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Abstract: The aim of this paper was to present the second case of B chromosomes in Auchenipteridae 

(Trachelyopterus sp.), and to test the hypothesis that the B chromosomes of this species and 

Parauchenipterus galeatus might have a common origin, since these two species have phylogenetic 

proximity. Both species have 58 chromosomes in the A complement, heterochromatin preferentially located 

at terminal region of the most of chromosomes, simple Ag-NORs located at the short arm of a 

subtelocentric pair, which was confirmed by hybridization with 18S rDNA, two submetacentric pairs carrying 

5S rDNA sites, and presence of B chromosomes. The B chromosomes of the two species are small, 

metacentric, and almost totally heterochromatic, with variation of number intra and interindividual. In 

addition, for the first time in fish, the telomeric sequence [TTAGGG]n was dispersed along the B 

chromosomes (both species). The [GATA]n microsatellite were scattered in all chromosomes of the A 

complement and absent in the B chromosomes, in both species. These aspects confirm the phylogenetic 

proximity between the genus Parauchenipterus and Trachelyopterus, and they suggest the hypothesis that 

HIGHLIGHTS 
 

 B chromosomes of different species have a common origin. 

 B chromosomes similarities suggest Parauchenipterus diagnosis is likely not valid. 
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the B chromosomes of the two species might have common origin, previous to the diversification of these 

genera. 

Keywords: chromosome evolution; [TTAGGG]n; [GATA]n; Parauchenipterus; Trachelyopterus. 

INTRODUCTION 

B chromosomes occur in almost 10-15% of eukaryotic species, which makes them an important aspect 

in the understanding of genomic evolution [1]. According to Camacho [2], they are additional and 

dispensable, occur in some individuals of some populations, were probably originated from the A 

chromosomes, but follow on their own evolution. Therefore, B chromosomes are not essential elements for 

the growth, development and reproduction of the organisms. According to Jones & Rees [3], the term B 

chromosome should be used only for the cases in which its frequency in the population is known, being an 

intrinsic characteristic of this population. 

 Many recent studies have shown that B chromosomes carry genes that participate in various biological 

functions [4], and can also causes differential expression of genes located in A chromosomes [5]. In fish, 

various classes of repetitive DNAs, such as satellites, ribosomes and transposable elements, and simple 

copy genes have already been found [4,6]. Several examples can be presented: the As51 satellite DNA 

was found on B chromosomes of Astyanax scabripinnis [7]; the SATH1 repetitive DNA was verified on the 

B chromosomes of Prochilodus lineatus [8]; a retrotransposon was identified on B chromosomes of 

Alburnus alburnus [9]; genes encoding proteins were found on B chromosomes of cichlid species of Lake 

Victoria [6]; the genes IHHB and 45S rRNA were found in B chromosomes of Astatotilapia latifasciata [10]. 

For fish, 278 reports of B chromosomes are described, which include several families [11]. 

Approximately half of the Neotropical fish species that have B chromosomes are Characiformes 50,82% 

and 35% are Siluriformes of the total species with B chromosomes [12]. The latter order includes six 

families that have B chromosomes: Auchenipteridae, Callichthyidae, Heptapteridae, Pimelodidae, 

Trichomycteridae and Loricariidae [12,13]. Auchenipteridae consists of small to medium sized catfish, 

endemic to the Neotropical region, with 125 valid species [14]. This family has two subfamilies, 

Centromochlinae and Auchenipterinae [15,16]. Parauchenipterus and Trachelyopterus are taxonomically 

allocated in the latter one. According to Akama [17], these two genera should be sister-groups. 

Auchenipteridae has two species that present B chromosomes; they are presented in this paper: 

Parauchenipterus galeatus [13,18] and Trachelyopterus sp. The other species of this subfamily which were 

chromosomally studied do not have B chromosomes [19-24]. 

This article aimed at presenting the second case of B chromosomes in Auchenipteridae 

(Trachelyopterus sp.), and testing the hypothesis that the B chromosomes of this species and 

Parauchenipterus galeatus might have a common origin, since these two species have phylogenetic 

proximity. 

