
Vol.66: e23210795, 2023
https://doi.org/10.1590/1678-4324-2023210795

ISSN 1678-4324 Online Edition

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Article - Engineering, Technology and Techniques

Epigenomics Scientific Big Data Workflow Scheduling
for Cancer Diagnosis in Health Care Using
Heterogeneous Computing Environment

Wakar Ahmad1*
https://orcid.org/0000-0003-1876-9419

Bashir Alam1
https://orcid.org/0000-0003-0479-682X

Swati Sharma2

https://orcid.org/0000-0002-5961-4045

Arvinda Kushwaha2
https://orcid.org/0000-0003-2426-6375

1Jamia Millia Islamia, Department of Computer Engineering, New Delhi, India; 2Meerut Institute of Engineering and
Technology, Department of Information Technology, Meerut, UP, India.

Editor-in-Chief: Alexandre Rasi Aoki
Associate Editor: Raja Soosaimarian Peter Raj

Received: 08-Dez-2021; Accepted: 22-Jul-2022.

*Correspondence: waqar.ahmad50@gmail.com; Mob. +91-9560193998 (W.A.).

Abstract: DNA methylation and Histone are the main constituents to oversee the stable maintenance of

cellular phenotypes. Any abnormalities in these components could cause cancer development and, therefore,

must be potentially diagnostic. The Epigenomics research field is the study of epigenetic modification which

involves gene expression control for better understanding of human biology. The Epigenomics applications

are considered quite complex Big Data workflow applications which represent the data processing pipeline

for automating the innumerable genome sequencing computation. The infrastructure of high-performance

computing imparts heterogeneous computing resources for deploying such complex applications. Scheduling

of workflow applications in the complex heterogeneous computing resources is considered an NP-complete

problem; therefore, it requires an efficient scheduling approach. In this research work, an efficient list-based

scheduling algorithm is proposed which efficiently minimizes the running time (makespan) of the Epigenomics

application. In order to identify whether clustering and entry task duplication techniques improve the

performance of the proposed algorithm, four versions of the algorithm such as list-based scheduling with

clustering and duplication (LS-C-D), list-based scheduling with clustering and without duplication (LS-C-WD),

HIGHLIGHTS

• Analysis of different scheduling techniques for Epigenomics computation.

• An efficient algorithm that minimize computation time of Epigenomics Application.

• Performance analysis in High Performance Computing (HPC) environment.

• Shows better performance over state-of-art algorithms.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
https://orcid.org/0000-0003-0479-682X
https://orcid.org/0000-0003-2426-6375

 Ahmad, W.; et al. 2

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

list-based scheduling without clustering and with duplication (LS-WC-D), and list-based scheduling without

clustering and without duplication (LS-WC-WD) has experimented. The experimental results prove that LS-

WC-D is the best choice for scheduling Epigenomics applications. Further, the comparison of LS-WC-D and

state-of-the-art algorithms also proves its significance.

Keywords: Epigenomics; Big data; Workflow scheduling; Heterogeneous computing; Makespan

minimization.

INTRODUCTION

"Cancer Genomics and Epigenomes" has made significant contributions to our understanding of the
fundamental mechanisms underlying various cancers. Multistep tumorigenesis is a series of actions that
occur as a result of signaling system dysregulation and changes in genomic information processing. Changes
in the genes that influence unwanted cell division and growth that further produce cancer, which is a diverse
genetic disorder.

If genetic alterations are hereditary due to germline modifications and existence in the germ cell, the
probability of gaining cancer increases. These alterations can be found throughout the progeny's cells. The
inaccuracies in process of DNA repair, that are produced by tobacco chemicals, smoke and radiation such
as UV emissions, can create cancer-causing genetic alterations over a person's lifetime. Somatic or acquired
alterations refer to genetic changes that take place after conception at any point during a person's life.
Different genetic alterations, such as chromosomal transformations or mutations, can occur in tumor cells.

In Epigenetics, we study genetic alterations in the gene which occur without modification in DNA
sequence. Between cell divisions, the alterations in gene expression remain constant [1]. Some of these non-
genetic changes are mostly regulated by two biological modifications: chemical changes to DNA's cytosine
residues, known as histone and DNA methylation. One of the primary epigenetic processes that lead to
epigenetic modifications and suppression in malignant cells is the intricate interaction between DNA
methylation and chromatin dynamics. These changes are important for the epigenetic inheritance of
transcription memory. Epigenetic patterns change may be used to describe gene expression and its activity
[2, 3]. The majority of epigenetic changes are global regulators of gene expression, influence cell
characteristics and behavior, and have a significant impact on cancer progression.

A collaborative work between the National Human Genome Research Institute (NHRI) and the Cancer
Institute has created a repository of 2.5-petabyte data explaining cancers paired with normal cells of more
than 11,000 patient(s) on a detailed multi-map of key genomic changes in 33 distinct cancers. This dataset
is publicly accessible to scientists (https://cancergenome.nih.gov/). The Portal for cBio Cancer Genomics is
a publicly accessible cancer genomic dataset platform that provides full rights for accessing 20 different types
of cancer having 5000 samples of the tumor. These initiatives decreased the barriers to the translation of
significant data to biological views with clinical applications [4, 5] between large genomic diverse data and
cancer researchers. The Colorectal Cancer Database, which provides information on the genes of 2056
Colorectal Cancer (CRC) linked to different phases of CRC, was recently developed by Agarwal and
coauthors [6]. It helps physicians to understand the diagnosis, treating and classifying CRCs
(http://lms.snu.edu.in/corecg/).

Next generation systems (NGS) like HiSeq, MiSeq, methylated DNA Immunosulfite, lowered bisulfite
sequencing depiction, Ion Torrent PGM sequencer, methyl sequencing, chromatin immunosal, RNASeq, and
array-based methods were recently used and have been very useful in the development of early diagnosis,
forecasts, and res-based biomarker discoveries [7].

