

Article - Biological and Applied Sciences

Cloning and Expression of NADPH-cytochrome P450 Reductase Gene in Chinese Mitten Crab, *Eriocheir sinensis*

Xianggang Gao¹ https://orcid.org/0000-0002-6757-5701 **Chongbo He**^{1*} https://orcid.org/0000-0001-9767-4367

Ying Xia² https://orcid.org/0000-0003-3512-0742 Xiangbo Bao¹ https://orcid.org/0000-0001-9030-5980

Yulong Li¹ https://orcid.org/0000-0002-5412-4880 Weidong Liu¹ https://orcid.org/0000-0003-0931-1262

¹Key Lab of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian Liaoning, China; ²Dalian Eco-Environmental Monitoring Center of Liaoning Province, Dalian Liaoning, China.

Editor-in-Chief: Alexandre Rasi Aoki Associate Editor: Alexandre Rasi Aoki

Received: 2020.10.30; Accepted: 2021.05.06.

*Correspondence: chongbohe@163.com; Tel.: +86-0411-84697003 (C.H.).

HIGHLIGHTS

- *EsCPR* was isolated from *E. sinensis* using RT-PCR and RACE methods.
- EsCPR mRNA was markedly expressed in the hepatopancreas and stomach of *E. sinensis*.
- The results showed a higher CPR expression level in the premolt than other stages.

Abstract: NADPH-cytochromeP450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. In this study, a gene encoding CPR (named *EsCPR*) was isolated from *Eriocheir sinensis* using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. Analysis of the nucleotide sequence revealed a cDNA full-length of 3717 bp with an open reading frame of 2046 bp, a 5'-untranslated region of 42 bp, and a long 3'-untryganslated region of 1628bp, which encodes a protein of 681 amino acids with a predicted molecular weight of 30.7 kDa and an estimated pl of 4.82. The mature peptide shares amino acid of *E. sinensis* identity 82 % - 89 % to the CPR from *Penaeus vannamei* and *Chionoecetes opilio*. Tissues and developmental stage-dependent expression of *EsCPR* mRNA was investigated by real-time quantitative PCR. *EsCPR* mRNA was markedly expressed in the hepatopancreas and stomach. These results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems.

Keywords: *Eriocheir sinensis*; Molting; NADPH-cytochrome P450 reductase gene; Cloning; Gene expression.

INTRODUCTION

The steroid hormone 20-hydroxyecdysone, which is produced from cholesterol via a series of oxidation steps, is the physiologically active molting hormone that controls crustacean development. The final step of its biosynthesis, has been reported to occur in the microsomal or mitochondrial fractions of the eye stalk of the insects at a certain developmental stage [1-3].

Cytochrome P450 is involved in the metabolism of a wide range of foreign compounds such as insecticides and plant secondary metabolites, as well as participating in the regulation of endogenous substrates [4,5]. The catalytic reaction of P450 enzymes require the electron donor, NADPH-cytochrome P450 reductase (CPR) [6]. CPR has several conserved functional domains, including the sites for binding flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH), which are involved in the transfer of electrons from NADPH to the central heme-group of P450s through a series of redox-coupled reactions [5]. CPR also shuttles electrons to other oxygenase enzymes, including cytochrome b5 [7,8] and heme oxygenase [9] found in most eukaryotes. As a component of the microsomal P450 electron transport system, CPR plays an essential role in the transfer of reducing equivalents from NADPH to various P450 molecules [10]. The P450 reductase in insects was first purified from the housefly Musca domestica [11], and was shown to participate in P450-dependent drug metabolism [12]. Antisera raised against the enzyme were used for isolating a cDNA from the abdominal tissue of phenobarbital-treated flies [13,14]. However, very limited information concerning the role of P450 reductase in the biosynthesis of ecdysteroid is available [1].

Chinese mitten crab (*Eriocheir sinensis*), one of the most important aquaculture species, has been widely farmed in ponds, reservoirs, and lakes in China [15]. Although *E. sinensis* is considered as an annoying invasive species in Europe and North America, it is considered as a native delicacy in China [16]. Being a catadromous crustacean, *E. sinensis* needs to undergo 18 molting states, including larval developmental molting, juvenile growth molting, and adult reproductive molting to finally become an adult crab[17]. Molting is a cyclic process that occurs throughout the life history of *E. sinensis* and is essential for metamorphosis, growth, and reproduction. Developmental molting is closely correlated with metamorphosis, and growth-related molting determines the growth and size of a crab. Abnormal molting might lead to development and growth deficiency or even death. The terminal or reproductive molting might lead to precocity, which has adverse effects on the growth of *E. sinensis* CPR (*EsCPR*) gene is important to understand brachyuran metabolism as well as the effects of different arthropods. In this study, we isolated a CPR from *E. sinensis*, and examined its physiological relevance to the expression of ecdysone 20-hydroxylation during the molting of *E. sinensis*.