MATERIAL AND METHODS  

We analyzed ten individuals (seven females and three males) of P. galeatus from a pond of the São 

Francisco right river bank, in Lagoa da Prata, Minas Gerais state, Brazil (GPS 19º56’15.1”S; 

45º32’13.8”W), and  six individuals (three females and three males) of Trachelyopterus sp. from Arrombado 

pond, which is supplied by Bento Gomes River, a tributary of Cuiabá River, Poconé, Mato Grosso state, 

Brazil (GPS 16º25’40.9”S; 56º25’07.4”W). All samples were carried out with the authorization of the 

Instituto Chico Mendes de Conservação da Biodiversidade (ICM-Bio; License No. 10538-1). Procedures 

were performed according to the Ethics Committee on Animal Experimentation and Practical Classes from 

Unioeste: 13/09 - CEEAAP/Unioeste. The specimens were deposited in the fish colletion of the Museu de 

Zoologia da Universidade de São Paulo (MZUSP 100985 and MZUSP 110806). 

Cell suspensions with mitotic chromosomes were obtained from anterior kidney cells [25-27]. 

Chromosomes were stained with 5% Giemsa solution. Chromosome morphologies were determined 

according to the arms ratio of Levan et al. [28]. Fundamental numbers (FN) were established considering 

metacentric (m), submetacentric (sm) and subtelocentric (st) chromosomes as carriers of two arms, and 

acrocentric chromosomes (a) as carriers of only one arm. The heterochromatin pattern was determined by 

the method of Sumner [29], with changes in the staining step [30]. Nucleolus organizer regions (NORs) 

were identified using silver nitrate impregnation [31], in chromosomes previously analyzed by Giemsa and 

C-banding (sequential analysis). 
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Fluorescence in situ hybridizations (FISH) were performed according to Pinkel et al. [32]. The 5S rDNA 

and 18S rDNA probes were obtained according to Martins et al. [33] and Hatanaka & Galetti Jr [34], 

respectively. They were labeled by nick translation, with biotin-16-dUTP (rDNA 5S) and digoxigenin-11-

dUTP (rDNA 18S) (Roche). The repetitive sequences [TTAGGG]n and [GATA]n were amplified and labeled 

by Polimerase Chain Reaction (PCR) [35], with dUTP-16-biotin (Roche). The hybridizations were 

performed under high stringency conditions - 77% (200 ng of each probe, 50% formamide, 10% dextran 

sulfate, 2xSSC pH 7.0, at 37 °C, incubation of 16 hours). After hybridization, the slides were washed in 

15% formamide / 0.2xSSC solution at 42 °C for 20 minutes. Detection and amplification of the probes 

signals were performed using avidin-FITC and anti-avidin / biotin (Sigma) or anti-digoxigenin / rhodamine-

labeled. The chromosomes were counterstained with antifading / DAPI solution (20 μL of antifading + 0.1 

μL of DAPI - 0.2 mg / ml) and analyzed in an Olympus BX50 epifluorescence microscope. DP2-BSW 

software (Olympus) was used to capture the images. 

RESULTS 

Parauchenipterus galeatus 

Individuals of both sexes presented 58 chromosomes (22m+16sm+12st+8a, FN=108) (Figure 1a). 

Cells of seven animals (five females and two males) presented small and metacentric B chromosomes. 

Five females and one male had variation from zero to up two B chromosomes, and other male had 

variation from zero to up one B chromosome (Table 1). Among the specimens with B chromosomes, the 

frequency of cells bearing such chromosomes ranged from 55% to 86% (Table 1). The heterochromatin 

was dispersed in the terminal position of some A chromosomes (Figure 1b). B chromosomes were 

completely heterochromatic (Figure 1a, highlighted). 

Single NOR was located in terminal position of the short arm of pair 23 (Figure 1a, highlighted). 

