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Abstract: Breast cancer is one of the most common cancers among women that cause billions of deaths 

worldwide. Identification of breast cancer often depends on the examination of digital biomedical photography 

such as the histopathological images of various health professionals, and clinicians. Analyzing 

histopathological images is a unique task and always requires special knowledge to conclude investigating 

these types of images. In this paper, a novel efficient technique has been proposed for the detection and 

prediction of breast cancer at its early stage. Initially, the dataset of images is used to carry out the pre-

processing phase, which helps to transform a human pictorial image into a computer photographic image 

and adjust the parameters appropriate to the Convolutional neural network (CNN) classifier. Afterward, all 

the transformed images are assigned to the CNN classifier for the training process. CNN classifies incoming 

breast cancer clinical images as malignant and benign without prior information about the occurrence of 

cancer. For parameter optimization of CNN, a deep learning-based whale optimization algorithm (WOA) has 

been proposed which proficiently and automatically adjusts the CNN network structure by maximizing the 

detection accuracy. We have also compared the obtained accuracy of the proposed algorithm with a standard 

CNN and other existing classifiers and it is found that the proposed algorithm supersedes the other existing 

algorithms. 

HIGHLIGHTS 
 

 Novel whale optimization algorithm is proposed for prediction of breast cancer. 

 Deep learning-based WOA adjusts the CNN structure as per maximum detection accuracy. 

 Proposed method achieves 92.4% accuracy in comparison to 90.3%. 

 Validity of method is evaluated with magnifying factors like 40x, 100 x, 200x, 400x. 
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INTRODUCTION 

Recent technological advancements have brought several changes in the lifestyle of a human which in 

turn have increased the risk for many lifestyle diseases like cancer, diabetes, hypertension, etc. According 

to statistics as provided by International Institute for Cancer Research (IARC), cancer is increased by 28% 

from 2006 to 2016, and it is also predicted that 2.7 million new forms of cancer will take place by 2030 [1]. 

To solve the problem of cancer and to save human life, the early diagnosis of cancer must be performed [2]. 

Different environmental conditions are considered as the human body introduces a variety of cancers, such 

as lung cancer, leukemia, cervical cancer, ovarian cancer, vaginal cancer, throat cancer, and breast cancer 

[3,4]. From a variety of cancers, breast cancer is the 2nd foremost reason for death among females [5].  

Breast cancer prediction is essential in its earlier stage to reduce mortality. Diagnosis of breast cancer 

includes nuclear imaging, computed tomography (CT) scan, ultrasound, magnetic resonance imaging (MRI) 

scan, microscope, and mammography. However, none of these methods afford a more proficient outcome in 

the prediction of cancer. Several symptoms could lead to the identification of breast cancer [6]. The breast 

cancer types are categorized by benign and malignant [7]. The benign can be mentioned as the initial stage 

of breast cancer. The malignant stage is mentioned as severe cancer in the breast. Breast cancer is 

characterized by the uncontrolled improvement of abnormal cells on the glands milk-producing situated in 

the breast [8]. Therefore, the identification of breast cancer is very much significant. 

To identify breast cancer, tissue-based detection is mainly done with stained technology. In this 

approach, tissues should be colored by adding the frequently used hematoxylin and eosin (H&E) element. 

Through the use of adding components, the images are improved with high resolution to look for foreign 

elements, types and cell structures. The diagnosis of tumors, the histopathology test is required [9]. The 

procedure of emerging tools for analyzing histopathological images is hampered by the subsequent tissues. 

Further, the limitation of feature extraction methods of breast cancer for histopathological images is another 

challenging task. Some existing feature extraction approaches are known as grey-level correlation matrix 

(GLCM) and scale-invariant feature transform (SIFT), etc., that depend on monitored information. Moreover, 

selecting useful features requires previous knowledge of the data, which leads the capability of feature 

extraction very low and the computational burden too large. In this paper, an effective deep learning-based 

solution has been proposed to handle these problems which efficiently retrieve information, and extract 

features automatically from the input data. The proposed technique can solve the difficulties of traditional 

feature extractions and provide accurate diagnostic results. 