MATERIAL AND METHODS

Healthy juvenile Chinese mitten crabs (body weight 70.2 ± 9.6 g) with good vitality were collected from the Liaohe River in northeastern China, and acclimatized in freshwater inside a breeding room. The crabs were cultured in individual aquaculture tanks in a re-circulating-closed artificial system with an aeration system at room temperature. The crabs were mainly fed on alternate days with a diet containing aquaculture feed. Intermolt crabs were used for the experiments. Ten types of tissues, including the Y organs, eye stalk, horacic ganglion, cerebral ganglion, heart, stomach, hepatopancreas, muscle and gills were separately collected, and immediately frozen in liquid nitrogen and stored at -80°C until use.

According to the morphological changes in setogenesis during the molting cycle, the crabs were first divided into five groups: early-postmolt (A), late-postmolt (B), intermolt (C), premolt (D), and ecdysis (E). The setae of the second maxilla were carefully sampled from the premolt group crabs and microscopically observed to identify precisely the premolt substages according to the method described by Tian[19]. The premolt group was then classified into 2 subgroups: premolt (D^{1–2}) and premolt (D^{3–4}). The crabs at different periods of molting cycle were thus divided into six groups, including the two subgroups of the premolt stage, with each group having at least three crabs. The hepatopancreas tissues from the crabs of different groups were dissected and immediately frozen in liquid nitrogen. Total RNA was extracted from these tissues by using the RNAprep pure Tissue Kit (Tiangen, China) according to the manufacturer's instructions. The quality of RNA was assessed by formaldehyde agarose gel electrophoresis and was quantitated spectrophotometrically.

The published CPR sequences from *Penaeus vannamei* were used as query sequences in a BLAST search of *E. sinensis* hepatopancreas transcriptome shotgun assembly database. In order to obtain CPR, multiple alignment and homology cloning were performed for the conserved regions of crustacean CPR. Gene-specific 5' and 3' primers were designed according to these partial cDNA sequences. All primers are listed in Table 1. The first-strand cDNA (5' cDNA and 3' cDNA) was reverse transcribed using a 3'-Full RACE Core Set with PrimeScript[™] RTase (Takara, China) and 5'-Full RACE Kit with TAP (Takara, China), and polymerase chain reaction (PCR) amplifications for 3' and 5' rapid amplification of cDNA ends (RACE) were performed following the manufacturer's instructions. The 3-step PCR program for 3' RACE was as follows: holding at 94 °C for 3 min, followed by 20 cycles at 94 °C for 30 s, 60 °C for 30 s and 72 °C for 1 min, and a final extension step at 72 °C for 10 min. The PCR program for 5' RACE was as follows: 3 min at 94 °C, followed by 30 cycles at 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 1 min. The full length of each *EsCPR* was obtained by alignment and assembly of the sequencing result for 5' and 3' RACE products. The PCR products were separated in 1% agarose gel via electrophoresis, and the gel was then stained with ethidium bromide.

Primer name	Sequence (5'-3')	Application
EsCPR-1	GATGCTGGAGACCATGTGGCT	RACE degenerate primers
EsCPR-2	TCTCCACAGACATACAAGTGGCC	RACE degenerate primers
EsCPR-3	TCAGGTGCACAACACAGCCGCCTAG	3' RACE
EsCPR-4	CCATAACGGGTCGCTTCCTTGGCC	5' RACE
EsCPR-5	GGTTGCCGTAACAAGGACAAGGAC	RT-qPCR analysis
EsCPR-6	CCAGTGTTGGCTGTTGCTGGC	RT-qPCR analysis
Actin-R	CTCCTGCTTGCTGATCCACATC	House-keeper gene
Actin-S	GCATCCACGAGACCACTTACA	House-keeper gene

Table 1. Primer sequences used in this study.

The open reading frame (ORF) of CPR cDNA was identified using the ORF finder program (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The signal peptide was predicted utilizing the Sigal P3.0 server (http://www.cbs. dtu.dk/services/SignalP), and protein domain features were predicted using SMART (http://smart.embl-heidelberg.de/). Multiple alignment of *EsCPR* and CPRs sequences in *E. sinensis* and other species was performed using BioEdit with manual checks. A phylogenetic tree was constructed by MEGA 5.0 with neighbor-joining method against bootstrap of 1,000 times on the basis of the catalytic domain.