Hybridization with 18S rDNA confirmed the result of silver nitrate impregnation (Figure 2a). 5S rDNA sites 

were evidenced in the interstitial position of the short arm of the pair 16, and in the long arm of the pair 17 

(Figure 2a). Hybridization with telomeric probe [TTAGGG]n showed labeling in the terminal region of all A 

chromosomes complement (Figure 2c). Such sequence showed itself amplified and dispersed along B 

chromosomes (Figure 2c, arrows). FISH with [GATA]n probes located this sequence in terminal, 

subterminal and interstitial regions of the most of A chromosomes complement, however, no signal was 

detected on B chromosomes (Figure 2e). 

Trachelyopterus sp.  

Individuals of both sexes presented 58 chromosomes (22m+20sm+8st+8a, FN=108) (Figure 1c). Cells 

of two animals (two females) presented small and metacentric B chromosomes. One female had variation 

from zero to up three B chromosomes, and the other one from zero to up two B chromosomes (Table 1). 

Among the specimens with B chromosomes, the frequency of cells bearing such chromosomes ranged 

from 50% to 68% (Table 1). The heterochromatin was dispersed in the terminal position of the most A 

chromosomes complement (Figure 1d). B chromosomes were completely heterochromatic (Figure 1c, 

highlighted). 

Single NOR was located in terminal position of the short arm of pair 22, coinciding with the secondary 

constriction (Figure 1c, highlighted). Hybridization with 18S rDNA confirmed the result of silver nitrate 

impregnation (Figure 2b). 5S rDNA sites were evidenced in the interstitial position of the short arm of the 

pair 16, and in the long arm of the pair 18 (Figure 2b). Hybridization with telomeric probe [TTAGGG]n 

showed labeling in the terminal region of all A chromosomes complement (Figure 2d). Such sequence was 

amplified and dispersed along B chromosomes (Figure 2d, arrows). FISH with [GATA]n probes located this 

sequence in terminal and subterminal regions of the most of A chromosomes complement, however, no 

signal was detected on B chromosomes (Figure 2f). 
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Table 1. Frequency of cells bearing B chromosomes in Parauchenipterus galeatus and Trachelyopterus sp.  

Species  Specimen  Sex 
Number of methapases 
analyzed per specimen 

Cells with 
B (%) 

Total 

0B 1B 2B 3B 

Parauchenipterus 
galeatus 

 
São Francisco River 

basin 

1 ♀ 12 10 13 - 65,7 35 
2 ♀ 33 - - - - 33 
3 ♀ 08 05 05 - 55,5 18 
4 ♂ 28 30 15 - 61,6 73 
5 ♀ 02 03 01 - 66,7 06 
6 ♀ 09 10 02 - 57,1 21 
7 ♂ 04 05 - - 55,5 09 
8 ♀ 08 19 31 - 86,2 58 
9 ♂ 11 - - - - 11 
10 ♀ 28 - - - - 28 

Total  143 82 67 - 68%1 292 

Trachelyopterus sp.  
 

Paraguai River  
basin  

1 ♀ 02 - - - - 02 
2 ♀ 17 30 06 - 68 53 
3 ♂ 09 - - - - 09 
4 ♂ 11 - - - - 11 
5 ♀ 15 07 03 05 50 30 
6 ♂ 11 - - - - 11 

Total  65 37 09 05 61%1 116 
1 The total frequency of cells is only considering specimens that showed B chromosomes. 

 

 

 

 
Figure 1. Karyotype of P. galetatus with (a) conventional Giemsa staining and (b) C-banding. Karyotype of 
Trachelyopterus sp. with (c) conventional Giemsa staining and (d) C-banding. Chromosomes bearing NORs and B 
chromosomes are highlighted in boxes. 
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Figure 2. Metaphases of P. galeatus hybridized with (a) rDNA 18S (red) and rDNA 5S (green), (c) telomeric sequence 
[TTAGGG]n, and (e) [GATA]n repeats. Metaphases of Trachelyopterus sp. hybridized with (b) rDNA 18S (red) and 
rDNA 5S (green), (d) telomeric sequence [TTAGGG]n, and (f) [GATA]n repeats. The arrows indicate the B 
chromosomes on metaphases. 
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DISCUSSION 

