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Abstract  Introduction: Automatic detection of blood components is an important topic in the fi eld of hematology. 
Segmentation is an important step because it allows components to be grouped into common areas and 
processed separately. This paper proposes a method for the automatic segmentation and classifi cation of 
blood components in microscopic images using a general and automatic fuzzy approach. Methods: During 
pre-processing, the supports of the fuzzy sets are automatically calculated based on the histogram peaks in 
the green channel of the RGB image and the Euclidean distance between the leukocyte nuclei centroids and 
the remaining pixels.  During processing, fuzzifi cation associates the degree of pertinence of the gray level of 
each pixel in the regions defi ned in the histogram with the proximity of the leukocyte nucleus centroid closest 
to the pixel. The fuzzy rules are then applied, and the image is defuzzifi ed, resulting in the classifi cation of 
four regions: leukocyte nuclei, leukocyte cytoplasm, erythrocytes and blood plasma.  In post-processing, 
false positives are reduced and the leukocytes (including the nucleus and cytoplasm), erythrocytes and blood 
plasma are segmented. Results: A total of 530 microscopic images of blood smears were processed, and the 
results were compared with the results of manual segmentation by experts and the accuracy rates of other 
approaches.  Conclusion: The method demonstrated average accuracy rates of 97.31% for leukocytes, 95.39% 
for erythrocytes and 95.06% for blood plasma, avoiding the limitations found in the literature and contributing 
to the practice of the segmentation of blood components.
Keywords  Digital image processing, Fuzzy logic, Image segmentation,  Blood analysis.

Introduction
Hematology is the study of blood, including its 
organs of origin, functions, diseases and disorders. In 
hematology, the analysis of various blood components, 
especially leukocytes and erythrocytes, which are 
the focus of this work, is based on the microscopic 
observation of stained blood smears fi xed to a glass 
slide.  The components of blood can be differentiated 
based on their color. When stained, the blood 
components usually show the following pattern: 
the blood plasma is the lightest, erythrocytes and 
leukocyte cytoplasm are intermediate in brightness, 
and leukocyte nuclei are the darkest. However, 
because there is color variation in each component, 
the classifi cation process is inaccurate and subjective.

Manual analysis, conducted by experts using an 
optical microscope to identify, characterize and count 
the blood components, is a tedious process that is 
unreliable, subjective and diffi cult to reproduce. As 
described in Guo et al. (2006), automated analysis 
for the identifi cation of different classes of cells is 
useful in the diagnosis of diseases such as cancer and 
anemia.  Digital image processing techniques, which 
improve the quality of blood analysis and can handle 
inaccurate data well, have achieved good results.

Fuzzy logic is a powerful tool for handling the 
ambiguous and vague information that is inherent in 
blood analysis. According to Zadeh (1973), fuzzy logic 
is a mathematical expression of the formulations of 
human thought in natural language, without decreasing 
their expressive power. According to Cox (1994), 
combining the inaccuracy associated with natural 
events and the computing power of machines allows 
the production of robust and fl exible intelligent 
response systems.

In traditional sets, the concept of an element as 
a member of a set is well defi ned. In fuzzy sets, an 
element has a degree of membership in a set. The 
membership of an element in a specifi c set is the 
intensity with which the element is related to the set. 
As reported by Klir and Folger (1988), an element can 
be a full member of a fuzzy set, have an intermediate 
membership value or not be a member.  It is this feature 
of vagueness that allows fuzzy logic to perform well 
on problems involving imprecise concepts, such as 
segmentation and classifi cation for detecting and 
distinguishing different regions of an image.

Many studies can be found in the literature 
describing the digital processing of images using 
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fuzzy logic in combination with other techniques. 
Jiji and Ganesan (2010) proposed two approaches 
based on fuzzy logic for the identification of textures 
in color images. Tan and Isa (2011) presented a 
histogram-based thresholding technique that used a 
fuzzy C-means algorithm to improve the clustering and 
uniformity of regions. Nawgaje and Kanphade (2011) 
proposed a fuzzy inference system for the detection 
of the edges of microscopic images. Wang et al. 
(2012) proposed an image segmentation method 
that used a fuzzy C-means algorithm and a support 
vector machine. Sansone et al. (2012) proposed an 
algorithm for comet assay analysis consisting of two 
stages: comet identification via Gaussian pre-filtering 
and morphological operators and comet segmentation 
via fuzzy clustering.