RESULTS

The electrophoresis result verified the integrity of total RNA extracted from various tissues of *E. sinensis* (Figure 1). A cDNA fragment of approximately 680 bp was amplified by RT-PCR using degenerate primers. The fragment exhibited high sequence identity with other known CPR sequences in the GenBank database. The full-length *E. sinensis* CPR cDNA was obtained by 5'- and 3'-RACE. This sequence was named as *EsCPR* and had been submitted to GenBank (accession number KT159167). *EsCPR* contained a 2046-bp open reading frame encoding a protein of 681 amino acids. The predicted isoelectric point and molecular mass of the protein were 4.82 and 30.7 kDa, respectively. The protein contained the hallmark of arthropod CPR, including the FMN-, FAD- and NADPH-binding domains (Figure. 2). A hydrophobic transmembrane region consisting of 22 amino acid residues was predicted at the N-terminus of protein, and no signal peptide cleavage site was found in the secondary structure of the protein, indicating that the enzyme is a cytoplasmic protein.

Figure 1. The electrophoretic electrophoresis results of total RNA various tissues in *E. sinensis*.1-3: heart; 4-6: Y organs; 7-9: eye stalk; 10-12: hepatopancreas; 13-15: muscle; 16-18: horacic ganglion; 19-21: cerebral ganglion; 22-24: intestines; 25-27:gills; 28-30:stomach.

gtcagtgttggcctgcatgtgtcactgagaggtgctggcaga(ATG) 45

1

Brazilian Archives of E	Biology and Techr	ology, Vol.64:	e21210292. 202	1 www.scielo.br/babt

