5% (w/v) and CSL or YE 0.1% (w/v)] (--); line 3 [WB 0.5% (w/v) and CSL 

or YE 1.2% (w/v)] (-▲-);  line 4 [WB 2.5% (w/v) and CSL or YE 1.2% (w/v)] (--). 

Another promising result was obtained when WB was tested with YE as nitrogen source in its lower 

concentration, 0.1% (w/v), when a maximum endoxylanase activity (31.85 U.mL-1) was observed within 6-

days fermentation (Figure 1B). A very close endoxylanase activity (31.30 U.mL-1) was observed after 5-days 

fermentation. However, the high prices of this nitrogen source (approximately US$ 1,100.00/ton) preclude its 

use for the production of an industrial enzyme. Indeed, costs of endoxylanase production by Streptomyces 

malaysiensis AMT-3 can be greatly decreased using WB (approximately US$ 140.00/ton) and CSL 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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(approximately US$ 200.00/ton), in comparison to some fermentation media containing commercial 

substrates such as xylan as inducer substrate and YE as nitrogen supplement [23]. 

When BSG was used as the main carbon source results were around 20 U.mL-1, observed after 5–6 

days fermentation (Figure 2A), using BSG 2.5% (w/v) combined with CSL 1.2% or 0.1% (w/v). The use of YE 

0.1% (w/v) combined with BSG 2.5% gave results very near of those obtained using CSL instead. As already 

cited, its high prices preclude its used in the conditions of our experiments. Our results compare favourably 

to previous endoxylanase production reports, regarding high enzyme titres and potential production costs 

presented in this study. Based on earlier studies [10,11], carbon and nitrogen sources concentration were 

identified as the major factors affecting endoxylanase production by S. malaysiensis AMT-3, considering 6 

days-fermentation. In comparison to a previous study [10], the endoxylanase production by S. malaysiensis 

AMT-3 increased 59.5% and 32.5% using WB and BSG, respectively, in the presence of CSL as nitrogen 

source, after 6-days fermentation. This stimulating effect was probably caused by certain nutrients present 

in the rich composition of CSL but absent in the formulation media formally used, as water soluble vitamins, 

minerals, amino acids, trace metals, some sugars and proteins [24,25]. Considering that yeast extract is an 

expensive source of nitrogen and other nutrients, CSL could be a cost-effective alternative for the production, 

on a large scale, of innumerous substances, including enzymes [25]. The best result obtained with WB, was 

probably caused by the high amount of arabinoxylans (70%) present in WB, in comparison to BSG (17-28% 

of arabinoxylan) [15,26]. 
 

 

(a)                                                              (b) 

Figure 2. Fermentations time-course for endoxylanase production by S. malaysiensis AMT-3 at 28oC on culture media 

containing (A) BSG and CSL; (B) BSG and YE in different concentrations as described above: line 1 [BSG 0.5% (w/v) 

and CSL or YE 0.1% (w/v)], (--); line 2 [BSG 2.5% (w/v) and CSL or YE 0.1% (w/v)] (--); line 3 [BSG 0.5% (w/v) and 

CSL or YE 1.2% (w/v)] (-▲-);  line 4 [BSG 2.5% (w/v) and CSL or YE 1.2% (w/v)] (--). 

A highest endoxylanase production (24.0 U.mL-1) was observed in 1.0% (w/v) birchwood xylan after 5-

days fermentation by Streptomyces cuspidosporus [27]. Inversely, the maximum endoxylanase activity (176 

U.mL-1) was reached when 15% (w/v) WB was used. However, the high viscosity of WB posed handling 

problems in submerged fermentation. The endoxylanase production from Streptomyces sp. Ab106 using 

sugar cane bagasse was investigated [28]. The highest endoxylanase activity (13.0 U.mL-1) was detected 

after 5-days fermentation. The endoxylanase production by S. malaysiensis AMT-3 (45.4 U.mL-1) in wheat 

bran 2.5% (w/v) after 6-days fermentation 3.5- and fold higher in comparison to those reported [28]. In other 

experiment, a maximal endoxylanase (31.2 U.mL-1) production by Streptomyces sp. S38 was observed when 

oat spelts xylan was used as carbon source, after 100 hours [29]. Wang and coauthors [30] studied the 

endoxylanase production by Streptomyces actuosus A-151 in rice bran. The maximal endoxylanase 

production reached 10.3 U.mL-1 after 144 hours. 