The USC Epigenome center uses medical Epigenomics workflow application for analysis of genome
sequence of humans. With the help of high-performance gene sequencing systems along with
IlluminiaSolexa genetic analyzer and MAQ software, it collects short DNA segments using automated
operations [8].
Epigenomics applications are considered complex Big Data workflow applications which represent the data
processing pipeline for automating the various genome sequencing computation. Workflow applications are
depicted as a model of various scientific and technical problems such as high energy physics, astronomy,
earth science, business modeling and so on. Workflow applications can range from having very few tasks
that need a small number of computing resources to having millions of tasks that are interdependent on each
other and need terabytes of storage, a large number of high-performance computing resources,
and thousands of computing hours to finish. In order to complete the computation in a fair amount of time,
such extensive Big Data workflow applications require a high-performance computing environment. The high-
performance computing systems offer heterogeneous computing resources for deploying these complex

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 3

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

applications. Workflow scheduling in heterogeneous computing systems is considered an NP-complete
problem; therefore, it requires an efficient scheduling approach. Many workflow scheduling approaches have
been proposed but most of them fail to produce better results in minimum time. This research work proposes
an efficient list-based scheduling technique that reduces the computation time of the Epigenomics workflow
applications by incorporating task duplication and clustering techniques. The major contributions of this
research work are listed below:

• The proposed algorithm encompasses the task duplication and clustering techniques to identify
whether they improve the performance by minimizing the makespan of the Epigenomics workflow
application or not.

• The proposed algorithm examines the different number of processors for identifying the behavior
during the application computations.

• Numerous sizes of Epigenomics workflow applications are considered for experimental analysis
ranging from 50 to 1000 tasks.

Further, the research work is divided into the following sections: In section 2, we have discussed previous
studies related to our contribution. The workflow scheduling problems and their properties are discussed in
section 3 and the working of task duplication and clustering techniques are discussed in section 4. In section
5, a detailed explanation of the proposed algorithm is given while in section 6, we provided a detailed analysis
of experimental results. Finally, the conclusion and future work are given in section 7.

Related work

Over the years, there has been a lot of research into workflow scheduling. Many complex real-world
problems can be represented as workflows, which need further analysis to solve problems. Various workflow
scheduling techniques have been designed by scientists using numerous analytical or approximation
methods. Most scheduling algorithms, however, suffer from a longer makespan and low resource utilization
due to the restricted set of computational resources on the servers. The high-performance heterogeneous
computing paradigm offers useful features to tackle complicated workflow scheduling problems, such as
heterogeneous computing elements, easy and quick access, scalability, flexibility, and so on. Furthermore,
there are many scheduling approaches are available for scheduling workflow applications in which the
heuristic-based approach generates results in polynomial time with acceptable performance [9]. Heuristic-
based scheduling approaches are further divided as list [10-17], duplication [18-20], and clustering based
scheduling algorithms [21-23]. This section discusses the strengths and weaknesses of different heuristic-
based workflow scheduling algorithms in a heterogeneous computing environment.

In list-based scheduling algorithms, workflow tasks are scheduled depending on their priority. The list
scheduling algorithms are preferred by the scholars because they provide the best scheduling techniques
with the least amount of complexity. Topcuoglu and coauthors [10] have proposed Heterogeneous Earliest
Finish Time (HEFT) algorithm that is a widely accepted list-based scheduling algorithm. The HEFT algorithm
uses a raked-based policy to allocate priority to each task in a workflow and then uses an insertion-based
policy to distribute the tasks to the computing elements that can compute them in the shortest amount of
time. The insertion-based policy attempts to place a task on a processor at the earliest possible time between
two other tasks that have already been scheduled on the processor, provided that the available slot is large
enough to accommodate the task. Hagras and coauthors [11] have developed a list-based scheduling
technique called Heterogeneous Critical Parent Tree (HCPT) that uses a critical path optimization-based
policy that tries to assign the parent of the critical task before computing itself. This approach generates an
efficient schedule that helps to reduce makespan. Further, it produces efficient schedule length, which is
better than HEFT, as well as maintaining the same time complexity. Arabnejad and coauthors [12] have
proposed Predict Earliest Finish Time (PEFT) determines an optimistic cost table (OCT) for the task
prioritization and processor assignment steps. The OCT table enables the algorithm to predict the selection
of a machine that provides quicker completion times for the subsequent task. AlEbrahim and coauthors [13]
have proposed an extended version of the HEFT algorithm called Ext-HEFT that priorities the workflow tasks
by taking the ratio of differences among the maximum computation time and minimum computation time of
the task on given processors divided by speedup of the processors on which task is assigned. For the
processor assignment phase, a randomized crossover technique has been introduced. In the crossover
technique, a task is allocated to the computing resource that generates the lowest computation time rather
than the computing resource that gives the shortest finish time. The crossover technique uses a cross-
threshold value that lies between 0 to 1. If its value is nearer to 1, more crossover will occur during

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 4

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

computation and thus behave like the HEFT algorithm, while a value near to 0 does not allow frequent
crossover. Jiahui Wang and coauthors [14] proposed a list-based heuristic algorithm called cost-efficient
scheduling with deadline constraint (CESDC) that achieves deadline constraint by adopting a deadline
distribution policy. CESDC separates the tasks into a number of Bag of Tasks (BoTs) [15] based on their
levels and assigns a deadline to each task based on its computation and communication time. Further, it is
based on two-phase policy i.e., ranking and task prioritization of list-based scheduling approach. Belgacem
and coauthors [16] suggested a method called HEFT-ACO that is a hybrid version of two algorithms that
optimizes both cost and time. The ACO approach is used to improve resource allocation, whereas HEFT is
used to deal with workflow task dependencies. The pheromone update criteria have been developed to deal
with no dominating solutions, preserving variation and assuring research efficiency. Furthermore, this method
utilized the Pareto technique and crowding distance, making it effective at solving the multi-objective
optimization problem. Ijaz and coauthors [17] developed multi-objective optimization scheduling technique
that works on finding tradeoff between makespan and energy which are conflicting objectives. At first, a
weighted cost function is used to choose a processing node that completes tasks quickly and uses the least
amount of energy based on a weighting factor set by the user. In the next step, we reduce the energy
consumption even more by using frequency scaling which is associated with deadline-constraint. The
proposed work that has been presented guarantees that the workflow applications will be finished within the
time limit that has been proposed while also lowering the amount of energy that will be consumed.