MATERIAL AND METHODS  

In the past, several Machine Learning (ML) based methods have been established for the detection and 

classification of breast cancer. Several ML classifiers like Decision Tree (DT), K-Nearest Neighbor (KNN), 

Support Vector Machine (SVM) [10], Convolution Neural Network (CNN) are used for the detection of breast 

cancer [11]. Lately, deep learning-based approaches have superseded the conventional machine learning-

based approaches [12]. The CNN based deep learning technique has provided better performance for the 

prediction of different diseases in the image processing task [13,14]. In this section, we have included the 

recent and related studies of various approaches used for the prediction and detection of breast cancer. 

In [6], Tapak and coauthors have developed Linear Discriminant Analysis, Logistic Regression, Adabag, 

Least Square SVM, SVM, AdaBoost, Random Forest and Naive Bayes for breast cancer prediction analysis. 

As discussed, the proposed method was used to analyze six different machine learning methods for 

predicting breast cancer. They have considered the dataset of 550 breast cancer survivors. In [15], Tseng 

and coauthors have presented four different classifications for predicting breast cancer. The developmental 

method was evaluated based on serum human epidermal growth factor receptor 2 (SHER2). In this paper, 

they have considered various classifications such as Bayesian classification algorithms, logistic regression, 

SVM and random forest. For experiments, they have considered the dataset of 302 patients at least 3 months 

before the diagnosis of breast cancer. In [16], Arresta and coauthors have developed neurological networks 

for diagnostic imaging in breast caper histology images (BACH). BACH may be organized for the localization 

and classification of histopathological classes associated with the entire slide images of the microscope. 

Microscopic images were considered benign and malignant. The developed method provided excellent 
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accuracy in microscopic films. In [17], Ouyang and coauthors have used a LASSO (less absolute shrinkage 

and selection operator) regression for the diagnosis of breast cancer. A nomogram was developed to 

complete the area under the curve (AUC) of receiver operating characteristic of negative predictive value, 

positive predictive value, specificity, sensitivity, and accuracy. In this study, they have diagnosed 200 patients 

with breast cancer. In their results, breast cancer was found to be optimal in terms of the LASSO classifier, 

and it was compared with other approaches for analyzing the efficiency of the implemented method. In [18] 

Atrey and coauthors have proposed a dominance-based filtering approach. The proposed machine learning-

based approach considers nine features and utilizes the Wisconsin Breast Cancer Dataset (WBCD) to 

evaluate the performance of the algorithm. They have achieved an accuracy of 98.9% and 99.6% for the top 

4 and top 5 dominant features respectively, in their experiments. In [19,20] authors have proposed a novel 

method for prediction of breast cancer by using whole slide images for sentinel to enhance the accuracy. 

From the analysis of the state of art, it is essential to provide a system that automatically identifies whether a 

patient is suffering from breast cancer or not by looking at histopathological images along with a good 

accuracy rate. To rectify this, a novel classification algorithm has been discussed in the proposed research 

to obtain better results in comparison to the existing methods. 

Proposed architecture for breast cancer detection 

Breast cancer detection at the initial stage is an essential task for reducing any casualty of affected 

humans. In the proposed methodology, we have introduced and assessed a deep learning-based 

architecture for automated breast cancer detection which is based on the combination of image classification 

and machine learning and methods. Convolution Neural Network with Whale Optimization Algorithm (WOA) 

is introduced for breast cancer detection. The detection of breast cancer can be processed with two major 

stages known as the pre-processing stage, and the classifier stage. The proposed architecture is illustrated 

in Figure 1. 
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Figure 1. Overall proposed Architecture for breast cancer detection 

The CNN based WOA has two different phases for the detection of the benign and malignant stages of 

breast cancer. The detailed process of the proposed methodology is discussed in the following steps. 

The proposed model can used to detect other cancers, but in the current condition we have trained only 

Breast Cancer images. So this model will not predict the other cancers. But the same configuration of CNN 

can used to detect other cancers, but prior to this we need to perform training process using the respective 

cancer images. 