																														М	1
46	GAT	GGG	ACG	CCT	GAA	GTG	ATG	GAG	ACT	GCC	GCT	GAG	GAG	GTG	GCT	GCC	GAG	CCT	CTT	GTT	GGG	ATG	CTA	GAC	ATG	GTC	CTT	CTC	ACC	TTG	135
2	D	G	т	P	E	v	М	E	т	A	A	E	Ê	v	A	A	E	P	L	v	G	М	L	D	М	v	L	Ĩ	т	L	31
136	CTG	GCG	GGT	GTC	TCC	GTT	TAC	TAT	TTC	TTC	ATA	AGG	GAC	ACG	AGC	AAG	AAG	GAA	GAC	AGC	AAT	GCC	CTT	AAA	AGC	TTC	ACT	ATA	TCT	ccc	225
32	L	A	G	v	s	v	Y	X	F	F	I	R	D	т	s	ĸ	Ķ	E	D	s	N	A	L	ĸ	s	F	т	I	s	P	61
226	ACT	CAG	CTG	ACA	ccc	CGG	GCC	AAT	GAC	TCA	AGC	TTC	ATA	TCA	AAG	ATO	AAC	F TCA	. TCA	GGG	AGG	AAT	GTT	ATT	GTG	TTC	TAT	GGC	TCC	CAG	315
62	т	Q	L	т	P	R	A	N	D	s	S	F	I	S	K	М	K	S	S	G	R	N	v	I	v	F	Y	G	S	Q	91
316	ACA	GGC	ACT	GCC	gaa	GAG	TTT	GCA	GGA	AGA	CTG	GCC	AAG	gaa	GCG	ACC	CG1	TAT	GGA	ATG	AAG	GGC	ATG	F GTG	hosp GCT	hate I GAT	Moie CCT	ty GAG	gaa	TGT	405
92	т	G	т	A	E	E	F	A	G	R	L	A	K	E	A	т	R	Y	G	М	K	G	М	v	A	D	P	E	E	С	121
406	GAC	ATG	AGT	Pho GAA	sphat CTG	e Mo TCT	iety CAG	CTG	GCA	GAG	ATT	GAG	AAT	CAC	TTG	GCF	A ATZ	A TTT	TGT	GTT	GCC	ACT	TAT	GGG	GAA	GGA	GAC	ccc	ACA	GAT	495
122	D	м	s	E	L	s	0	L	A	Е	I	E	N	н	L	A	I	F	с	v	A	т	Y	G	E	G	D	P	т	D	151
496	AAT	GCT	CAA	GAA	TTC	TAC	GAA	TTT	CTG	CAA	AAT	GGC	GAT	GAA	GAG	CTC	AAT	r gga	GTA	A CAG	; TTI	FM ACA	N Ri	ing (r	e-fac	e) TTG	GGG	AAC	AAG	ACT	585
152	N	A	0	E	F	Y	E	F	L	0	N	G	D	E	E	L	N	G	v	0	F	т	v	F	G	L	G	N	K	т	181
586	TAC	FM	IN R	ing (1	e-fac	e) GCC	ATG	000	AAG	TAT	GTT	GAC	AAG	CGG	CTG	۵ŢŢ	GAG	ATG	GGA	000	CAG	FMN	Ring	g (si-f	face)	TTA	GGG	TTG	GGT	GAT	675
182	v	F	н	v	N	д Д	м	G	к	v	v	D	к	R	т.	т	F	м	G	 Д	0	0	т.	F	F	т.	G	т.	G	D	211
676				FN	/N R	ing (s	si-fac	e)		100										~~~~	-	*					~~~~				2.00
676	GAT	GAT	GUU	AAC	ATG	GAG	GAT	GAC	TTC	ATC	ACA	TGG	AAG	GAT	GCC	ATG	TGG	CCA	AAG	GTT	TGT	GAA	TCA	TTT	GGC	ATT	GAA	GCT	CAG	GCA	/65
212	D	Ď	A	N	М	E	D	Ď	F	I	т	W	K	D	A	М	W	P	K	V	С	E	S	F	G	I	E	A	Q	A	241
766	CAA	GAC	ATC	AAC	ATG	AGA	CAG	TAC	AAA	CTG	ACG	GTC	CAT	GAA	GAG	TAT	GAT	CCA	ACG	CGC	CTT	TTC	ACT	GGA	GAA	ATC	GCT	CGT	CTA	AAC	855
242	Q	D	I	N	М	R	Q	Y	K	L	т	V	Н	E	Ĕ	Y	D	P	Т	R	L	F	Т	G	E	I	A	R	L	N	271
856	TCA	CTT	AAG	GTT	GGC	AGT	CAG	AGA	CCA	CCA	TTC	GAT	GTC	AAA	AAC	CCC	TTC	ATG	GCT	GAA	ATT	GCC	ATC	AAT	CGG	GAG	TTA	TTT	AAG	GGT	945
272	S	L	K	V	G	S	Q	R	P	P	F	D	v	K	N	Ρ	F	М	A	Ε	I	A	I	Ν	R	E	L	F	K	G	301
946	GGA	AAT	CGC	AAC	TGT	CTA	CAC	ATA	GAG	TTG	AAC	ATT	GAA	GGG	TCA	AGG	ATA	AGA	TAT	GAT	GCT	GGA (GAC	CAT	GTG (GCT (TG 1	PAC (CCC P	TC	1035
30.2	Ģ	N	R	N	С	L	H	I	E	L	N	I	E	G	s	R	I	R	Y	D	A	G	D	Н	V	A	v	Y	P	I	331
1036	AAC	GAC	CAG	GCC	CTC	GTG	GCC	CGT	CTG	TGT	GAG	TTG	GTT	GGT	GAG	GAT	CCT	GAG i	AAG	GTC 2	ATT 2	ACG (CTC .	ACA A	AAT (GTT (AT (GAA (AC I	4GC	1125
332	N	D	Q	A	L	v	A	R	L	С	E	L	v	G	E	D	Ρ	E	ĸ	v	I	т	L	т	N	V	D	E	D	S	361
1126	AGT	AAG	AAG	CAC	CCG	TTC	CCA	TGC	ccc	TGC	ACC	TAC	CGT	GTT	GCT	CTC	TCC	CAT	FAC	GTT (GAC 2	ATC A	ACT '	FCC (CTA (CCC A	GA Z	ACT (CAT (FG	1215
362	S	K	Ķ	Н	P	F	P	С	P	С	Т	Y	R	v	A	L	S	Н	Y	V	D	I	Т	s	L	P	R	Т	Н	V	391
1216	CTT	AAA	GAA	ATT	GCT	gaa	TAT	GCA	ACA	GAT	AAT	AAG	GAA	AAA	GAA	AAG	CTG	CIG	CTA	CTG	AGT	AGC	ACA	AGT	GAG	GCA	GGA	AAG	GCA	GAG	1305
39.2	Ļ	K	E	I	A	E	Y	A	т	D	N	K	E	ĸ	E	K	L	ř	ř	ř	S	ŝ	т	s	E	A	G	K	A	E	421
1306	TAC	CAG	CGT	TGG	ATT	GTG	CAA	GAT	GTG	AGA	AGC	ATT	GTT	CAC	ATC	CTG	GAG	GAC	CTG	CCG	TCA	TGT	AAA	CCT	ccc	CTT	GAC	TAT	CTC	TGT	1395
422	Y	Q	R	W	I	v	Q	D	v	R	S	I	v	н	I	L	E	D	L	P	s	С	K	P	Ŗ	L	D	Y	L	С	451

Figure 2. The nucleotide sequence and deduced amino acid sequence of *EsCPR* gene including 3' and 5'UTR in the *E. sinensis*. The poly A sequences are underlined. The asterisk indicates the stop codon. The sequences of AATAAA as a canonical polyadenylation signal site are double underlined. The functional regions are identified and labeled.