In parallel systems, two of the most common ways to schedule tasks based on heuristics are clustering
and duplication. The scheduler uses the clustering method to reduce communication costs by grouping
together communication-intensive dependent tasks and assigning them to the same VM/processor [18-20].
The scheduler improves the parallelism degree in the duplication strategy by assigning a key subtask on
many processors [21-23].

Based on the above discussion we can easily analyze that heuristic-based scheduling approaches play
an important role for scheduling Big Data workflow applications in order to achieve various objectives such
as minimization of makespan and maximization of resource utilization. In this paper, we take the benefit of
all three heuristic techniques (list, duplication and clustering) and identify which combination of heuristic
techniques is best for scheduling Epigenomics workflow applications.

Workflow scheduling problem

The workflow application is characterized by a directed acyclic graph 𝐺 = (𝑇, 𝐸). Where 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑛)
a collection of is interdependent tasks and 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑚) denotes data dependencies across tasks. For
example, an edge 𝑒𝑖,𝑗 ∈ 𝐸 reflects a restriction on the order of execution between tasks 𝑡𝑖 and 𝑡𝑗 where 𝑡𝑖, 𝑡𝑗 ∈

𝑇 that means task 𝑡𝑗 can only start after the computation of its parent task 𝑡𝑖 and all required data has been

received from it. All immediate predecessors (parents) of task 𝑡𝑗 is represented by 𝑝𝑟𝑒𝑑(𝑡𝑗) = {𝑡𝑖 |𝑒𝑖,𝑗 ∈ 𝐸},

likewise, all immediate successors (children) of task 𝑡𝑖 can be denoted as 𝑠𝑢𝑐𝑐(𝑡𝑖) = {𝑡𝑗 |𝑒𝑖,𝑗 ∈ 𝐸}. It is not

necessary that workflow application has an entry task or exit task. Whenever a workflow has many entry or
exit tasks, then we add a dummy entry task (𝑡𝑒𝑛𝑡𝑟𝑦) and dummy exit task (𝑡𝑒𝑥𝑖𝑡) with zero computation time

and zero data dependency edge [24]. The entry task (𝑡𝑒𝑛𝑡𝑟𝑦) has no parent task; similarly, the exit task (𝑡𝑒𝑥𝑖𝑡)

has no child task. Generally, tasks are scattered randomly throughout the workflow application. In order to
better analysis of workflow applications, it is required to arrange the tasks level-wise. A task's level is a
numerical representation of the group to which it belongs. Since the level of each task is calculated by adding

1 to its parent tasks' highest levels, the level of the entry task (𝑡𝑒𝑛𝑡𝑟𝑦) is always 0. i.e., 𝑚𝑎𝑥𝑡𝑗∈𝑝𝑟𝑒𝑑(𝑡𝑖) {𝐿𝑡𝑗
} + 1.

Where, 𝐿𝑡𝑗
 represents the level of a parent task 𝑡𝑗 [25].

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 5

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Table 1. Computation time of each task of sample workflow

on the set of processors

Processors t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

p1 11 23 19 12 9 3 6 8 9 13

p2 15 18 12 7 12 15 14 10 11 5

p3 7 16 17 15 7 8 9 16 18 20

Figure 1. A sample workflow application

Further, we assume that all the processors in the processor-list are completely connected to each other
and there is no network latency. A sample workflow application model is depicted in Figure 1 and the
computation time of each workflow task on different processors is given in Table 1.

It's important to recognize several key elements of task scheduling problems. These key elements are
listed below:

Definition 1. A task's computation time is determined by dividing the number of instructions in the task

by the processor's frequency. Consider the matrix W (𝑡 × 𝑝), where the matrix element represents

computation time of a task 𝑡𝑖 ∈ T on a group of processor p i.e. 𝑁 = (𝑛1, 𝑛2, … , 𝑛𝑝). Thus the computation

time of task ti is mathematically calculated as [12]:

,

1

/i i j

j

p

w w p
=

 
= 
 
 (1)

Definition 2. Makespan of workflow application is the actual finish time (AFT) of the exit task [12]. That

means, makespan is the maximum time it takes to complete all of the workflow application's tasks.

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐴𝐹𝑇(𝑡𝑒𝑥𝑖𝑡) (2)

Definition 3. The earliest start time of the task 𝑡𝑖 on processor 𝑝𝑗 is represented by 𝐸𝑆𝑇(𝑡𝑖, 𝑝𝑗) [23]. The

mathematical representation of EST is as follows:

 () () () ()  ,, ,
m i

i j Available j m m it pred t
EST t p max T p max AFT t c


= + (3)

Where 𝑇𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑝𝑗) is the processor's earliest available time, and 𝑚𝑎𝑥𝑡𝑚∈𝑝𝑟𝑒𝑑(𝑡𝑖){ 𝐴𝐹𝑇(𝑡𝑚) + 𝑐𝑚,𝑖 } is

the maximum value of data arrival time from its parent tasks. It is important to keep in mind that if task 𝑡𝑚 is
allocated to 𝑝𝑗 then 𝑐𝑚,𝑖 becomes zero.