Step 1: Dataset Collection and its overview 

There are different types of datasets available for stained images of histopathological images for breast 

cancer such as Wisconsin original data set, MITOS-ATYPIA-14, and BreakHis. In the proposed design, 

histopathological images are utilized which are collected from the BreakHis. This dataset contains 7909 

histopathological images collected from 82 different patients having breast cancer. All these histopathological 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


4 Rana, P. et al.  
 

 
Brazilian Archives of Biology and Technology. Vol.64: e21200221, 2021www.scielo.br/babt 

images are of pixel resolution with 700 × 460 sizes containing RGB channels. These images are collected 

with an objective lens and the whole dataset images have four different sub-datasets with the magnification 

factor 40×, 100×, 200×, and 400×. These sub-datasets are classified as benign and malignant tumors. Out 

of these patients, 24 patients have benign class and the remaining 58 patients have the malignant class of 

breast cancer. Benign classes contain Adenosis (A), Fibroadenoma (F), Tubular Adenoma (TA) and 

Phyllodes Tumor (PT). Malignant tumors include Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous 

Carcinoma (MC), and Papillary Carcinoma (PC). In the implementation process, the benign with subsets is 

considered as class one and malignant with subsets are considered as class two. 

Wisconsin dataset contains attribute type dataset in contrast BreakHis dataset has image type dataset. 

Compared to Wisconsin dataset, BreakHis dataset is more suitable approach because it contains more 

different magnifying factor with histopathological images. 

Instead of using histopathological images, the same work can also be performed using CT-Scans also. 

The histopathological images are microscopic images; therefore, they contain high level of information. Due 

to the usage of CNN, we can use any images, for the disease prediction. But whenever we change the image 

or disease type, it requires to reperform the training process. Then the proposed model is reliable for any 

type of images.  

Step 2: Pre-processing stage 

The main aim is to convert human visual images to computer understanding images with low pixel size. 

Usually, BreaKHis database contains the high resolution of digital pathological images. The more data the 

CNN learns, the more features it can generate. Therefore, it is essential to expand the dataset by various 

pre-processing methods for categorizing breast cancer type. For image-wise classification, here three 

different approaches used such as presented below. 

Image resizing 

The main purpose of the image resizing approach is to obtain a lower data volume, which accelerates 

processing time. The original sizes of the input histopathological images are too large to fit in memory. 

Therefore, the input images are cropped from the center or random positions in the image by resizing model. 

The resize scale varies randomly and is generated from 0.1 to 0.9, which generates diverse image sizes. The 

basic image representation and its resized outcome are given as follows: 

Original image size (460, 700, 3) 

Resized image size (276, 400, 3) with 0.6 scale 

The proposed system also considers the images of different sizes and all the input images are initially 

resized to the size of 276, 400, 3. 

Data augmentation 

It is carried out to artificially expand the datasets which can lessen overfitting on the image data and 

enhance the performance of the algorithm. Overfitting difficulties occur when errors or random noise occur 

without defining the underlying relationship. With the help of the data augmentation technique, the input 

images are expanded so that the proposed classifier model can learn large irrelevant patterns during the 

training stage itself. Therefore, overfitting is avoided and possesses a higher performance. Various data 

augmentation methods are applied to the input images which are given as follows: sequential rotation by 40 

degrees, width shift with factor 0.2, height shift with factor 0.2, shear with factor 0.2, zooming with the range 

of 0.2, horizontal and vertical flipping. These methods ensure that the dataset is expanded and helps to avoid 

the overfitting problem during the training phase.  

Random patches 

These are cropped to generate a patch database for testing and training phases by employing random 

patches, the obtained image format size is (50, 50, 3). The obtained pre-processed images are fed into the 

next stage of the proposed classifier algorithm. 

Step 3: Applied Deep learning-based CNN process for classification of breast cancer 

Deep learning-based CNN is introduced for the detection of breast cancer from the pre-processed 

histopathology images in step 2. Deep learning improves the success rate of detection because of the CNN 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 A Novel Approach for Prediction of Breast Cancer 5 
 

Brazilian Archives of Biology and Technology. Vol.64: e21200221, 2021www.scielo.br/babt 

train on hierarchical representation. It is capable to extract features because it doesn’t need any previous 

information. Due to its advantages, an automated diagnosis tool has been developed to permit non-

specialists to plan their consequent structure of CNN without any prior knowledge of this field. By the 

inspiration of the brain of mammals (deep structure), the deep learning mechanism has been introduced in 

machine learning algorithms. The deep learning structure comprises of the various numbers of hidden layers 

and allows the abstraction of features by possessing various layers. This deep learning network consists of 

multiple hidden layers known as the convolution layer, subsampling layer, and the fully connected layer which 

are stated briefly in the following sub-sections. Here both the convolution and subsampling layers in the 

hidden layer helps to extract the features from low to high levels of features of the input data.  