Parauchenipterus and Trachelyopterus are considered as sister group, which is reinforced by the 

taxonomic problem of the group [17]. The characteristics analyzed for P. galeatus e Trachelyopetrus sp. in 

this paper reinforce this proximity, since they evidenced high chromosome similarities: maintenance of the 

diploid number (2n=58), heterochromatin dispersed in the terminal region of the most of A chromosomes, 

single terminal NORs located in the short arm of a subtelocentric pair (confirmed by FISH with 18S rDNA), 

two pairs bearing 5S rDNA sites, and similarities between B chromosomes. The few number of 

Auchenipteridae studies [13,18-24,36] suggest that this conserved chromosome macrostructure is 

recurrent in the family, and most of the differences found are usually due to non-robertsonian 

rearrangements [18]. This situation of little variation is not unique to these species, since many groups of 

Neotropical fish exhibit relative karyotype conservatism [37-39]. 

The C-banding pattern of the both species analyzed here were similar, with small blocks located in the 

terminal region of the most chromosomes. Similar pattern of C-banding occurs in other Auchenipteridae 

species, like Auchenipterus osteomystax cit. Auchenipterus nuchalis [20], Glanidium ribeiroi [20,21,24],  P. 

galeatus [13,18,20], Tatia jaracatia, Tatia neivai [22] and Tympanopleura atronasus cit. Ageneiosus 

atronasus [19], suggesting that this is a common feature of the family. However, in Ageneiosus inermis cit. 

Ageneiosus brevifilis [19] and A. inermis [23], prominent blocks were detected [23]. The B chromosomes of 

the two species analyzed were completely heterochromatic, as it was observed in the most of the 

Neotropical fish species that present this type of chromosome [40,41]. 

In all Auchenipteridae species analyzed by the cytogenetics, the NORs are simple, but their location 

may be interstitial or terminal, according to species. In A. inermis [19], P. galeatus [13,18,20,36], T. 

jaracatia, T. neivai [22], A. inermis [23], and  Trachelyopterus sp. (this paper) NORs were terminal; in A. 

osteomystax [20], G. ribeiroi [20,21,24], and T. atronasus [19] NORs were interstitial. In all species that 

have 18S rDNA mapping data, it was confirmed the result obtained by silver nitrate impregnation (13,18,21-

24). These similar results for the two species analyzed in the present paper reinforce the phylogenetic 

proximity of these genera. A small difference in relation to this marker can be observed: in P. galeatus the 

NORs are coincident with a region of heterochromatin, whereas in Trachelyopterus sp. are C-banding 

negative. 

The distribution pattern of 5S rDNA in Auchenipteridae is more variable than 18S rDNA. Populations of 

P. galeatus have two pairs bearing this sequence [13,18, present paper]; in T. jacaratia four pairs were 

identified [22]; for T. neivai sites were observed in three pairs [22] in A. inermis [23]; in G. ribeiroi [24] only 

one pair was identified, and in Trachelyopterus sp. two pairs were found (present study). Although they are 

allocated in different chromosome pairs, the sites evidenced in P. galeatus and Trachelyopterus sp. can be 

considered as homeologous, which reinforces the proximity of these species. 

In both species analyzed in the present paper, the telomeric sequence [TTAGGG]n was only found in 

the terminal portions of all autosomal chromosomes, like it was verified in G. ribeiroi [24], however, B 

chromosomes exhibited accumulation of this sequence. Most studies with B chromosomes indicate the 

presence this sequence only in the terminal region these chromosomes [27,42]. Cases of B chromosomes 

bearing interstitial sites of telomeric sequence have also been described, as for example in Nyctereutes 

procyonoides [43] and Nectomys squamipes [44]. This unusual dispersion of telomeric sequence on B 

chromosomes of P. galeatus and Trachelyopterus sp. indicates a strong similarity between B chromosomes 

composition of these species. After the formation of a B chromosome, it is common for them to undergo 

degeneration through repetitive DNA accumulation [1], which in these species appears to have occurred 

with telomeric sequences. 