The endoxylanase production by S. malaysiensis AMT-3 was also higher than that reported for some 

bacteria and fungi. Ko and coauthors [31] observed a maximum endoxylanase production (15.4 U.mL-1) by 

Paenibacillus campinasensis using birchwood xylan 0.5% (w/v) and casein 1.0% (w/v) whereas Nawel and 

coauthors [32] obtained values of 10.80 U.mL-1 after 35h growing Jonesia denitrificans BN13 in birchwood 

xylan 0.7% (w/v). 
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Concerning fungi, Meshram and coauthors [33] showed the highest endoxylanase production (34.45 

U.mL-1) when Penicillium janthinellum NCIM 1169 was grown using birchwood xylan for 48 hours in Mandels-

Weber medium. A maximal endoxylanase production (18.44 U.mL-1) by Gracilibacillus sp. TSCPVG was 

detected in the presence of birchwood xylan 0.75% (w/v) after 60 hours incubation [34]. Li and coauthors [35] 

studied the endoxylanase production by Penicillium oxalicum ZH-30 in wheat bran, with maximal values 13.11 

U.mL-1 detected after 144 hours.  

After experiments in conical flasks, a scale-up assay was performed in a STR 2-L bioreactor, maintaining 

the best concentrations of wheat bran and yeast extract for endoxylanase production. In these conditions, 

effect of aeration rate and agitation speed on endoxylanase production was verified. The maximal enzyme 

production was 81.3 U.mL-1, observed when 450 rev.min-1 and 90 L.h-1 were used, after 5 days-fermentation 

(Figure 3). Considering productivity, these conditions were the only in which endoxylanase production 

reached 30.5 U.mL-1 after 2 days-fermentation, which represents a very good production in a short time. 

Comparing maximal endoxylanase production in conical flasks (45.8 U.mL-1) with that obtained in STR 2-L 

bioreactor (81.3 U.mL-1), it was observed an increase of 77.5%. As shown in the Figure 3, the use of high 

stirring speed (600 rev.min-1) induced a decrease in endoxylanase production, possibly due to shear force, 

which caused a morphological stress in filamentous bacteria. However, the stimulating effect observed in 450 

rev.min-1 and 90 L.h-1 was probably caused by the oxygen transfer constant (KLa). 

 

Figure 3. Fermentations time-course for endoxylanase production by S. malaysiensis AMT-3 at 28oC in bioreactor STR 

2l grown on CSL 1.2% (w/v) and WB 2.5% (w/v) using the following conditions: 300 rev.min-1 and 30 L.h-1(--); 300 

rev.min-1 and 90 L.h-1 (-▲-); 450 rev.min-1 and 90 L.h-1 (--); 600 rev.min-1 and 30 L.h-1 (--); 600 rev.min-1 and 90 L.h-

1 (--). 

The temperature profile of endoxylanase activity from Streptomyces malaysiensis is presented on Figure 

4A. The maximal activity was observed at 60 ºC. The profiles obtained for thermostability at 50 and 60 ºC of 

endoxylanase activity produced by Streptomyces malaysiensis are represented on Figure 4B. Concerning 

50 ºC, 99.7% of its original activity was retained after 30 min, 96.4% after one hour, 80.5% after two hours 

and 34.4% after eight hours of pre-incubation at pH 6.0. However, at 60 ºC, only 44.4% of its original activity 

was retained after 30 min and it was almost totally inactivated after 2-hours pre-incubation. 
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(a)                                                              (b) 

Figure 4. Effect of temperature (A) and thermostability (B) at 50º (), or 60º (▲) on endoxylanase activity produced by 

S. malaysiensis AMT-3 grown on CSL 1.2% (w/v) and WB 2.5% (w/v). Relative activity is expressed as a percentage of 

the maximum (100% of enzyme activity = 51.9 UmL-1). 

According to temperature profile, the performance of S. malaysiensis AMT-3 is similar to those reported 

for different Streptomyces strains [36,37]. However, Li and coauthors [38] studying the effect of temperature 

on endoxylanase activity from Streptomyces rameus L2001 observed a maximal relative activity at 70ºC. 