Layer 1: Convolution layer 

Initially, a size of S×D input image is convolved by a filter or kernel of b×b size. In the input matrix, each 

block is convolved independently with the filter and produces a new pixel as the output of this layer. The 

convolution result of the input image and the filter utilized in this term tends to generate an output image of o 

features. In general, the output image features attained by the kernel of the convolving layer is represented 

as the input to the size of feature map j×j. The CNN structure comprises of the large number of convolution 

layer where its input and output of the subsequently convolutional layer be its feature vector. In each 

convolution layer, there is a o filter which is convolved with the input. And its depth of the feature map 

generated (o×) is equivalent to the count of feature map applied in the convolution procedure. At a definite 

location, each of the feature maps is defined as a specific feature of the input image. Thus, the output for the 

z-th layer in the convolution is represented as Di
(z)

 that contains a feature map and is mathematically 

represented as follows: 

Dj
(z)

=Bj
(z)

+ ∑ Lj,i
(z-1)

×Di
(z)bj

(z-1)

i=1
, (1) 

Where Bj
(z)

 represents a matrix of bias and Lj,i
(z-1)

 is filter size or convolution kernel of b×b that links the 

feature map ofi − thin (z-1) layer with the same layer inj − th feature map. Output Dj
(z)

 the layer contains the 

feature maps. The convolution layer in first Dj
(z-1)

 in equation (1) is the input space i.e. Dj
(0)

=Yj. 

The kernel presented in the network structure obtains the feature map. After the convolution layer, the 

activation function is applied for the non-linear transformation of the output convolution layer. 

Xj
(z)

=X(Dj
(z)

), (2) 

Here Xj
(z)

represents the activation function output and Dj
(z)

is the input function which it receives. ReLUs 

(rectified linear units).  is the popular activation function than other traditional functions like sigmoid, tanh. 

Hence, ReLUs is utilized in this work and is mathematically defined as follows: 

Xj
(z)

=max (0,X
j

(z)
, (3) 

Equation 3 reduces the interaction and non-linear effects to be adapted by the deep learning model. 

ReLUs possess the replacement activity where it replaces the output value to zero if it obtains the negative 

value and at the same time it precedes the same value if it is positive. Compared to the other functions, the 

activation function performs faster training due to its error deviation. Which becomes slow in the saturation 

region; therefore, the weight updates almost vanish and effect on vanishing gradient problems. 

Layer 2: Sub-sampling layer 

In this layer, the chief aspire is to lessen the dimensionality spatially of the feature map extracted from 

the preceding convolution layer. For performing this, a mask of size a×a is selected; this sub-sampling 

operation is attained between the feature maps and mask. There are various sum sampling methods such 

as sum pooling, average pooling, and maximum pooling. Among them, max pooling is an efficient process 

where each block’s maximum value is considered as the output pixel of the image. This layer helps to tolerate 

the performance of rotation and translation of the convolution layer among input images.  
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Layer 3: Full connection 

Based on the extracted feature from the preceding convolution layer, the classification of breast images 

is done in this layer. Here, each layer is connected with the previous layer of every neuron is achieved based 

on the traditional feed-forward neural network (one or more hidden layers). The softmax activation function 

is used in this output layer. 

xj
(z)

=f (zj
(z)), (4) 

Where: 

zj
(z)

= ∑ w
lj
(z-1)

j=1 j,i

(z)

xj
(z-1)

, (5) 

Here wj,i
(z)

represents the weights to form the representation of breast cancer class which is tuned by the 

fully connected layer and the transfer function is denoted as f symbolizes non-linearity. Finally, the classes 

are labeled from the output signals. 