Other studies have been conducted on blood 
component segmentation using digital image processing 
and fuzzy logic. Ramoser et al. (2005) proposed a 
leukocyte segmentation method that analyzed the 
saturation to identify the leukocyte nucleus and used 
an adaptive thresholding approach for leukocyte 
cytoplasm segmentation. Hamghalam and Aytollahi 
(2009) proposed a method for leukocyte nucleus 
segmentation based on image binarization in which 
the peak of the histogram of erythrocyte intensity was 
selected as the threshold. The leukocyte cytoplasm was 
extracted based on the distance between the center of 
the leukocyte nucleus and the nearest erythrocytes. 
Ko et al. (2011) presented a leukocyte segmentation 
technique that used stepwise merging rules based 
on mean-shift clustering and boundary removal 
rules based on a GVF (Gradient Vector Flow) snake. 
Rezatofighi and Soltanian-Zadeh (2011) proposed a 
method based on Gram–Schmidt orthogonalization 
and a snake algorithm for the segmentation of the 
nucleus and cytoplasm of leukocytes. Ramesh et al. 
(2012) proposed a method for the segmentation of 
leukocytes using the S channel of the HSV color 
model. A fixed threshold was used to identify the 
leukocyte nucleus, and the leukocyte cytoplasm was 
identified based on a previously defined fixed distance 
from the leukocyte nucleus. Fatichah et al. (2012) 
proposed an interest-based sorting scheme using fuzzy 
morphology for the segmentation of the leukocyte 
nucleus from the cytoplasm. Putzu and Ruberto 
(2013) presented a leukocyte segmentation method 
using a threshold automatically calculated using the 
Zack algorithm and watershed segmentation applied 
to the transformed image distance. Jati et al. (2014) 
proposed an approach for automatic segmentation that 
used an intuitive fuzzy divergence-based thresholding 
technique. Zheng et al. (2014) demonstrated a fast 
hierarchical framework for leukocyte localization and 
segmentation in rapidly stained leukocyte images. 

However, despite the positive results obtained in 
the cited studies, the studies have many limitations: 
i) the blood samples use the same staining method; 
ii) specific blood components are segmented, but 
others are neglected; iii) pre-set thresholds are used 
for segmentation; iv) the methods produce relatively 
high false-positive rates due to the proximity of 
the leukocyte cytoplasm and erythrocytes; v) false 
negatives are eliminated based on areas of predefined 
size; and vi) they use semi-automatic approaches to 
segmentation.

This paper proposes an automatic scheme for 
the segmentation and classification of leukocytes 
(including their nuclei and cytoplasm), erythrocytes 
and blood plasma in microscopic images. Using only 
the green (G) channel of the RGB image, the three most 
significant peaks in the histogram of the G image are 
identified based on their tonality. However, given that 
microscopic slide images have four regions of interest 
(leukocyte nuclei, leukocyte cytoplasm, erythrocytes 
and blood plasma) and the histogram contains only 
three well-defined regions, traditional segmentation 
methods using quantization and separation of regions 
based on gray levels are not sufficient to correctly 
segment the leukocyte cytoplasm and erythrocytes. In 
addition to tonality, the proximity between each pixel 
and the centroid of the closest leukocyte nucleus is 
used to refine the classification. To properly express 
these uncertain concepts and the relationship between 
them, we propose an approach based on fuzzy inference 
systems. Combining fuzzy logic with digital image 
processing techniques enables better refinement of 
the segmentation and classification process.

To address the limitations found in the literature, 
the following aspects are considered: i) using only 
the gray levels of the G channel for all samples in the 
pre- and post-processing stages, even if the samples are 
from different staining processes; ii) segmentation and 
classification of various blood components, including 
leukocytes (nuclei and cytoplasm), erythrocytes 
and blood plasma; iii) automatic calculation of the 
supports of the fuzzy sets for the tonality and proximity 
variables; iv) identification of four distinct areas in 
images whose histograms have only three well-defined 
regions; v) use of the Euclidean distance between the 
leukocyte nuclei and other image pixels, mitigating 
the problem of adjacency between the leukocyte 
cytoplasm and erythrocytes; vi) reduction of false 
negatives for leukocyte cytoplasm by classifying pixels 
appropriately as erythrocytes; and vii) automation of 
the segmentation process. Adapting the membership 
functions to the images and using measures such as 
histogram peaks and the distance between regions 
as supports of the fuzzy sets make the proposed 
method automatic and robust, distinguishing it from 
other approaches.
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Methods
In this study, 530 microscopic images of blood smears 
made with various hematologic stains were analyzed, 
classified and segmented to identify and segment the 
leukocyte nuclei, leukocyte cytoplasm, erythrocytes 
and blood plasma.