Definition 4: The earliest finish time 𝐸𝐹𝑇(𝑡𝑖, 𝑝𝑗) of the task 𝑡𝑖 on the processor 𝑝𝑗 is equivalent to the

sum of 𝐸𝑆𝑇 and computation time of task 𝑡𝑖 on the processor 𝑝𝑗 [23]. i.e.,

 () () ,, , i i i i i jEFT t p EST t p w= + (4)

Definition 5: To determine the upward rank of a particular task 𝑡𝑖, we must move the workflow in the
upward direction. Basically, it is the longest path between task 𝑡𝑖 and exit task 𝑡𝑒𝑥𝑖𝑡. The mathematical
representation of upward rank is [10]:

 () () ()(),
 max

j i
u i i i j ut succ t jrank t w c rank t


= + + , (5)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 6

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Where 𝑠𝑢𝑐𝑐(𝑡𝑖) is the set of immediate successors of task 𝑡𝑖.
, i jc

represents average data transfer time

and iw
is the average computation time of the task 𝑡𝑖.

Clustering and task duplication techniques

In this section, a detailed explanation of clustering and duplication techniques is discussed. These
techniques are used in our proposed algorithm to check whether they improve the performance of the
algorithm or not. For this purpose, four versions of the proposed algorithm such as list-based scheduling with
clustering and duplication (LS-C-D), list-based scheduling with clustering and without duplication (LS-C-WD),
list-based scheduling without clustering and with duplication (LS-WC-D), and list-based scheduling without
clustering and without duplication (LS-WC-WD) are suggested. Further, a detailed explanation of the
proposed algorithm is discussed in the next section.

Clustering of Epigenomics workflow tasks

The main aim of clustering algorithms [18, 19, and 20] is to assign a set of tasks to the processor that
has high communication costs with other processors. These types of task allocation to the processor have
been done in order to reduce the data transfer time even if other processors are available. Thus, it does not
correspond to the effective utilization of the available resources. In general, there are two phases of clustering
algorithms. In the first phase, tasks that have higher communication costs are combined into a set of clusters.
In the second phase, the set of clusters is scheduled on available computing resources. In order to reduce the
runtime of the Epigenomics workflow application, we proposed a clustering algorithm. It significantly reduces
data transfer costs between pipelined tasks which leads to increase in the algorithm performance. The
clustering technique is mentioned in Algorithm 1 which allows child tasks to run on the same processor on
which their parents were computed allowing them to use the intermediate results.

Algorithm 1: genome_Clustering (W(t, e))

1. 𝐛𝐞𝐠𝐢𝐧

2. 𝑡𝑎𝑠𝑘𝑞𝑢𝑒𝑢𝑒 ← {𝑡𝑎𝑠𝑘𝑒𝑛𝑡𝑟𝑦}

3. 𝐖𝐡𝐢𝐥𝐞 (𝑡𝑎𝑠𝑘𝑞𝑢𝑒𝑢𝑒 ! = 𝐸𝑚𝑝𝑡𝑦) 𝐝𝐨

4. 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑡𝑎𝑠𝑘𝑞𝑢𝑒𝑢𝑒(𝑓𝑟𝑜𝑛𝑡)

5. 𝑆𝑐ℎ𝑖𝑙𝑑 = {𝑡𝑎𝑠𝑘𝑐ℎ𝑖𝑙𝑑|𝑡𝑎𝑠𝑘𝑐ℎ𝑖𝑙𝑑 is the child of 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡}

6. 𝐢𝐟 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑆𝑐ℎ𝑖𝑙𝑑) = 1 and 𝑡𝑎𝑠𝑘𝑐ℎ𝑖𝑙𝑑 has only one parent 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡 𝐭𝐡𝐞𝐧

7. Replace 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑡𝑎𝑠𝑘𝑐ℎ𝑖𝑙𝑑 with 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡+𝑐ℎ𝑖𝑙𝑑

8. Set 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡+𝑐ℎ𝑖𝑙𝑑 as the parent of 𝑡𝑎𝑠𝑘𝑐ℎ𝑖𝑙𝑑
′ 𝑠 children tasks

9. Update computation time of 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡+𝑐ℎ𝑖𝑙𝑑

10. Add 𝑡𝑎𝑠𝑘𝑝𝑎𝑟𝑒𝑛𝑡+𝑐ℎ𝑖𝑙𝑑 to the front of 𝑡𝑎𝑠𝑘𝑞𝑢𝑒𝑢𝑒

11. 𝐞𝐥𝐬𝐞

12. Add taskparent
′ 𝑠 children to the rear of 𝑡𝑎𝑠𝑘𝑞𝑢𝑒𝑢𝑒

13. 𝐞𝐧𝐝 𝐢𝐟

14. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

15. 𝐞𝐧𝐝

Figure 2 shows the process of clustering technique on the Epigenomics workflow application. The LS-C-
D and LS-C-WD versions of the proposed algorithm are applicable for the clustering technique.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 7

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

(a) Epigenomics workflow before clustering (b) Epigenomics workflow after clustering

Figure 2. Clustering process of sample Epigenomics workflow

Entry task duplication on processors

The schedule length (makespan) of workflow application is minimized by using a conventional duplication
approach. However, as noted in the literature [26], it strengthens the power consumption and processor
overloading. In the condition, when only the entry task is duplicated, access power consumption and
processor overloading issues do not arise. This is because only one processor from the processor set entails
in the computation of the entry task. As a result, duplicating entry task on certain processors doesn’t augment
overload situation.

Since we have discussed in section 3 that entry and exit tasks are added when there are multiple entry
and exit tasks present in the workflow. But in the case of Epigenomics workflow applications, there is only
one entry and exit task with some computation and communication costs (see Figure 2). Hence, we can apply
the entry task duplication technique as mentioned in Algorithm 2. The LS-C-D and LS-WC-D versions of the
proposed algorithm are applicable for the duplication technique.