The parameter optimization has the main role in the proposed study for enhancing the performance of 

deep learning-based CNN architecture. Hence, for optimizing the CNN parameters, a novel WOA has been 

proposed which is based on the working principle of the whale and its food arranging technique. Also, for 

achieving the best performance measure of CNN, these training parameters are optimized that lead the 

lightweight CNN based on the characteristics of WOA and show the structure designed for histopathological 

breast classification. The Parameter optimization using WOA has been discussed in the subsequent sections. 
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Figure 2. Proposed deep learning-based CNN architecture 

Parameters to optimize 

Parameters in CNN like the size of the kernel, padding, count of feature maps and the type of pooling 

are planned to optimize by the proposed optimization algorithm. Here, the parameter named stride is not 

optimized by WOA to ensure a large search space and make the problem solvable by using CNN.  

Proposed deep learning based woa 

The proposed deep learning-based WOA helps to enhance the speed of training procedure using 

optimally selecting the parameters pixel resolution. The working principle of the whale optimization technique 

is that the humpback whales hunt the prey using three operators namely; searching the prey, encircling the 

prey and forming a bubble net for the hunting process. The overall process of the whale optimization algorithm 

is clearly stated in Figure 3. 

Mathematical modeling 

The arithmetical representation of encircling the prey, spiral bubble-net feeding activities and searching 

for prey are demonstrated in this segment. 
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Phase 1: Initialization 

The initialization phase of the proposed algorithm is generated by developing the initial solution 

randomly. For instance; after the histopathological image of breast cancer is pre-processed, its pixel size 

generated by the parameters of CNN is optimally selected with the help of the proposed optimization 

algorithm. Here, the parameters of CNN like the number of kernels, padding, type of pooling, number of 

feature maps and number of whales or said to be whale population are randomly initialized. Therefore, 

random value in the search space is represented as follows: 

E(u)=(e1,e2, …eh), (6) 

Here E defines the original population of the whale at h represents the number of interconnection layers 

to optimize. 

Phase 2: Fitness calculation 

For automatic breast cancer detection, the fitness function is generated to achieve the best classification 

measure by maximizing its accuracy and it is evaluated based on the below expression: 

ffE(u)=maxi (Accuracy), (7) 

Phase 3: Update the position of current solution-Encircling the prey 

In this phase, the hunting process by whales is started while noticing the position of prey and then it will 

encircle the prey. Then, the best solution (whale) is found out which is considered as the finest whale. 

Towards that best whale, the other whales will move on after updating its position. The update procedure of 

the whales is depicted by the underneath equations: 

V⃗⃗ = |H⃗⃗ ∙E⃗⃗ 
best

(u)-E⃗⃗ (u)|, (8) 

E⃗⃗ (u+1)=E⃗⃗ 
best

(u)-C⃗⃗ ∙V⃗⃗ , (9) 

Where urepresents the current iteration,E⃗⃗ 
best

defines the best solution, E⃗⃗  refers to the current position, C⃗⃗  

and H⃗⃗  denotes a coefficient vector, |C *H| denotes the absolute point. In addition to this, the coefficient vectors 

are mathematically represented are follows:C⃗⃗ =2c⃗ ∙o⃗ -c⃗ and H⃗⃗ =2∙o⃗ . Where c⃗  is a sequence of repetitions linearly 

from 2 to 0, o⃗ ∈(0,1) for both the exploration and exploitation phases. 
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Figure 3. The layout of the proposed optimization algorithm 

Exploitation phase:  

This phase is also said as Bubble-net attacking technique. There are two mechanisms: 

i. Shrinking encircling mechanism: is mathematically given by the following equation:C⃗⃗ =2c⃗ ∙o⃗ -c⃗ , as said 

earlier, its c⃗  value is decreased to reach this performance. Here, c⃗  is utilized for the reduction of 

different range of C⃗⃗ . Otherwise, it is stated that in the interval ranges from [-c,c], C⃗⃗  is an accidental 

point where c is reduced from 2 to 0. The finding agent’s new location can different wherever for 

C⃗⃗ ∈[-1,1].  
ii. Spiral updating position: is calculated between the prey and the position of whale which is derived as 

follows: 