On blood smear slides prepared for microscopic 
analysis, the blood plasma has a light color, the 
erythrocytes and leukocyte cytoplasm have intermediate 
colors, and the leukocyte nuclei have a dark color. 
Considering that leukocytes (with a density of 6000-
9000/mm3 of blood) appear less frequently than 
erythrocytes (with a density of 4.5-6.2 million/mm3 
of blood) and that the area occupied by blood plasma 
is as large as or larger than the area occupied by 
erythrocytes, the histogram of a blood smear image 
often displays a peak in the dark region, representing 
the almost imperceptible leukocyte nucleus, and two 
other peaks representing blood plasma, erythrocytes and 
leukocyte cytoplasm, which are more visible. Despite 
the different densities of the blood components, the 
images in the present study all contain at least one 
leukocyte, several erythrocytes and significant areas 
of blood plasma.

For each image, the method comprises pre-
processing, processing and post-processing stages.

In the first stage, based on the histogram of the G 
channel, the image is pre-classified to calculate the 
values that will be used to define the support of the 
fuzzy sets for the tonality and proximity variables. 
The algorithm for this stage can be briefly described 
as follows:

•	 Step 1: Extract the green channel of the RGB 
image (G).

•	 Step 2: Extract the G image histogram.
•	 Step 3: Calculate the three most relevant 

histogram peaks (DarkPeak, MediumPeak 
and LightPeak), which will be used in the 
definition of the linguistic variable tonality.

•	 Step 4: Pre-classify the G image into three 
regions according to the dark and light peaks 
(leukocyte nucleus ≤ DarkPeak, DarkPeak < 
foreground < LightPeak, and blood plasma ≥ 
LightPeak).

•	 Step 5: Calculate the centroids of the pre-
classified areas, such as the leukocyte nuclei, 
after performing closure and region-filling 
operations.

•	 Step 6: Calculate the Euclidean distance 
between the image pixels and the centroid 
of the nearest leukocyte nucleus (matrix D).

•	 Step 7: Calculate the HighProx and LowProx 
values, which will be used in the definitions for 
the support of the fuzzy set for the proximity 
variable.

In the next stage (processing), a fuzzy inference 
system classifies the pixels in each image region based 
on the linguistic input variables tonality and proximity, 
their respective membership functions and the fuzzy 
rule base. The stages of the algorithm are as follows:

•	 Step 1: Construction of the fuzzy linguistic 
variables tonality and proximity using the 
DarkPeak, MediumPeak, LightPeak, HighProx 
and LowProx values calculated in the pre-
processing stage.

•	 Step 2: Fuzzification of matrix G based on the 
linguistic terms for tonality (dark, medium, 
and light) and their respective pertinence 
functions.

•	 Step 3: Fuzzification of matrix D based on the 
linguistic terms for proximity (high and low) 
and their respective pertinence functions.

•	 Step 4: Application of the fuzzy rule base.
•	 Step 5: Aggregation of outputs and 

defuzzification of the fuzzy output variable 
class (leukocyte cytoplasm, leukocyte nucleus, 
erythrocyte and blood plasma) using the mean-
of-maximum method.

In the final stage, post-processing, the classified 
image is refined by removing erythrocytes erroneously 
classified as leukocyte cytoplasm (i.e., false positives). 
Finally, the image is segmented. The stages of the 
algorithm are as follows:

•	 Step 1: Removal of false positives for leukocyte 
cytoplasm with RGB values corresponding to 
erythrocytes.

•	 Step 2: Elimination of small areas of leukocyte 
cytoplasm.

•	 Step 3: Filling of regions in the classified 
areas.

•	 Step 4: Segmentation of leukocyte (nucleus 
and cytoplasm), erythrocyte and blood plasma 
regions in the original image according to 
their classifications.

MathWorks Matlab R2014a software (The 
MathWorks, Inc., 3 Apple Hill Drive, Natick, 
Massachusetts 01760 USA) was used to implement 
the stages of the model.