Algorithm 2: entry Task Duplication (𝒕𝒆𝒏𝒕𝒓𝒚)

 1. 𝐛𝐞𝐠𝐢𝐧

 2. Allocate task 𝑡𝑒𝑛𝑡𝑟𝑦 to the processors 𝑝𝑟𝑜𝑐𝑚𝑖𝑛 that produces minimum 𝐸𝐹𝑇.

 3. 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒 = 𝑚𝑎𝑥𝑡𝑝 ∈𝑠𝑢𝑐𝑐(𝑡𝑒𝑛𝑡𝑟𝑦){(𝐸𝐹𝑇(𝑡𝑒𝑛𝑡𝑟𝑦 , 𝑣𝑚𝑚𝑖𝑛) + 𝑇𝑇(𝑒𝑒𝑛𝑡𝑟𝑦,𝑝)}

 4. 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 processor 𝑝𝑖 in the processorset excluding 𝑝𝑚𝑖𝑛 𝐝𝐨

 5. 𝐢𝐟(𝑑𝑎𝑡𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒 > 𝐸𝑇(𝑡𝑒𝑛𝑡𝑟𝑦 , 𝑣𝑚𝑚𝑖𝑛)} 𝐭𝐡𝐞𝐧

 6. Duplicate the entry task 𝑡𝑒𝑛𝑡𝑟𝑦 to the processor 𝑝𝑖

 7. 𝐞𝐧𝐝 𝐢𝐟

 8. 𝐞𝐧𝐝 𝐅𝐨𝐫

 9. 𝐞𝐧𝐝

Proposed list-based scheduling algorithm

Algorithm 3 represents the pseudo-code for the suggested algorithm. It starts by calling a clustering
technique for the Epigenomics workflow, which is applicable for LS-C-D and LS-C-WD versions of the
algorithm (steps 2). In the next step, it makes a priority list that accommodates the tasks in the increasing
order of the upward rank (steps 3-4). A while loop is maintained which selects the tasks from the priority list
for scheduling on the processors. The loop is terminated when it gets empty. If the entry task is encountered
during iteration, it calls the entry-task duplication method, which is applicable for LS-C-D and LS-WC-D
versions of the algorithm (step 8). If the current unscheduled task is other than an entry task, the algorithm
finds the last parent of the unscheduled task and its assigned processor (steps 11-12). In step 13, the

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 8

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

algorithm determines the data arrival time to the current unscheduled task. If the data arrival time is equivalent
to its parent’s processor available time, then the current unscheduled task is assigned to it for the computation
(steps 14-15). In this way, the data transfer time between parent and child task is neglected, and thus
performance is magnified. If the condition given in step 14 is not satisfied, then the algorithm finds the
processor in the processor set that computes the current unscheduled task at the earliest time (steps 16-21).
In step 23, the algorithm updates the task priority list accordingly.

Algorithm 3: Proposed List-based Scheduling Algorithm

𝐈𝐧𝐩𝐮𝐭: Set of Epigenomics workflow tasks and set of processor in processorset
𝐎𝐮𝐭𝐩𝐮𝐭: Schedule length (makespan) of the workflow

1. 𝐛𝐞𝐠𝐢𝐧

2. Call 𝑝𝑟𝑒 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (𝑊(𝑡, 𝑒))

3. Compute 𝑟𝑎𝑛𝑘𝑢 of each interconnected task of the workflow

4. Insert workflow tasks in 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑙𝑖𝑠𝑡 based on increasing values of 𝑟𝑎𝑛𝑘𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

5. 𝐰𝐡𝐢𝐥𝐞 (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑙𝑖𝑠𝑡 ! = 𝑒𝑚𝑝𝑡𝑦) 𝐝𝐨

6. Select the task 𝑡𝑖 from 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑙𝑖𝑠𝑡

7. 𝐈𝐟 task 𝑡𝑖 is an entry task 𝑡𝑒𝑛𝑡𝑟𝑦 𝐭𝐡𝐞𝐧

8. Call 𝑒𝑛𝑡𝑟𝑦𝑇𝑎𝑠𝑘𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑖𝑡𝑜𝑛(𝑡𝑒𝑛𝑡𝑟𝑦)

9. 𝐞𝐥𝐬𝐞

10. Task 𝑡𝑖 is not an entry task 𝑡𝑒𝑛𝑡𝑟𝑦

11. 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝑃𝑎𝑟𝑒𝑛𝑡 = 𝑎𝑟𝑔 {𝑚𝑎𝑥𝑡𝑝 ∈𝑝𝑟𝑒𝑑(𝑡𝑖)(𝐸𝐹𝑇(𝑡𝑝))}

12. 𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = processor on which the last parent was assigned

13. 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒 = max{(𝐸𝐹𝑇(𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝑃𝑎𝑟𝑒𝑛𝑡) + 𝑚𝑎𝑥𝑡𝑝 ∈𝑝𝑟𝑒𝑑(𝑡𝑖){𝐸𝐹𝑇(𝑡𝑝) + 𝑇𝑇(𝑒𝑝,𝑖)}}

14. 𝐢𝐟(𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒 == 𝐴𝑇𝑝𝑝𝑎𝑟𝑒𝑛𝑡
) 𝐭𝐡𝐞𝐧

15. Assign task 𝑡𝑖 𝑜𝑛 𝑝𝑝𝑎𝑟𝑒𝑛𝑡 and calculate its 𝐸𝑆𝑇 and 𝐸𝐹𝑇

16. 𝐞𝐥𝐬𝐞

17. 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 processor 𝑝𝑖 in the processorset 𝐝𝐨

18. Calculate 𝐸𝐹𝑇 of the task 𝑡𝑖

19. 𝐞𝐧𝐝 𝐟𝐨𝐫

20. Processor 𝑝𝑖 that has minimum 𝐸𝐹𝑇 is selected for the assignment of task 𝑡𝑖

21. 𝐞𝐧𝐝 𝐢𝐟

22. 𝐞𝐧𝐝 𝐢𝐟

23. Update 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑙𝑖𝑠𝑡

24. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

25. 𝐞𝐧𝐝

Performance evaluation of proposed algorithm

The suggested algorithm's performance is evaluated using Epigenomics workflow applications running
on heterogeneous computer platforms. Numerous sizes of Epigenomics workflows are considered in the
experiment to identify usefulness of proposed algorithm over existing competitive algorithms. Two
experiments are performed in which the first experiment is to identify the best version of the proposed
algorithm, whereas the second experiment is performed to observe the performance of suggested algorithm
over state-of-the-art algorithms such as HCPT [11], PEFT [12], and the latest algorithms Ext-HEFT [13],
LSTD [23].