Gao, X.G.; et al.

1396	GAG	CTG	ATG	CCC	AGG	CTA	CAG	GCA	AGG	TAT	TAC	TCC	ATC	TCA	TCA	TCA	, GGC	AAG	CTG	TAC	ccc	AAC	ACC	ATC	CAT	GTC	ACA	. GCC	: AA	CTG	1485
452	E	L	М	P	R	L	Q	A	R	Y	X	S	I	S	S FAD Rin	S. g (si-fa	G (ce)	K	L	Y	P	N	т	I	Н	<u>v</u>	/	Aden	N ine	<u>v</u>	481
1486	CTC	AAG	TAT	GAG	ACT	CCA	ACT	GGA	CGA	GTG	AAC	AAG	GGT	GTI	TGC	ACC	ACA	TAC	ATG	CAG	CAG	CTC	AAG	CCT	GAC	AAT	GGC	ACC	: AAG	; TAT	1575
48.2	<u>Ļ</u>	K	Y	E	Т	P	т	G	R	v	N	K	G	v	с	т	т	Y	М	ç	2 Q	L	I	<u>K</u> E	? I	D N	ŕ	G	т	ĸ	Y 511
1576	CAC	ACT	CCT	A0 GTC	TTT	e GTC	AGG	AAG	TCA	CAG	TTC	AGA	TTA	CCA	AGC	sphate AAG	CCT	CAA	ACT	CCA	ATT	TTG	ATG	ATT	GGC	ccc	GGC	: ACC	GG(C ATT	1665
512	Н	т	P	v	F	v	R	K	S	Q	F	R	L	P	s	ĸ	P	Q	т	F	? I	I	. 1	4 1	E (ş	P	G	т	G I	541
1666	GCT	CCT	TTC	CGA	GGG	TTC	ATT	CAG	GAG	AGA	AAC	CTC	CAA	AAG	GAA	GAA	GGC	AAG	CCT	GTT	GGG	GAG	ACC	ATA	. CTG	TAC	TTI	GG	r TG	C CGT	1755
542	A	P	F	R	G	F	I	Q	E	R	N	L	Q	ĸ	E	E	G	K	P	v	7 G	E	5	с 1		2	Y	F	G	c	R 571
1756	AAC	AAG	GAC	AAG	GAC	TAT	CTG	TAT	gaa	GAA	GAG	CTG	ACT	GCT	TAT	AAG	GAC	TCT	GGA	CTG	TTA	AAG	CTG	TAT	GTA	GCA	TTC	AGT	CGG	GAC	1845
572	N	K	D	ĸ	D	Y	L	Y	E	E	E	L	т	A	Y	ĸ	D	s	G	L	ř	K	L	Y	v	A	F	5	R	D	601
1846	CAG	CCG	CAG	AAA	GTG	TAC	GTG	ACA	CAC	CTC	CTG	GAA	GAA	AAC	AAG	gaa	GAA	GTT	TGG	CGA	ATT	ATT	GGC	AAG	GAA	AAT	GGC	CAC	TTG	TAT	1935
602	Q	P	Q	K	v	Y	v	т	н	L	L	E	E	N	ĸ	E	E	v	W	R	I	Ĩ	G	K	E	N	G	H	I L	Y	631
1936	GTC	TGT	GGA	GAT	GCA	AAG	TGT	ATG	GCC	NAD. AGA	GAT	GTT	CAC	GCC	CTT	ATC	AGC	AAG	ATT	TGC	CAG	ACC	GAG	GGA	GGT	ATG	ACA	CCG	TCI	GAA	2025
632	v	С	G	D	A	K	С	М	A	R	D	v	Н	A	L	I	s	K	I	С	Q	т	E	G	Ģ	М	т	F	, s	E	661
2026	GCT	GAG	CAA	TAC	GTT	AAG	AAG	ATG	NAE ATG	PH A AAC	deni CAG	ne AAA	CGA	TAC	TCG	TCA	GAT	GTT	TGG	AGT	TAA	GTG	TCT	GTA	AGG	TGA	AAT	ATT	TAI	CTG	2115
662	A	E	Q	Y	v	K	ĸ	М	М	N	Q	K	R	Y	S	S	D	v	W	S	*										
21160	catt	act	ttta	aac	aato	catg	ıtta	cato	gtta	igct	aatt	gta	agt	F aago	FAD R	ing (re atagt	e-face	e) attg	ggt	gcat	tat	acat	tatg	ata	aata	agta	itgc	tat	ttc	ttac	attt
catgt	2116cattacttttaaacaatcatgttacatgttagctaattgtaagtaa															tgtg															
aatta	atgg	ata	agat	att	tago	gtat	gtc	atga	atgg	Icca	gcaa	.cag	icca	aca	ctggi	tato	gtgt	gtg	agga	atgg	ıtgg	tgct	tcc	tca	cagt	tato	JCac	:gca	.cac	actc	agac