E⃗⃗ (u+1)=V⃗⃗ Dist∙expm
t
s ∙ cos(2∏ s)+E⃗⃗ 

best
(u), (10) 

Where VDist= |E⃗⃗ 
best

(u)-E⃗⃗ (u)|. It is meant to be the distance among the y-th whale and the prey which 

is denoted as the best solution achieved so far, sis supposed to take value from [-1, 1], m is represented 

as the shape of the logarithmic spiral. While performing optimization, the location of the whale having a 

probability of 50 percentage by selecting any of the shrinking or spiral encircling model and its 

mathematical equation is to be followed: 
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E⃗⃗ (u+1)= {
E⃗⃗ 

best
(u)-C⃗⃗ ∙V⃗⃗ ,ifP<0.5

VDist
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙expm

t
s ∙ cos(2∏ s)+E⃗⃗ 

best
(u),   if  P≥0.5

, (11) 

Where P∈[0,1], thus, the humpback whales randomly finding the prey to form a bubble net. 

Exploration phase:  

This phase also is known as searching the prey. The subsequent equation elaborates on the 

mathematical form of the exploration phase. 

V⃗⃗ = |H⃗⃗ ∙E⃗⃗ 
random

-  E⃗⃗ ⃗⃗  |, (12) 

E⃗⃗ (u+1)= |E⃗⃗ 
random

-C⃗⃗ ∙V⃗⃗ |, (13) 

The random position of the current population is represented as E⃗⃗ 
random

. During the updating process of 

each solution, the fitness calculation is evaluated for finding the most excellent solution among them.  

Based on the obtained best solution, a set of novel solutions is found and the fitness function is calculated 

for continuing the above solution updating process.  

Phase 4: Termination criteria 

Atlast, it satisfies the finest parameters of CNN by the hunting behavior of the whale. As a result of finding 

the optimal solution or best fitness function, the prediction model is qualified. Since the objective function is 

to improve the accuracy of training data, the prediction model obtained for the best fitness structure is well 

qualified to predict unknown data.  

Testing phase: 

After the training process gets over and the proposed model was tested with some set of images in the 

testing phase. For those images, precision, recall, F1-measure and accuracy for each of the classes have 

been computed. By calculating all those measures, the overall accuracy is generated. The most interesting 

part of the proposed algorithm is that the proposed CNN structure extracts the features of an image locally 

which means that the network will learn specific patterns within the image and can be able to recognize it 

anywhere in the image. The steps will be repeated until the image is scanned. 

In the testing phase the 20% of database images are tested to evaluate the performances of CNN. For 

example, in this work 1582 images are tested, then the performance is measured based on the number of 

images predicted correctly. 

RESULTS AND DISCUSSIONS 

Detection of breast cancer from histopathological images is initiated with the help of the proposed 

technique by classifying it into two types of classes known as benign and malignant. The performance metrics 

like accuracy, precision, recall, sensitivity, and specificity are evaluated for the proposed and existing 

methods that discuss the efficiency of the presented algorithm.  

Initially, the pre-processing process is done by using Python, in which for the different images, the 

resizing, augmentation and random patches are applied. These transformations are done during the run time 

of the program; hence it doesn’t require any additional memory space for the images to store, which is an 

additional benefit of the work. The implementation detail for the proposed methodology is presented in this 

section. Some of the sample database images are displayed in Figure 4 and database structure is provided 

in Table1. 
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Figure 4. Sample database images 

Table 1. Dataset Summary 

Magnification Rate Type of class 

 Sub-class of Benign Sub-class of  Malignant 

 A F TA PT DC LC MC PC 

40× 114 253 109 149 864 156 205 145 

100× 113 260 121 150 903 170 222 142 

200× 111 264 108 140 896 163 196 135 

400× 106 237 115 130 788 137 169 138 

Total 444 1014 453 569 3451 626 792 560 

Evaluation metrics 

The system performance is analyzed by using the most common evaluation metrics like precision, recall, 

F-measure and accuracy. Various evaluation metrics considered for performance evaluation of the proposed 

system are as follows: 

Precision 

Precision provides information about the effectiveness of the proposed system. Precision is defined as 

the ratio of the number of relevant images retrieved to the number of images retrieved. 