Comparison Metrics

The following metrics are considered for the performance evaluation of the proposed algorithm.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 9

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Schedule Length Ratio (SLR): One of the most key determinants for measuring the quality of workflow

scheduling approaches is the scheduled length (makespan). Since we need to take into account a large

number of workflows, each of which has its own unique characteristics and structure. During the experiment,

the schedule length must be reduced to a lower limit, which is called the schedule length ratio [12]. SLR is

represented mathematically as follows:

𝑆𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑ min𝑝𝑗 ∈ 𝑃 (𝑤(𝑖,𝑗))𝑡𝑖 ∈ 𝐶𝑃𝑀𝐼𝑁

 (6)

The denominator of SLR is the minimal computing cost of critical path tasks (𝐶𝑃𝑀𝐼𝑁). The critical path in
a workflow is the path that is recognized as the longest path from the entry task to the exit task. Thus, no
makespan can be achieved less than denominator of SLR equation. As a result, the best algorithm is the one
with the lowest SLR.

Efficiency: The ratio of speedup to the number of processors is used to measure the efficiency of a

heterogeneous system, where speedup signifies the ratio of sequential computation time divided by parallel
computation time of workflow applications. The sequential computation time of workflow application is
measured by summing the computation time of the tasks after assigning them to a single processor. Thus
the mathematical formula of the speedup is mentioned below [12]:

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
min𝑝𝑗 ∈ 𝑃[∑ 𝑤(𝑖,𝑗)𝑡𝑖 ∈ 𝑇]

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

Hence,

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

Average Running Time: The time spent by the algorithms to obtain a schedule for a given workflow

application is known as the running time or (makespan). This measurement can be used to calculate the
average computation time of algorithms.

Number of occurrences of better schedules: The results are compared with other competitive strategies

using a paired table to recognize the proportion of better, equal and worst results obtained by the proposed
technique.

Simulation Setup

All algorithms are coded in the python language and tested on the system having Ubuntu OS (18.04),
2.70 GHz Core i5 (Intel) processor and 8 GB RAM. The workflow generator program available at [27]
generates different sizes of Epigenomics workflows. Workflow size varies from 50 to 1000 tasks. For
producing the workflow application, the following factors are considered:

No. of Tasks = [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

CCR = [0.1, 0.5, 1, 2, 5, 10]

Processors = [2, 4, 8, 16, 32, 64]

Here the term CCR refers to ratio of total edge costs (communication time) to the total task computation

costs (compute time) in a particular workflow application. The CCR parameter is generally used to represent
a wide range of computing machines. The lower value of CCR represents high-speed computing machines
while a higher value of CCR represents slow computing machines. The combination of these parameters will
generate 462 Epigenomics workflow applications. For each size of the Epigenomics workflow, 10 different
workflows are generated with different computation costs and communication costs. In this way, there are
4620 Epigenomics workflow applications are considered for identifying effectiveness of the suggested
algorithm in the heterogeneous computing environment.

Evaluation of Experimental results

This section summarizes experimental outcomes of proposed algorithm along with its competitive
algorithms. There are three types of experiments conducted in which the first experiment identifies the best
version of the suggested algorithm, the second experiment demonstrate the performance improvement of

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 10

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

the best version of the suggested algorithm over competitive algorithms and the third experiment analyze the
number of occurrence better schedule.

Experiment 1: For finding the best version of the proposed algorithm

Figure 3 shows how long different versions of the proposed algorithm take to run on average as the size

of Epigenomics workflow tasks grows. The outcome of the experimental results shows that the LS-WC-D

version (list scheduling without clustering and duplication) performs well over other versions of the proposed

algorithm. It shows 27.84%, 28.42%, and 1.65% improvements over LS-C-D, LS-C-WD, and LS-WC-WD

versions of the proposed algorithm, respectively.

Figure 3. Average running time of the different versions of the proposed algorithm with respect to increasing size of the
Epigenomics workflow applications.

Figure 4. Average running time of different versions of the proposed algorithm with respect to increasing number of
processors.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 11

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Figure 4 depicts the average amount of time it takes for the different versions of the proposed algorithm
to run with regard to an increased number of processors. As we can see in the figure, there are variations in
the makespan achieved by the different versions of algorithms with a low number of processors, but in the
case of increasing number of processors, the performance of all versions becomes almost the same. This is
because, as the number of processors grows, the scheduling policy of all versions has many options to
choose the best processor for the assignment of tasks. If we talk about the overall performance of the
algorithms, the LS-WC-D version further shows improvement over other versions in terms of average running
time. It shows 25.14%, 26.42%, and 2.04% improvement over LS-C-D, LS-C-WD, and LS-WC-WD versions
of the proposed algorithm, respectively.

Figure 5. Efficiency of different versions of the proposed algorithm with respect to increasing number of processors.

Figure 5 shows how well the proposed algorithm works in its different versions as the number of
processors increases. As we can see in the figure, the LS-WC-D shows higher efficiency throughout the
experiment. However, with the increasing number of processors, the gap between efficiency achieved by LS-
WC-WD and LS-WC-D becomes minimal. Also in the case of LS-C-D and LS-C-WD, they achieved almost
equal efficiency with a higher quantity of processors. Thus, we can conclude that with a higher number of
processors the resource utilization becomes minimal. Further, the LS-WC-D shows 28.72%, 27.23%, and
1.75% more efficiency than the LS-C-D, LS-C-WD, and LS-WC-WD versions of the proposed algorithm,
respectively.