Pre-processing
Each microscopic blood slide image is represented 
by a color matrix 3n mA × × , where n and m correspond 
to the two axes of the Cartesian plane of the image 
and the color of each pixel is given by the three 
primary color channels: red (R), green (G) and blue 
(B). In the present study, the G channel is used in 
the pre-processing and processing stages because the 
color of the leukocyte nucleus ranges from navy blue 
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to purple, whereas the R and B channels represent 
darker tones. Because the leukocyte nuclei and the 
blood plasma are always dark and light, respectively, 
regardless of the hematologic staining used in the 
sample, the three RGB color channels of the original 
image ( ) 3ij n m

OI oi
× ×

=  (Figure 1a) are separated in the 
pre-processing stage, and only channel ( )ij n m

G g
×

=  

is considered (Figure 1b). The histogram of the G 
channel, ( )2 256ijHG hg

×
= , is constructed (Figure 1c), 

and the three most significant peaks, DarkPeak, 
MediumPeak and LightPeak, are calculated.

To determine the three most significant peaks in 
the G channel histogram of the image, the histogram 
is initially considered as a 256-position vector, with 

Figure 1. a) 3n mRGB × ×  images (left to right, samples stained with Fast Panoptic, Leishman, Rosenfeld and unspecified staining); b) G 
channel images; c) G channel histograms with zoom (grayscale value x frequency); d) histogram peaks with high frequency repetition; e) 
histogram peaks with DarkPeak in blue, MediumPeak in green and LightPeak in red; f) thresholded leukocyte nuclei (white), centroids 
(1-red), HighProx (2-blue), LowProx (3-yellow) and maximum value of matrix D (4-green); and g) Euclidean distance of each pixel to the 
nearest leukocyte nucleus centroid (points 1, 2, 3 and 4 same as in f).
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each position representing a gray level and containing 
the frequency of occurrence for that level among 
the pixels in the image. Each position in the vector 
is examined beginning from the first position. If the 
frequency of the current position is higher than the 
frequency of the following position, the latter position 
is assigned the value of the former. Consequently, 
the highest frequency is repeated whenever there 
is a decrease in frequency in the histogram curve, 
indicating the occurrence of a valley (Figure 1d). The 
same procedure is repeated throughout the vector in 
the other direction (from the end) in case the third 
peak is smaller than the second. As a result, the most 
significant peaks will represent the three gray levels 
whose frequencies are most repeated (Figure 1e), 
with DarkPeak defined as the maximum frequency 
between a gray level of 0 and the occurrence of the 
first valley, MediumPeak as the maximum frequency 
between the first and second valley and LightPeak as 
the maximum frequency between the second valley 
and a gray level of 255. These values are used to 
define the support of the fuzzy set for the tonality 
variable in the processing stage.

Considering the DarkPeak and LightPeak values 
as thresholds, the G channel is pre-classified according 
to expression 1 to generate the matrix ( )ij n m

GC gc
×

= , 
which contains regions identifying the areas of the 
image representing leukocyte nuclei, the foreground 
(i.e., neither nucleus nor plasma) and blood plasma, 
defined with values of 0, 126 and 255, respectively. 

0,

126,

255,

ij

ij ij ij

ij

ifg DarkPeak

gc ifg DarkPeak g LightPeak

ifg LightPeak

 ≤
= > ∧ <
 ≥

	 (1)

In the areas pre-classified as representing a 
leukocyte nucleus, closing operations (dilation followed 
by erosion) are applied using a circular structuring 
element, and these regions are filled to join nearby 
objects that are disconnected. The centroid of the 
leukocyte nucleus (i.e., the center of mass), pqc , is 
then calculated (Figure 1f), and matrix ( )ij n m

D d
×

=  
is constructed from the Euclidean distance between 
each pixel of the image and the centroid (Figure 1g) 
according to expression 2. 

( ) ( )2 2
ijd i p j q= − + − 	 (2)

The matrix ( )ij n m
DP dp

×
=  containing the Euclidean 

distance between the pre-classified pixels, such as 
those representing blood plasma, and the centroid 
of the leukocyte nucleus is then calculated according 
to expression 3.

0, 255

, 255
ij

ij
ij ij

ifgc
dp

d ifgc

<=  ≥
	 (3)

If there is more than one leukocyte nucleus, more 
than one center will be calculated, and the Euclidean 
distance of any point will always be calculated relative 
to the leukocyte nucleus closest to it.

Finally, the HighProx and LowProx values are 
calculated. HighProx is defined as the minimum value 
of matrix DP, indicating the blood plasma closest to 
a leukocyte nucleus. LowProx is defined as 1/3 of 
the Euclidean distance between HighProx and the 
maximum value of matrix D. These values are used 
to define the support of the fuzzy set for the proximity 
variable in the processing stage (Figures 1f and 1g).