cgtat	ccat	gtg	taca	igga	ttaa	aagt	gta	tgca	actt	cag	acaa	tct	ttt	tca	cata	tttt	agt	atc	ttga	agtt	tta	caco	cgtt	ttt	atc	tttg	ıgta	ittg	taa	agct	aaat
tccat	ttc	tct	aaat	gtt	catt	tcat	agt	ttti	gat	taa	gttc	ctt	att	aaaa	atga	catca	aagt	gaa	tgg	cctg	atc	aaaa	attt	tcc	acca	atct	cgç	gac	tga	agaa	gcaa
cataa	agtt	ttg	atag	ttt	acaq	gctt	aac	acaa	aaac	ata	tatt	gct	ggt	gcta	acaat	ttga	aat	tca	atg	ttca	tac	aaga	aatt	tga	taaa	aaat	gta	attt	aca	aatt	atgt
aaatt	gtg	gac	cata	itta	tatt	ttga	cgt	tcta	atgt	ata	atgt	aag	att	att	tgaaa	attt	ctac	agt	tcaa	aagt	tta	tgta	agtt	gaa	ttta	atat	tta	itta	ttc	cgaa	gata
taatt	caaa	tta	tttg	rttg	aaco	ctto	taa	aato	gcag	rtat:	ataa	ttt	ctc	cate	gaggo	cctta	agaa	acct	gtgi	tatg	ıtgt	atco	ctaa	itga	tcat	ttaa	iaac	tgt	aat	gagc	tggc
tttgo	cata	aaa	agat	tga	ggco	ctta	acc	gtad	caaa	laat	taca	taa	tta	aat	tttta	acgto	gttt	gtt	ata	caat	tta	atat	caaa	ctc	aac	cctt	gat	ttc	ctg	gact	aata
dddd	ggag	cac	ttgt	ccg	ggaa	acca	caa	aact	ctg	Igga.	atca	aga	act	gcta	acagt	ctg	lddd	gcca	cggo	ccca	ttc	ctto	caca	ttt	acca	atat	act	tgg	tcc	agca	atcc
ctaat	att	tag	tacc	tgc	ccca	agag	rttt	tato	caaa	ctt	tgtc	tag	cac	aati	taagi	cagca	acat	tta	ggaa	aaga	itta	acga	aaaa	caa	gtt	gtct	gaa	ıgat	ttg	catg	acac
gtcaa	acaa	aag	atgt	cag	gtgo	caca	aca	cago	ccgc	cta	gtgg	gtg	tca	caaa	acati	cgaco	caga	agaa	caga	aato	tga	tgta	atga	ccg	aact	ttct	cca	itac	atg	gcca	ggca
tgtgt	ccca	gca	acca	icca	aaca	aaag	atg	aaco	ccaa	igat [.]	tttt	ggc	ctg	ggct	ttcta	attto	caat	tct	cgga	actt	gac	tggg	gcag	atg	tcca	agco	ttç	lccd	aac	ccca	gagt
ttgto	ccag	gaa	atto	aat	atco	cggg	ra <u>aa</u>	<u>taa</u> t	ggg	rtca	aatg	tac	ctg	ggaq	gtga	cggag	gaad	cact	cac	ctaa	acc	agtt	tgc	ttc	ctt	gatt	att	ttt	ata	atca	ctat
cacca	atga	acc	acaa	iaaa	ttag	ggtt	tct	atgo	gatg	gca	aatt	ttc	aaa	aaaa	aaaa	aaaa	aaaa	aaa	371	7											

Figure 2 (continued). The nucleotide sequence and deduced amino acid sequence of *EsCPR* gene including 3' and 5'UTR in the *E. sinensis*. The poly A sequences are underlined. The asterisk indicates the stop codon. The sequences of AATAAA as a canonical polyadenylation signal site are double underlined. The functional regions are identified and labeled.