Precision=
no(RetRel)

no(Ret)
, (14) 

Where: 

no(RetRel)- Number of relevant images retrieved  

no(Ret)- Number of images retrieved 

Recall 

Recall provides information about the accuracy of the proposed system. The recall is defined as the ratio 

of the number of relevant images retrieved to the total number of relevant images in the database.  

Recall=
no(RetRel)

no(DbRel)
, (15) 

Where no(DbRel)is the total number of relevant images in the database 

F- Measure 

The F-measure is an evaluation of a test’s accuracy and can be determined as, 

F-measure=2*
(Precision*Recall)

Precision+Recall
, (16) 

 

Performance analysis 

The sample outcome obtained for the taken input image after applying the proposed technique with 

different magnification factor is displayed in Figure 5. 
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Original image (460, 700, 3) 

40× 100× 200× 400× 

(a) Original 

 
460, 700, 3 

 
460, 700, 3 

 
460, 700, 3 

 
460, 700, 3 

(b) Resized 

    
(c) Rotated 

    

(d) Flipped 

    
(e) Shift 

    

(f) Shear 

   
 

(g) Zoom 

    

(h) Patch Size 

1265141, 50, 50, 3 1265141, 50, 50, 3 1265141, 50, 50, 3 1265141, 50, 50, 3 

Figure 5. Detailed structure for obtained Pre-processed images (a) Original, (b) Resized, (c) Rotated, (d) Flipped, (e) 
Shift, (f) Shear, (g) Zoom, and (h) Patch Size. 
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The result shows that data pre-processing and augmentation significantly improve the performance of 

the model and helps to avoid overfitting due to the raw image set. In the used dataset, out of 7909 total 

number of images, 80% of images have been used for the training phase and the remaining 20% images 

have been testing phase. From performed experiments, it is found that using a larger training set can bring 

negligible performance improvements. The detailed count of the images for the training and testing process 

is shown in Table 2: 

 

Table 2. Types of benign and malignant class with its count 

Types of classes 

Benign Malignant 

C1 (adenosis): 444 C1 (ductal_carcinoma): 145 

         C2 (fibroadenoma): 1014  C2 (lobular_carcinoma): 142 

          C3 (phyllodes tumor): 453      C3 (mucinous_carcinoma): 135 

          C4 (tubular adenoma): 569    C4 (papillary_carcinoma): 560 

 
For experimentation, each of the classes is taken as C1 to C4 for both benign and malignant types as 

shown in Table 3.  

 

Table 3. Count of predicted and actual image for different classes using proposed deep learning-based WOA. 

 Predicted 

 Benign Malignant 

A
c
tu

a
l 

  C1 C2 C3 C4 C1 C2 C3 C4 

Benign C1 70 8 1 3 6    

C2 7 154 3 3 16 5 8 4 

C3 3  75  4  7 1 

C4  8  88  4 4  

Malignant C1 1 2 1 1 19 1 3 1 

C2  1 8   16 1 2 

C3  2  2 2 1 19  

C4 2 2 8  12  10 80 

 

Table 4. Achieved outcome for both benign and malignant classes using existing CNN classifier 

  Predicted 

   Benign Malignant 

A
c
tu

a
l 

  C1 C2 C3 C4 C1 C2 C3 C4 

Benign C1 67 6 2 4 6 1 1  

C2 9 143 6 7 15 5 10 5 

C3 4 2 68 1 5 2 6 2 

C4 3 6 1 81 2 5 3 3 

Malignant C1 1 3 2 2 14 2 3 1 

C2  1 7 2 1 14 1 2 

C3 1 2 2 3 1 2 13 3 

C4 3 4 7 3 11 3 9 74 

 

Table 4, elaborates on the results obtained by the proposed deep learning-based WOA technique. After 

analyzing both Table 3 and Table 4, it is clear that the value obtained by the proposed methodology is better 

than the existing default CNN technique. For instance, considering the proposed CNN based WOA method 

for benign of adenosis class C1: the correctly identified image count is 70, for class C2: 8 images are wrongly 
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classified, for C3:1 image, and C4: 3 images have been classified. Here, 6 images obtained as C1 for class 

malignant. Likewise, it is calculated for the existing CNN method and it is found that in the existing technique, 

the correctly labeled classes count is 67 and the remaining 20 images are wrongly classified. Table 5 

elaborates on the different measures like Precision, Recall, and F1-Score used for the evaluation of proposed 

Methodology which is based on CNN and Whale optimization algorithm for different types of images available 

in the dataset. Whereas, Table 6 elaborates the different measures like Precision, Recall and F1-Score for 

the existing Convolution Neural Network Methodology used for different types of images available in the 

dataset. 