Processing: Fuzzy inference system
The processing stage consists of a fuzzy inference 
system using membership functions for the fuzzification 
of crisp data. From a set of well-defined fuzzy rules, 
the image is classified into four distinct regions: 
leukocyte nuclei, leukocyte cytoplasm, erythrocytes 
and blood plasma. Each leukocyte in the image will 
result in regions classified as leukocyte nucleus and 
leukocyte cytoplasm.

The blood components can be distinguished from 
each other in the sample images because of the different 
colors they exhibit after staining. Because this work 
focuses on the G channel of each sample, different 
shades of gray are used to identify the components. 
However, erythrocyte and leukocyte cytoplasm 
components have very similar shades of gray, and 
their appearance varies: erythrocytes will sometimes 
be darker than the leukocyte cytoplasm, and sometimes 
the reverse will occur, resulting in histograms with 
three well-defined regions (representing leukocyte 
nuclei, blood plasma and other elements) and a 
poorly defined and poorly positioned fourth region 
(representing erythrocytes and leukocyte cytoplasm). 
Consequently, in addition to gray levels, the proximity 
of the leukocyte cytoplasm to the leukocyte nucleus 
is also considered. This is a powerful method of 
identification because erythrocytes are anucleate. A 
fuzzy approach is used that combines the imprecise 
grayscale information with proximity information to 
handle the uncertainty in the segmentation of the areas 
of interest. The inference system used is based on the 
three-stage method presented by Mamdani (1974), 
which includes fuzzification, inference procedures 
and defuzzification (Figure 2a), and classifies each 
image into four regions after the individual processing 
of each pixel (Figure 2b).

Fuzzification consists of mapping the crisp 
numerical entries to the fuzzy sets, represented by 
the linguistic input variables, through the membership 
functions. In the fuzzy inference process, the fuzzy 
rule base is applied to the fuzzified input values, 
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thereby inferring the corresponding fuzzy output 
value. Defuzzification is used to associate a crisp 
numerical value with the output fuzzy value obtained 
from the fuzzy inference procedure.

In the input to the inference system, each pixel 
has an associated gray level ( ijg ) and Euclidean 
distance between the pixel and the centroid of the 
closest leukocyte nucleus ( ijd ). These values are 

fuzzified using pertinence functions (Figure 2c), the 
fuzzy rules are applied, the results are aggregated, 
and the final value is defuzzified, thereby classifying 
the pixel according to the appropriate class 
(Figure 2d).

The proposed fuzzy inference system uses three 
linguistic variables, two input variables (tonality and 
proximity) and one output variable (class).

Figure 2. a) Proposed fuzzy inference system; b) fuzzy inference system surface for an image; c) membership function for the image, with 
DarkPeak = 84, MediumPeak = 154 and LightPeak = 227 for tonality and HighProx = 31.82 and LowProx = 81.25 for proximity; and d) use 
of the fuzzy model for classification of a pixel from the image, with ijg  = 200 and ijd  = 50.
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The input fuzzy linguistic variable tonality refers to 
the gray values in the G histogram of the image. Three 
linguistic terms are defined for tonality: dark, medium 
and light. The supports of their respective fuzzy sets are 
represented by the values of the three most significant 
peaks found in the histogram in the pre-processing 
stage (DarkPeak, MediumPeak and LightPeak). 
Trapezoidal membership functions are defined for 
dark, medium and light tonality in which more than 
one value assumes full membership. Any value below 
DarkPeak has maximum membership in the dark 
tonality fuzzy set, and any value above LightPeak 
has maximum membership in the light tonality 
fuzzy set. Finally, any value between MediumPeak 
and ((LightPeak+ MediumPeak)/2)+ LightPeak) has 
maximum membership in the medium tonality fuzzy 
set. The universe of discourse is characterized by the 
values of the G channel.

The linguistic fuzzy input variable proximity 
refers to the Euclidean distance of each pixel from 
the centroid of the nearest leukocyte nucleus. Two 
linguistic terms are defined for proximity: high and 
low. The supports of their respective fuzzy sets are 
represented by the HighProx and LowProx values 
determined from the Euclidean distances in matrix D 
in the pre-processing stage. Trapezoidal membership 
functions are defined for high proximity and low 
proximity. Any value below HighProx has maximum 
membership in the high proximity fuzzy set, and any 
value above LowProx has maximum membership in 
the low proximity fuzzy set. The universe of discourse 
is characterized by the values of matrix D.

The concepts used to define the supports of the 
fuzzy sets for the tonality and proximity variables 
are well delimited, and the same definitions apply 
irrespective of the image. However, the values resulting 
from the application of these concepts (DarkPeak, 
MediumPeak, LightPeak, HighProx and LowProx), 
which represent the values used in the pertinence 
functions, are adaptive because they reflect the 
application of the concepts to a specific image, 
resulting in specific values for each image.