Several other bacterial and also fungal endoxylanase activity have presented maximal activity at 35ºC 

(Bacillus tequilensis) [3], 50 ºC (Jonesia denitrificans) [32], 52 ºC (Bacillus subtilis) [39], 60 ºC (Bacillus 

subtilis) [40], 65 ºC (Clostridium thermocellum) [9], or even 70 ºC (Chaetomium thermophilum) [41]. So, the 

optimum of temperature of 60 ºC, and also the fact that almost 90% of this activity is still retained at 70 ºC, 

seems to be a good characteristic for endoxylanase activity from S. malaysiensis AMT-3, in comparison to 

endoxylanases from other microorganisms, indicating a real possibility to industrial application. Wang and 

coauthors [30] observed that after 30 min of pre-incubation at 60 ºC, endoxylanase activity of Streptomyces 

actuosus A-151 retained more than 80% of its original activity, whereas Osiro andf coauthors [9] observed a 

40% decrease of endoxylanase activity from Clostridium thermocellum after 48 hours of its original activity at 

60 ºC. Li and coauthors [35] observed a slight decreased (around 14%) of endoxylanase (from Penicillium 

oxalicum ZH-30) activity after 60 min at 50 ºC. We observed only around 4% of decrease at the same time 

and temperature for endoxylanase from S. malaysiensis AMT-3. Xylanases from various microorganisms, 

such as Bacillus firmus, Geobacillus thermolevorans, Actinomadura sp. Cpt20, Streptomyces sp. S27, and 

Saccharopolyspora pathunthaniensis S582, showing optimum activity at higher (65 to 90 ºC) temperatures 

are reported in literature [42,43]. 

When testing a pH range between 2.0 and 10.0 to study the effect of pH on endoxylanase activity the 

optimum pH was found to be 6.0, but significant levels of activity (above 80% of maximal activity) were still 

detected between pH 5.0 and 7.0 (Figure 5). The behaviour of pH profile from enzymatic crude extract of S. 

malaysiensis AMT-3 is similar to that described for other endoxylanases from several Streptomyces 

[29,36,37,44] and fungi [41,45,46] strains. Nawel and coauthors [32] detected the best condition of pH for 

endoxylanase activity between pH 6.0 and 9.0 from Jonesia denitrificans, with relative activity around 100%. 

Our results indicate an enzymatic activity profile which could be applied in industrial processes that needs a 

neutral or slightly acid pH values. The pH optimum in this range is a very common characteristic in 

actinobacterial species. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 5. Effect of pH on activity (60ºC) of the endoxylanase produced by S. malaysiensis AMT-3 grown on CSL 1.2% 

(w/v) and WB 2.5% (w/v). The ionic strength for all buffers was 50mM: (--), glycine–HCl; (-▲-), sodium citrate; (--), 

phosphate; (-■-), tris-HCl; (-x-), glycine–NaOH. Relative activity is expressed as a percentage of the maximum (100% 

of enzyme activity = 58.1 UmL-1). 

We have also investigated the effects of metal ions and EDTA on endoxylanase activity of the crude 

extract from S. malaysiensis AMT-3 (Table 3). Except for Ca2+ and Ba2+, which  almost did not interfere on 

enzyme activity, the presence of all other metal ions and EDTA (10mM) tested had a decreased effect on 

enzyme activity. The presence of EDTA, Mg2+, Na+ and K+ have reduced activity to 50-65% of its original,  

However, a considerable decrease was observed in the presence of Cu2+, Zn2+ and specially Mn2+, which 

presence decreased activity to around 10-15% of its original. 

Table 3. Effect of different ions on xylanolytic activity. Enzyme was produced by S. malaysiensis grown on CSL 1.2% 

(w/v) and WB 2.5% (w/v) 

  Ion a Relative activity (%) b  

  Control (no addition) 100.0 + 1.5 

EDTA 58.0 + 6.6 
Mg2+ 54.4 + 12.2 
Zn2+ 14.6 + 2.6 
Cu2+ 13.2 + 1.7 
Na+ 56.3 + 6.5 
Ba2+ 94.5 + 11.3 
Mn2+ 9.5 + 0.1 
Ca2+ 98.9 + 9.5 
K+ 65.1 + 2.4 
Fe2+ 29.8 + 4.6 

a The final concentration in the reaction mixture was 10 mM. 
b Relative activity is expressed as a percentage of Control (100% of enzyme activity = 58.1 UmL-1). The 
standard deviation is presented beside main values. 