In order to gain some insight into the relationship among the CPRs from the taxonomically diverse arthropod species, the amino acid sequences of *EsCPR* and 14 other CPRs taken from NCBI were subjected to phylogenetic analysis (Figure. 3). A neighbor-joining tree generated from the analysis showed that despite most of the proteins sharing a high level of sequence identity, they were well segregated and clustered into distinct branches. According to the constructed phylogenetic tree, species from the same arthropod phylum were grouped together with strong bootstrap supports. The mature peptide shares amino acid of *E. sinensis* identity 82 % - 89 % to the CPR from *P. vannamei* and *Chionoecetes opilio*. It can be seen that *E. sinensis*, *C. opilio* and *P. vannamei* were clustered into a single group, suggesting a much closer evolutionary relationship than with other species.

Figure 3. N-J phylogenetic tree based on CPR amino acid sequences. GenBank accession numbers are as follows: *Pediculus humanus corporis* (XM_002423935); *Eriocheir sinensis* (KT159167); *Laodelphax striatella* (KJ668698); *Sogatella furcifera* (KJ017970); *Nilaparvata lugens* (KF591574); *Calliphora stygia* (KJ702307); *Cimex lectularius* (JQ178363); *Drosophila melanogaster* (NM_057810); *Anopheles funestus* (EF152578); *Musca domestica* (NM_001286889); *Spodoptera littoralis* (JX310073); *Spodoptera exigua* (HQ852049); *Locusta migratoria* (KF984040.1); *Penaeus vannamei*(XM_027357984.1); *Chionoecetes opilio*(JACEEZ010001542.1).

Analysis of the transcript level of *EsCPR* in ten different tissues of the intermolt adult crab by the endpoint RT-PCR showed that *EsCPR* was predominately expressed in the hepatopancreas and stomach, with lower levels of expression in the other tissues. Examination of the tissue-specific expression of *EsCPR* in the premoult, postmoult and intermoult stages showed that *EsCPR* was predominantly expressed during the premoult stage, with lower level of expression in the postmoult and intermoult stages (Figure. 4). *EsCPR* showed almost equally high expression in the stomach of premolt crabs as in the hepaopancreas of premolt and intermoult. *EsCPR* was almost exclusively expressed in the eye stalk of postmoult, with only minor expression in the hepatopancreas. The data indicated that the *EsCPR* was predominantly expressed in the hepatopancreas, thus a detailed analysis of the expression of *EsCPR* in the hepatopancreas at different moult stages was performed to determine if the level of the transcript would fluctuate during development.

Figure 4. The relative expression of EsCPR in ten tissues from crabs of different molting stages.

DISCUSSION

In both vertebrates and invertebrates, xenobiotic metabolism is concentrated in hepatic-like tissues. Many mammalian CPRs that contribute to these activities are highly expressed in the liver. The identification of the CPR cDNA in E. sinensis not only extended the insect CPR family, but would also facilitate future functional study to investigate the interaction of the enzyme with other components of the cytochrome P450 enzyme systems.

The expression of CPR at different developmental stages in crustaceans has been rarely studied. The expression of CPR in the hepatopancreas varied across different developmental stages. The molt analysis showed a higher CPR expression level in the premolt stage than in the intermolt and postmolt stages. The expression analysis revealed that *EsCPR* participated not only in physiological growth but also in crustacen molting process.

The results demonstrated that the moulting stage of E. sinensis is dependent on the expression of EsCPR gene in the hepatopancreas and genes with similar expression patterns. As moulting is initiated by a surge of ecdysteroids, the levels of these hormones change dramatically during development. The level of *EsCPR* expression was higher in the premoult, with lower level found in the post- and intermoult stages. We have previously demonstrated that the hepatopancreas is the major site of the initial CPR-mediated reaction leading to the molting in *E. sinensis*. Published data showed that the gene is involved not only in hydrolyzing endogenous compounds in the early stage of embryogenesis[1], but also in synthesizing cuticular components throughout adult emergence[20]. The activity of P450 is dependent on CPR and a large number of individual P450s then catalyzed a many biology process in each organisms. Taken together, the finding of the present study constituted an initial effort to establish a foundation for utilizing EsCPR as a novel target to manage molting process in E. sinensis, also, it will shed more light on the understanding of the molecular basis of ecdysone and developmental regulation in crustaceans. Future studies on the inducible expression of the EsCPR gene by ecdysone and the potential role of EsCPR in the mechanism of molting are urgently needed.