The output variable class refers to the final 
classification of the image after the fuzzy inference 
system is applied. Four fuzzy sets are defined: leukocyte 
nucleus, leukocyte cytoplasm, erythrocyte and blood 
plasma.

In the system input, matrices G and D are fuzzified 
for each pixel, resulting in matrices containing the 
degree of membership of each element in the dark 
tonality (Figure 3a), medium tonality (Figure 3b), 
light tonality (Figure 3c), high proximity (Figure 3d) 
and low proximity (Figure 3e) fuzzy sets.

After the fuzzification process, the following fuzzy 
rules are applied to the fuzzified matrices:

•	 Rule 1: If tonality is dark then the class is 
leukocyte nucleus;

•	 Rule 2: If tonality is light then the class is 
blood plasma;

•	 Rule 3: If tonality is medium and proximity 
is low then the class is erythrocyte;

•	 Rule 4: If tonality is medium and proximity 
is high then the class is leukocyte cytoplasm.

Aggregation of the class outputs is then performed 
(Figures 4a, 4b, 4c and 4d), and finally the result is 
defuzzified using the mean-of-maximum (MoM) 
method (Figure 4e). In this defuzzification method, 
a deterministic (i.e., not fuzzy) output is obtained 
by taking the mean of the two extreme elements in 
the universe corresponding to the highest values of 
the membership functions (i.e., the mean-maximum 
membership values). After defuzzification, the image 
is classified into the four regions of interest: leukocyte 
nucleus, leukocyte cytoplasm, blood plasma and 
erythrocytes.

Post-processing
In the post-processing stage, refinements are made 
in the fuzzy classification. First, regions classified as 
leukocyte cytoplasm are verified to determine whether 
there are pixels whose RGB values are also present 
in a region classified as erythrocyte. If so, this is a 
false positive for leukocyte cytoplasm, and the pixel is 
classified as erythrocyte (Figure 4f). Next, leukocyte 
cytoplasm regions with areas considered to be small 
(i.e., with areas of less than ¼ of the other regions) are 
eliminated, followed by a filling operation. Finally, 
in the original image OI , the leukocyte nucleus, 
leukocyte cytoplasm, erythrocyte and blood plasma 
classes are segmented according to their respective 
classifications (Figure 4g). The leukocyte class results 
from a join (AND) operation between the leukocyte 
nucleus and leukocyte cytoplasm classes. This class is 
relevant because of the importance of the differential 
analysis of leukocytes and so that the segmentation 
results from the proposed method can be compared 
with results reported in the literature, which are 
usually presented for leukocyte segmentation as a 
whole and not individually for the leukocyte nucleus 
and leukocyte cytoplasm.

Results
To evaluate the proposed method, 530 microscopic 
images of blood smears of different sizes and made 
using different hematological stains were used. The 
images contained normal blood components, including 
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all types of leukocytes, and regions of adjacent 
leukocyte cytoplasm and erythrocytes. These regions 
exhibited different colors from sample to sample, 
making this set of heterogeneous images difficult to 
classify (Figure 5). The images were drawn from four 
groups: samples made using a well-defined staining 
process (G1, G2, G3) and samples made using an 
unspecified staining process (G4).

The first three groups (G1, G2 and G3), contained 
415 images from the Hemocentro do Rio Grande 
do Norte Dalton Cunha (Hemonorte). The blood 
samples were prepared using standard blood smears 
that were fixed and analyzed using Fast Panoptic 
(G1; 150 images), Leishman (G2; 140 images) and 
Rosenfeld (G3; 125 images) stains. The images were 
captured using a Labomed LX 400 microscope (100X 
magnification) and an iVu 5100 camera coupled to the 

microscope with a resolution of 96 pixels/inch and an 
image size of 1280 x 720 in the JPEG picture format.

The fourth group (G4) contained images from the 
BloodLine Image Atlas, available free of charge at 
http://image.bloodline.net/. Although this website offers 
more than 800 hematological slides depicting various 
blood disorders and malignancies, it was decided to 
use the 115 images containing normal blood to enable 
a more accurate comparison between this group and 
the others. Therefore, the images classified as normal 
blood or from a dense or thin area were chosen. All 
images were captured at 100x magnification. Stains 
used in slide preparation that were visibly different 
from the others were considered unspecified.