Figure 6 signifies average SLR of the scheduling approaches with increasing number of CCR. Initially,
all versions of the algorithms show similar performance with the lower value of CCR. Here, lower value of
CCR represents a high-performance computing system. With the increasing value of CCR, the LS-WC-D
algorithm achieve a lower value of average SLR while LS-C-WD achieves a higher value of SLR. The lower
value of average SLR represents the best schedule generated by algorithms for scheduling workflow
applications. Further, experimental results show that LS-WC-D again shows better performance in terms of
Average SLR.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 12

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Figure 6. Average SLR of different versions of the proposed algorithm with respect to increasing value of CCR

After analysis of all experiment results, we observed that LS-WC-D (List Scheduling without Clustering
and Duplication) version of proposed algorithms is the best choice for scheduling Epigenomics workflow
applications. Thus, the clustering strategy we recommended does not contribute to better outcomes, but that
the duplication technique is a preferable option for achieving better results.

Experiment 2: Performance analysis of LS-WC-D with competitive algorithms

In the last experiment, LS-WC-D is identified best version among the other versions of the proposed
algorithm for scheduling Epigenomics applications in the heterogeneous computing environment. The
performance of LS-WC-D is now examined further using state-of-the-art algorithms (HCPT and PEFT) as
well as new suggested algorithms (Ext-HEFT and LSTD). A detailed analysis of experimental results is
discussed below:

Figure 7 shows the average amount of time it takes for an algorithm to run as the number of tasks in the
Epigenomics workflow increases. The HCPT takes a longer time to compute the Epigenomics applications
as compared to other algorithms, while LS-WC-D produces the shortest schedule. However, LSTD gives
tough competition to the LS-WC-D but when we calculate the overall average running time, the LS-WC-D
produces

3.34% better schedule than LSTD. Also, PEFT and Ext-HEFT show almost similar performance but do
not achieve the performance as compared to the LS-WC-D algorithm. Further, LS-WC-D produces 8.34%,
10.15% and 39.37% better schedule than HEFT, PEFT, and HCPT algorithms.

Figure 8 shows how long algorithms take to run on average as the number of processors increases.
When we schedule Epigenomics applications of varying sizes (From 50 to 1000 tasks) on a low number of
processors (2, 4, 8, or 16 processors) then HCPT again shows the worst performance while LS-WC-D
produces a better schedule among all the algorithms. With the increasing number of processors (32 or 64
processors), all algorithms show almost similar performance. Thus, the computation of Epigenomics
applications on a computing system with a large number of processors does not depend on scheduling
policies.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 13

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Figure 7. Average running time with respect to increasing size of the Epigenomics workflow applications.

Figure 8. Average running time of algorithms with respect to increasing number of the processors.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 14

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Figure 9. Efficiency of algorithm with respect to increasing number of processors.

The effectiveness of algorithms is illustrated in Figure 9 in relation to the growing number of processors.
The LSTD algorithm shows the best performance over other approaches when the number of processors in
computing system is 2. But when the number of processors growing from 4 to 64, the LS-WC-D continuously
shows better performance. The HCPT shows the worst performance in achieving efficiency. When we
schedule Epigenomics application on the system with 64 processors, all algorithms achieve similar efficiency
which is the lowest one. Further, when we talk about overall performance, our proposed algorithm LS-WC-D
shows 23.30%, 5.51%, 9.39%, and 1.73% higher efficiency than HCPT, HEFT, Ex-HEFT, and LSTD
algorithms.

Figure 10. Average SLR of algorithms with respect to increasing value of CCR

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 15

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

Figure 10 represents average SLR of algorithms with the increasing number of CCR values. As we
already know the low CCR value represents a system in which processors are connected with a high-speed
network connection while a higher value CCR represents processors are connected to a low bandwidth
network. When the CCR value is minimal (i.e., 0.1 or 0.5), all algorithms produce average SLR with less
difference, whereas for higher value CCR (i.e., 5 or 10), there is a marginal difference between them. Our
proposed algorithm LS-WC-D shows better performance in both types of systems and produces 35.92%,
14.56%, 22.81%, and 8.25% better average SLR over HCPT, PEFT, Ex-HEFT and LSTD algorithms,
respectively.

Experiment 3: Percentage of occurrence of better schedule

In this experimental evaluation, a pairwise table is created to recognize the proportion of better, equal,
and worst results generated by LS-WC-D along with its completive algorithms. In Table 2, we can see that
our proposed algorithm LS-WC-D produces 59.112%, 77.735%, 72.555%, and 93.23% better results over
LSTD, Ex-HEFT, PEFT, and HCPT, respectively.

 Table 2. Pairwise makespan comparison of the algorithms

 LS-WC-D LSTD Ex-HEFT PEFT HCPT

LS-WC-D
Better
Worse
Equal

59.112%
40.140%
0.746%

77.735%
20.741%
1.524%

72.855%
24.721%
2.424%

93.231%
5.768%
1.001%

LSTD
Better
Worse
Equal

40.141%
59.113%
0.745%

76.254%
21.655%
2.091%

70.317%
26.227%
3.456%

90.677%
8.123%
1.200%

Ex-HEFT
Better
Worse
Equal

20.741%
77.735%
1.524%

21.655%
76.254%
2.091%

39.631%
57.893%
2.476%

70.477%
25.089%
4.434%

PEFT
Better
Worse
Equal

24.721%
72.855%
2.424%

26.227%
70.317%
3.456%

57.893%
39.631%
2.476%

85.897%
13.983%
0.120%

HCPT
Better
Worse
Equal

5.767%
93.232%
1.002%

8.124%
90.676%
1.201%

25.089%
70.477%
4.434%

13.983%
85.897%
0.120%

Based on the analysis of experimental results, we observed that the LS-WS-D version of the proposed

algorithm produces better results in all experiments than its competitive algorithms. Hence, LS-WS-D is the
best choice for the computation of Epigenomics applications in the heterogeneous computing environment.