The [GATA]n repeats, which were discovered by Epplen et al. [45], appears to be associated to 

determination and evolution of sex chromosomes in snake groups [46], and to initial stages in the origin of 

sex chromosomes in poecilids [47], and they are possibly related to gene regulation [48]. In the present 

study, [GATA]n repeats were located at the terminal region of all A chromosomes, as observed in A. inermis 

[20] and G. ribeiroi [24], in this same family of fishes. However, B chromosomes showed no hybridization 

signal for this microsatellite. Despite the absence of hybridization signals of the [GATA]n repeats on these 

chromosomes, it cannot be ruled out this sequence may be present in a low number of copies, which would 

not be detectable by FISH. This result also reinforces the similarity between the B chromosomes of the 

analyzed species. 

The data obtained in the present study show that B chromosomes organization in the two species is 

little different from A chromosomes organization, besides indicating a great similarity in the B chromosomes 

composition of these two species. It is important to note that the population of P. galeatus from Lagoa da 
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Prata [13, present work] is the only one that presented B chromosomes, which represents 20% of all 

analyzed populations of this species, considering only published data [13, 18, 20, 36].  These similarities 

suggest common origin for these chromosomes of P. galeatus and Trachelyopterus sp. In this scenario, 

two hypotheses may explain the appearance of these chromosomes: (i) these chromosomes may have 

originated from a chromosome breakdown process which involved the terminal region an A chromosome, 

with concomitant loss of [GATA]n repeats or ii) after the origin of these B chromosomes, the telomere 

sequence [TTAGGG]n would be amplified, with concomitant loss of [GATA]n repeats. The second 

hypothesis seems to be more plausible, due to the fact that these B chromosomes have definite 

metacentric morphology. The changes observed in B chromosomes in relation to A chromosomes may 

have occurred due to the high dynamism that is normally attributed to these chromosomes. 

For a long time it was believed that the B chromosomes carry no function. However, many recent 

studies have shown that there are several types of important genes located in B chromosomes, like genes 

involved in developmental processes [6,10], chromosome segregation and telomeres formation [49], 

regulate cell proliferation [50], gene silencing [51] and cell cycling and cell death [52]. Other studies also 

show that B chromosomes can interfere with transcription of genes located in complement A 

chromosomes, as observed in Eyprepocnemis plorans [5]. The present work identified a large amount of 

telomeric sequence in the B chromosomes of both species analyzed, however more studies are needed to 

identify whether such chromosomes have active genes and have an effective participation in cell functions. 

According to Camacho et al. [53], the highest number of B chromosomes in a population is the result of 

interactions between the accumulation system (increased frequency) and harmful effects that these 

chromosomes can generate to the carriers. In almost 40% of cases in Neotropical fish, only one B 

chromosome was found per individual [12]. The highest number of B chromosomes in P. galeatus and 

Trachelyopterus sp. were different, being two and three, respectively. However the two populations showed 

frequencies of cells with B chromosomes in the carrier specimens greater than 50%, varying in P. galeatus 

from 55% to 86%, and in Trachelyopterus sp. from 50% to 68%. The inter and intraindividual variation of B 

chromosome frequency in both species reflects mitotic instability, probably due to non-Mendelian behavior 

during cell division, as originally proposed by Jones & Rees [3]. 

According to Camacho [1], B chromosomes may have long life and the best evidence of this would be 

the presence of similar B chromosomes in closely related species, like was shown in the species of this 

paper. The data presented suggest that these B chromosomes have a common origin and should have 

remained after the speciation processes of the clade (Parauchenipterus + Trachelyopterus), or the possible 

Parauchenipterus validation must be rethought like suggested by some authors. Moreover, it is probable 

that other populations of this fish group may also have B chromosomes. A similar case of common 

ancestral origin is documented in rye, between Secale cereale and S. segetale, in which the B 

chromosomes of the two species show meiotic pairing in interspecific hybrids [54]. According to Camacho 

[1], this case of rye species would require more studies to confirm the ancestry, specifically in relation to the 

DNA content of these B chromosomes. In the present study, these molecular information about B 

chromosomes are provided by repetitive elements [TTAGGG]n and [GATA]n. 

In general, the two species presented in this paper have a very similar chromosome constitution in 

relation to A and B chromosomes. These aspects reinforce the hypothesis that B chromosomes present in 

both species might have common origin, previous to diversification this group. 
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