All images were segmented and compared with 
the results of manual segmentation performed and 
verified by experts. The metrics used for comparison 
were the true positive (TP), false positive (FP), true 

Figure 3. Fuzzification process (left to right, samples stained with Fast Panoptic, Leishman, Rosenfeld and unspecified staining): a) fuzzification 
of dark tonality; b) fuzzification of medium tonality; c) fuzzification of light tonality; d) fuzzification of high proximity; and e) fuzzification 
of low proximity.
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negative (TN) and false negative (FN) rates. The 
accuracy (AC), as defined in Aghajari and Damayanti 
(2011), was also calculated as in expression 4. 

( ) ( )( )/ *100AC TP TN TP FN TN FP= + + + + 	 (4)

The results obtained in the comparative analyses 
using the fuzzy method presented here are shown in 
Table 1 and discussed below.

Discussion
The different groups of images processed in the study 
were used to demonstrate the automatic segmentation 
and classification of blood components independent 
of the staining technique used on the samples 
(Figures 5a, 5b, 5c and 5d). High rates of TP and 
TN were obtained, indicating a high percentage 
of success in identifying the presence or absence, 

Figure 4. Membership rules and post-processing (left to right, samples stained with Fast Panoptic, Leishman, Rosenfeld and unspecified 
staining): a) membership rule 1 – leukocyte nucleus class; b) membership rule 2 – blood plasma class; c) membership rule 3 – leukocyte 
cytoplasm class; d) membership rule 4 – erythrocyte class; e) output variable class; f) elimination of false positives for leukocyte cytoplasm; 
and g) final classification.
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respectively, of each component in the samples. The 
FP and FN rates represent the percentage of errors in 
identifying the presence or absence of a component 
when compared to the manual segmentation results.

A high level of accuracy was achieved in the 
classification of blood components in the 530 images, 
especially the leukocytes, leukocyte nuclei and 
leukocyte cytoplasm, with a high percentage of 
correct results compared to errors in identifying 
these components. In the identification of leukocyte 
nuclei, it was observed that the FP rate resulted from 
the similarity in the staining of the leukocyte nucleus 
and leukocyte cytoplasm in some samples (Figure 5e), 
which also increased the FN rate for leukocyte 
cytoplasm, and from the presence of artifacts derived 
during the preparation process (Figure 5f). The FN rate 
was due primarily to the failure to identify the edges 
of leukocyte nuclei visible in manual segmentation 
(Figure 5g). For leukocyte cytoplasm, FP errors were 
observed when erythrocytes adjacent to the leukocyte 
cytoplasm were incorrectly identified (Figure 5h). FN 
errors occurred primarily as a result of the leukocyte 
cytoplasm staining process, in which, depending on 
the sample preparation and the time of exposure to 

the reagent dye, the cytoplasm was sometimes not 
adequately stained (Figure 5i).

For erythrocyte classification, the FN rate was a 
result of the region-filling operation, which did not 
perform properly for erythrocytes located at the edges 
of the images (Figure 5j). In such cases, the centers 
of the erythrocytes were incorrectly classified as 
blood plasma, increasing the FP rate. The FP errors 
were due to the presence of platelets, which were not 
considered in the analysis (Figure 5k), artifacts and loss 
of focus of the microscope at the edges of the image 
(Figure 5l). In the latter case, blood plasma, which 
exhibited a darker tone, was incorrectly classified as 
erythrocytes, increasing the FN rate.

Similar results were obtained for groups G1, G2 
and G3 for leukocytes, erythrocytes and blood plasma, 
and there were minor variations in the leukocyte 
components (nucleus and cytoplasm) depending 
on the stain applied. Groups G1, G2, G3 produced 
similar results to G4, demonstrating a high degree 
of independence from the hematological staining 
technique used on the samples.

The TP, TN, FP, FN and AC rates obtained 
demonstrate the ability of the method to achieve the 
proposed goals (Figures 6a, 6b and 6c).

Table 1. Results obtained for the automatic detection of blood components in groups G1, G2, G3, G4 and the average of all groups as a 
percentage of the manual segmentation results: true positive (TP), true negative (TN), false positive (FP), false negative (FN) and accuracy 
(AC) rates.