 

Table 5.Comparison of different measures for the proposed methodology 

Proposed CNN based WOA 

Image type Precision Recall F1-score 

benign_adenosis_100X        0.02 0.09 0.04 

benign_adenosis_200X 0.05 0.14 0.07 

benign_adenosis_400X   0.02 0.05 0.03 

benign_adenosis_40X   0.02 0.05 0.02 

benign_fibroadenoma_100X  0.06 0.17 0.09 

benign_fibroadenoma_200X  0.05 0.13 0.07 

benign_fibroadenoma_400X     0.01 0.02 0.02 

benign_fibroadenoma_40X   0.09 0.1 0.1 

malignant_ductal_carcinoma_100X 0.15 0.18 0.16 

malignant_ductal_carcinoma_200X    0.18 0.15 0.16 

malignant_ductal_carcinoma_400X    0.24 0.26 0.25 

malignant_ductal_carcinoma_40X  0.13 0.1 0.11 

 

Table 6.Comparison of different measures for existing methodology 

Existing CNN  

Image type Precision Recall F1-

score 

benign_adenosis_100X        0.01 0.07 0.03 

benign_adenosis_200X 0.04 0.11 0.06 

benign_adenosis_400X   0.01 0.04 0.02 

benign_adenosis_40X   0.01 0.04 0.01 

benign_fibroadenoma_100X  0.05 0.14 0.07 

benign_fibroadenoma_200X  0.03 0.12 0.06 

benign_fibroadenoma_400X     0.00 0.01 0.01 

benign_fibroadenoma_40X   0.06 0.05 0.0 

malignant_ductal_carcinoma_100X 0.12 0.15 0.13 

malignant_ductal_carcinoma_200X    0.17 0.13 0.14 

malignant_ductal_carcinoma_400X    0.22 0.24 0.23 

malignant_ductal_carcinoma_40X  0.11 0.0 0.09 

 

In the various obtained comparative results where Figure 6 visualizes the precision parameter, Figure 7 

visualizes the recall parameter, and Figure 8 visualizes the F1-score parameter for various types of images 
available in the dataset such as benign_adenosis_100X, benign_adenosis_200X, etc. and represents the 

comparison between proposed methodology and existing methodology. From the various obtained 

comparison results, this can be seen that the proposed CNN-WOA method is more reliable than any other 
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existing technique. When equating Precision, Recall, and F1-score, the proposed method demonstrates 

92.42% accuracy in comparison to existing CNN achieves 90.34% accuracy. Therefore, from the detailed 

analysis, it is clear that the proposed methodology attains better performance with higher accuracy when 

compared to another classifier algorithm. 

 

 
Figure 6.Comparison plot for the measure precision 

 

 

 
 

Figure 7.Obtained recall graph for proposed and existing technique 
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Figure 8. Comparison plot for F1-score using the proposed and existing technique 

CONCLUSION 

Breast cancer detection using CNN is intended to speed up the method by assisting specialists for breast 

cancer diagnosis inefficient manner. The proposed model focuses on the main concern of increasing the 

accuracy of classifying breast cancer using histopathological images. The proposed system shows peak 

performance when compared with other existing approaches in terms of accuracy. The proposed model 

initially collects the histopathological images from the BreaKHis dataset which are fed into the pre-processing 

stage to avoid overfitting problems by minimizing the image size. Afterward, those pre-processed images are 

taken as the input to classification stage where the deep learning-based CNN classifier train those images to 

classify benign and malignant classes and its parameters are optimized using WOA. These procedures have 

helped the proposed approach correctly and effectively recognize benign and malignant images. To extend 

this work, a comparison between different machine learning algorithms will be done in the future. 
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