CONCLUSION

Epigenomics applications are considered complex workflow applications that are used in data processing
pipelines for automating the various genome sequencing computations. These applications demand high-
performance computing resources for their computation. This article introduces how to schedule
Epigenomics workflow applications in a heterogeneous computing environment using a list-based algorithm.
To find whether entry-task duplication and clustering techniques improve the performance of the scheduling
process, we introduced four versions of the proposed algorithm in which the LS-WC-D (List based scheduling
without clustering and with duplication) version shows better performance over other versions. Further,
various experiments are conducted and results are analyzed with state-of-the-art algorithms such as HCPT,
PEFT, and newly proposed algorithms such as Ex-HEFT, and LSTD. The experimental results show that LS-
WS-D is the best option for computing Epigenomics applications in a heterogeneous computing environment.

In the future, we are planning to observe the behavior of the LS-WS-D algorithm in the real cloud
environment. To do this, we have to consider numerous cloud features such as VM heterogeneity, VM
acquisition latency, lease period, VM failure, etc.

REFERENCES

1. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007 Feb 23;128(4):635-8.
2. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007 Feb 23;128(4):669-81.
3. Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693-705.
4. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer

genomics and clinical profiles using the cBioPortal. Science signaling. 2013 Apr 2;6(269):pl1-.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

 Ahmad, W.; et al. 16

Brazilian Archives of Biology and Technology. Vol.66: e23210795, 2023 www.scielo.br/babt

5. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open
platform for exploring multidimensional cancer genomics data. Cancer discovery. 2012 May;2(5):401-4.

6. Agarwal R, Kumar B, Jayadev M, Raghav D, Singh A. CoReCG: a comprehensive database of genes associated
with colon-rectal cancer. Database. 2016 Jan 1;2016.

7. Chen GG, Gross JA, Lutz PE, Vaillancourt K, Maussion G, Bramoulle A, et al. Medium throughput bisulfite
sequencing for accurate detection of 5-methylcytosine and 5-hydroxymethylcytosine. BMC genomics. 2017
Dec;18(1):1-2.

8. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al. Pegasus, a workflow management
system for science automation. Future Generation Computer Systems. 2015 May 1;46:17-35.

9. Kokash N. An introduction to heuristic algorithms. Department of Informatics and Telecommunications. 2005
Aug:1-8.

10. Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous
computing. IEEE Trans Parallel Distrib Syst. 2002 Aug 7;13(3):260-74.

11. Hagras T, Janecek J. A simple scheduling heuristic for heterogeneous computing environments. InParallel and
Distributed Computing, International Symposium on 2003 Oct 1; IEEE Computer Society:104.

12. Arabnejad H, Barbosa JG. List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE
Trans Parallel Distrib Syst. 2013 Mar 7;25(3):682-94.

13. AlEbrahim S, Ahmad I. Task scheduling for heterogeneous computing systems. J. Supercomput. 2017
Jun;73(6):2313-38.

14. Wang J, Han P, Chen J, Du C. Cost-Efficient Scheduling of Workflow Applications with Deadline Constraint on
IaaS Clouds. In 2021 Workshop on Algorithm and Big Data 2021 Mar 12. (p. 34-9).

15. Michael LP. Scheduling: theory, algorithms, and systems. Springer; 2018.
16. Belgacem A, Beghdad-Bey K. Multi-objective workflow scheduling in cloud computing: trade-off between

makespan and cost. Clust. Comput. 2022 Feb;25(1):579-95.
17. Ijaz S, Munir EU, Ahmad SG, Rafique MM, Rana OF. Energy-makespan optimization of workflow scheduling in

fog–cloud computing. Computing. 2021 Sep;103(9):2033-59.
18. Singh V, Gupta I, Jana PK. A novel cost-efficient approach for deadline-constrained workflow scheduling by

dynamic provisioning of resources. Future Gener Comput Syst. 2018 Feb 1;79:95-110.
19. Abdulhamid SI, Abd Latiff MS, Madni SH, Abdullahi M. Fault tolerance aware scheduling technique for cloud

computing environment using dynamic clustering algorithm. Neural Computing and Applications. 2018
Jan;29(1):279-93.

20. Adhikari M, Nandy S, Amgoth T. Meta heuristic-based task deployment mechanism for load balancing in IaaS
cloud. J. Netw Comput. Appl. 2019 Feb 15;128:64-77.

21. Yao F, Pu C, Zhang Z. Task duplication-based scheduling algorithm for budget-constrained workflows in cloud
computing. IEEE Access. 2021 Mar 2;9:37262-72.

22. Chen H, Wen J, Pedrycz W, Wu G. Big data processing workflows oriented real-time scheduling algorithm using
task-duplication in geo-distributed clouds. IEEE Trans. Big Data. 2018 Oct 8;6(1):131-44.

23. Ahmad W, Alam B. An efficient list scheduling algorithm with task duplication for scientific big data workflow in
heterogeneous computing environments. Concurrency and Computation: Practice and Experience. 2021 Mar
10;33(5):e5987.

24. Arabnejad H, Barbosa J. Fairness resource sharing for dynamic workflow scheduling on heterogeneous systems.
In 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications 2012 Jul 10.
p. 633-9.

25. Omranian-Khorasani S, Naghibzadeh M. Deadline constrained load balancing level based workflow scheduling for
cost optimization. In2017 2nd IEEE Int Conf Comput Intell Appli. 2017 Sep 8:113-8.

26. Wang G, Wang Y, Liu H, Guo H. HSIP: A novel task scheduling algorithm for heterogeneous computing. Scientific
Programming. 2016 Mar 17;2016.

27. WorkflowGenerator – Pegasus Workflow Management System
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator. Accessed June 17, 2022.

© 2022 by the authors. Submitted for possible open access publication under the terms and

conditions of the Creative Commons Attribution (CC BY NC) license

(https://creativecommons.org/licenses/by-nc/4.0/).

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