Elements Group TP (%) TN (%) FP (%) FN (%) AC (%)
Leukocyte G1 94.41 99.91 0.09 5.59 97.16

G2 96.80 99.81 0.19 3.20 98.31
G3 94.35 99.85 0.15 5.65 97.10
G4 93.91 99.41 0.59 6.09 96.66

Average 94.87 99.75 0.25 5.13 97.31
Leukocyte Nucleus G1 92.83 99.93 0.07 7.17 96.38

G2 91.80 99.88 0.12 8.20 95.84
G3 83.10 99.91 0.09 16.90 91.50
G4 91.24 99.57 0.43 8.76 95.41

Average 89.74 99.82 0.18 10.26 94.78
Leukocyte Cytoplasm G1 85.12 99.81 0.20 14.88 92.46

G2 89.48 99.73 0.27 10.52 94.60
G3 85.46 99.72 0.28 14.54 92.59
G4 79.94 98.85 1.15 20.06 89.40

Average 85.00 99.53 0.47 15.00 92.26
Erythrocyte G1 95.75 94.35 5.65 4.25 95.05

G2 98.75 92.63 7.37 1.25 95.69
G3 99.29 92.24 7.76 0.71 95.77
G4 98.04 92.05 7.95 1.96 95.05

Average 97.96 92.82 7.18 2.04 95.39
Blood Plasma G1 93.83 96.08 3.92 6.17 94.96

G2 92.09 99.07 0.93 7.91 95.58
G3 91.77 99.53 0.47 8.23 95.65
G4 89.08 99.05 0.95 10.92 94.07

Average 91.69 98.43 1.57 8.31 95.06
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Figure 5. Examples of images before and after processing using the proposed method with a high level of independence from the hematological 
staining technique used on the sample: a) Fast Panoptic (G1), b) Leishman (G2), c) Rosenfeld (G3) and d) unspecified staining (G4). Examples 
of images with negative results: e) FP for leukocyte nucleus and FN for leukocyte cytoplasm due to similarity in color; f) FP for leukocyte 
nucleus due to the presence of artifacts; g) FN for leukocyte nucleus due to an edge visible in manual segmentation; h) FP for leukocyte 
cytoplasm due to adjacent erythrocytes; i) FN for leukocyte cytoplasm due to inadequate staining; j) FN for an erythrocyte due to location at 
an edge; k) FP for an erythrocyte due to the presence of platelets; and l) FP for an erythrocyte due to poor microscope focus.
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Figure 6. Mean percentages obtained for the performance metrics and accuracy of the proposed method in comparison to manual segmentation 
by experts: a) true positive (TP) and false positive (FP) rates; b) true negative (TN) and false negative (FN) rates; and c) accuracy (AC). 
Comparative analysis for leukocyte segmentation: d) comparative analysis of AC percentages obtained using the proposed method and 
methods reported in the literature for leukocyte segmentation ([1] proposed fuzzy system, [2] Zheng et al. (2014), [3] Jati et al. (2014) with 
noise, [4] Putzu and Ruberto (2013), [5] Ramesh et al. (2012), [6] Fatichah et al. (2012) for leukocyte nuclei, [7] Fatichah et al. (2012) for 
leukocyte cytoplasm, [8] Rezatofighi and Soltanian-Zadeh (2011), [9] Ko et al. (2011) for leukocyte nuclei, [10] Ko et al. (2011) for leukocyte 
cytoplasm, [11] Hamghalam and Aytollahi (2009) and [12] Ramoser et al. (2005)).
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The mean accuracy results obtained for all 
components demonstrate the effectiveness of the 
approach, and when compared to other approaches 
for leukocyte segmentation using the same metrics 
(Figure 6d), it is also shown to be viable. When 
the results obtained with the proposed method are 
compared to those reported for other approaches in 
the literature, it can be observed that the former is 
equal or superior in terms of the number of samples 
processed and the diversity of the staining processes 
used for sample preparation (Table 2).

In general, the results achieved for all metrics in 
the comparative analyses were good, validating the 
use of the proposed method. The main contributions 
of the method described in this paper are as follows: 
(i) the ability to classify blood components with a 
high level of independence from the hematological 
staining technique used on the sample; (ii) automatic 
identification of the supports of the fuzzy sets from 
the analyzed sample (which is not common in fuzzy 
logic; supports are often obtained heuristically); (iii) 
the definition of a fuzzy descriptor based on proximity 
for the differentiation of leukocyte cytoplasm and 
erythrocytes, whose gray levels are similar; iv) the 
construction of adaptive fuzzy membership functions 
whose values change for each image; and v) image 
segmentation into four distinct regions based on 
histograms that show only three well-defined regions.

Future studies will involve enlarging the blood 
cell database and developing a fuzzy leukocyte 
identification system to recognize different leukocyte 
types (i.e., neutrophils, eosinophils, basophils, 
lymphocytes, and monocytes) in microscopic images.
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