Funding: This research was funded by the National Natural Science Foundation of China (#31302178), and the Scientific Research Program of Ocean and Fisheries Administration of Liaoning Province (201834). **Conflicts of Interest:** The authors declare no conflict of interest.

REFERENCES

- 1. Horike N, Takemori H, Nonaka Y, Sonobe H, Okamoto M. Molecular cloning of NADPH-cytochrome P450 oxidoreductase from silkworm eggs. Eur J Biochem. 2000;267:6914-20.
- 2. Rewitz KF and Gilbert L. *Daphnia Halloween* genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evol Biol. 2008;8:1-8.
- Anna P, Warren JT, Guillermo M, Jarcho MP, Gilbert LI, Jonathan K, Jean-Philippe Parvy, Li YT, Chantal, Dauphin-Villemant, Michael B O'Connor. Shade is the drosophila p450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences. 2003;100:13773-8.
- 4. Scott JG, Liu N, Wen Z. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C. 1998;121:147-55.
- 5. Feyereisen R. Insect P450 enzymes. Annu Rev Entomol. 1999;44:507-33.
- Paine MJ, Scrutton NS, Munro AW, Gutierrez A, Roberts GCK, Wolf CR. Electron transfer partners of cytochrome P450. In: Ortiz de Montellano, P.R. (Ed.), Cytochrome P450. Springer pp 115–148, 2005.
- 7. Schenkman JB and Jansson I. The many roles of cytochrome b5. Pharmacol Therapeut. 2003;97:139-52.
- 8. Schenkman JB and Jansson I. Interactions between cytochrome P450 and cytochrome b5. Drug Metab Rev. 2008;31:351-64.
- 9. Wang JL and Montellano PD. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem. 2003;278:20069-76.
- 10. Yasukochi Y, Peterson JA, Masters BSS. NADPHcytochrome c (P450) reductase. J Biol Chem. 1979; 10: 7097-7104.
- 11. Mayer RT and Durrant JL. Preparation of homogenous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques. J Biol Chem. 1979;254:756-61.
- 12. Zhang L, Kasai S, Shono T. In vitro metabolism of pyriproxyfen by microsomes from susceptible and resistant housefly larvae. Arch Insect Biochem Physiol. 1998;37:215-24.
- 13. Feyereisen R and Vinsent DR. Characterization of antibodies to house fly NADPH-cytochrome P450 reductase. Insect Biochem. 1984;14:163-8.
- 14. Koener JF, Carino FA, Feyereisen R. The cDNA and deduced protein sequence of house fly NADPH-cytochrome P450 reductase. Insect Biochem Mol Biol. 1993;23:439-47.
- 15. Ge YC and Wu XG. Ovarian development of Chinese Mitten crab *Eriocheir sinensis* after genital molting. Fish Sci. 2020;39:766-70.
- 16. Cheng YX, Wu XG, Yang XZ, Anson H, Hines. Current trends in hatchery techniques and stock enhancement for Chinese mitten crab, *Eriocheir japonica sinensis*. Asian Fish Sci. 2008; 16: 377-384.
- 17. Zhang LS and Lu JT. Review of the Chinese mitten crab *Eriocheir sinensis* molting and grow. Fish Sci Tech Inf. 2001; 28: 246-50.
- 18. Li XG, Xu ZQ, Zhou G, Lin H, Zhou J, Zeng QF, Mao ZG, Gua XH. Molecula characterization and expression analysis of five chitinases associated with molting in the Chinese mitten crab, *Eriocheir sinensis*. Comp Biochem Physiol B. 2015; 187:110-20.
- 19. Tian Z, Kang X, Mu S. The molt stages and the hepatopancreas contents of lipids, glycogen and selected inorganic elements during the molt cycle of the Chinese mitten crab *Eriocheir sinensis*. Fish Sci. 2012;78:67-74.
- 20. Su L, Liang QM, Huang YJ, Xin Y, Zhou WW, Fei Q. Cloning, functional characterization, and expression profiles of nadph-cytochrome p450 reductase gene from the asiatic rice striped stem borer, *chilo suppressalis* (*lepidoptera: pyralidae*). Comp Biochem Physiol B. 2013; 166: 225-31.

© 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY NC) license (https://creativecommons.org/licenses/by-nc/4.0/).