The study of ions effects (positive and negative) on enzymatic activity is very important to for the 

biochemical knowledge of the enzyme. Most endoxylanases described in literature were also found to be 

inhibited by Mn2+ [32,42,46,48,49]. This effect precludes the use of this preparation in industrial processes 

were these ions are present in relevant concentrations. It could be supposed that these ions exert their effect 

by interacting with some amino acid residues involved in the active site, which causes a change in 

conformation leading to enzyme inactivation. Nascimento and coauthors [10] have also observed a decrease 

on endoxylanase activity from Streptomyces sp. AMT-3 strain observed in the presence of Cu2+ (18.3%) and 

Mn2+ (17.7%), when xylan oat spelts was used as substrate for enzyme production. However, only a slight 

decrease on the endoxylanase activity was observed in the presence of Zn2+ (88.5%) in comparison to current 

results. Li and coauthors [44] detected a strong increase on endoxylanase activity from Streptomyces rameus 

L2001 in the presence of Co2+ (229%), Fe2+ (166%) and Mg2+ (109%). In our study none of metal ion tested 

had a positive effect on endoxylanase activity. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Zymogram of culture supernatant of S. malaysiensis AMT-03 grown in lignocellulosic biomass (WB or 

BSG) have shown the presence of three multiple endoxylanase isoforms (Figure 6) with estimated molecular 

masses of 690.0, 180.0 and 142.0 kDa, respectively. The utilization of WB and BSG as carbon sources for 

enzyme production seems to have lead to a higher production of high molecular weight endoxylanases. 

 

 
 

 

Figure 6. Zymogram analysis of endoxylanase activity in the supernatant of Streptomyces malaysiensis AMT-3 strain 

cultures grown on: lane 1 (WB + YE, medium 1, 4th day); lane 2 (WB + YE, medium 2, 5th day); lane 3 (BSG + YE, 

medium 2, 5th day); lane 4 (BSG + YE, medium 1, 4th day); lane 5 (WB + CSL, medium 4, 6th day); lane 6 (WB + CSL, 

medium 3, 5th day); lane 7 (BSG + CSL, medium 2, 6th day) and lane 8 (BSG + CSL, medium 4, 6th day). The amounts 

loaded in the gel contained 150 mU of endoxylanase activity. The gel containing the MW markers (kDa) was stained for 

proteins using the silver staining method and the molecular masses are shown on the right side of the figure. 

In previous studies, S. malaysiensis AMT-3 was grown on different carbon sources and the expression 

profile of the endoxylanases was observed by zymography. As carbon sources xylan birchwood, xylan oat 

spelts, xylan larchwood, wheat bran, wheat germ, brewer's spent grain have been tested, and sodium nitrate 

was used as nitrogen source [10]. The crude extract was collected after 10 days-fermentation and three 

xylanolytic bands (690.0, 240.0 and 170.0 kDa) were detected in all substrates used. The small difference in 

the values obtained can be explained by the fermentation conditions that were different, especially the wheat 

bran concentration and the use of yeast extract as nitrogen source. Li and coauthors [38], for instance, 

detected an endoxylanase with 21.1 kDa from Streptomyces rameus L2001, a very low molecular mass when 

compared to S. malaysiensis AMT-3. According to literature, these high molecular weight bands could 

correspond to variable degrees of monomeric associations [10,49]. Also, the production of multiple 

endoxylanases with different specificities is common in nature, in spite of the heterogeneity and complexity 

of xylan, especially in actinobacterias [10,14,29]. 

CONCLUSION 

As the use of agro-industrial by-products allowed high levels of this thermotolerant enzyme production it 

can be envisaged the production of a low cost biocatalyst with potential biotechnological application. These 

enzymes are of paramount importance for lignocellulosic biomass breakdown, assisting in the release of 

reducing sugars.  
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