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ABSTRACT 

A new methodology is presented for characterizing the spatial distribution of second-phase particles 
in planar sections of multi-phase materials. It is based on the issue of statistically summarizing the results of 
independent tests against the hypothesis of randomness of the particles. The methodology was applied in 
multiple planar sections of an aluminium alloy reinforced with silicon carbide particles and leaded to a 
rejection of the hypothesis of randomness even when the tests from single planar sections were ambiguous. 
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1 INTRODUÇÃO 

The improved material properties obtained with particulate metal matrix composite will depend on 
the spatial distribution of the particles in the matrix material [1, 2]. The basic methodology for characterizing 
the spatial distribution of second-phase particles in single planar sections of composite materials is now well-
established [3]. In this context, during the last few years, statistical methods have been appearing, to a certain 
extent, in material literature to provide the analysis of spatial distribution of particles in composite materials. 
Methods such as quadrat counts [4], nearest neighbor distances [5], Dirichlet tessellation [6] and spatial 
pattern descriptors [7] have been applied to test departure against the hypothesis of randomness of the spatial 
distribution of the reinforcing particles. 

A single sample rarely provides a definitive answer to research questions and, therefore there is an 
interest among material researchers to develop methods based on multiple samples for providing a more 
rigorous quantitative analysis of the spatial distribution of second-phase particles in two-dimensional multy-
phase systems.  

When multiple samples of composite material are available, in two or more experimental groups, 
parametric and non-parametric methods can be used to the analysis of data in the form of replicated spatial 
point patterns [8]. We are considering here the situation in which we have one experimental group that 
contains several planar sections of a composite material. The main aim of this paper is to present a method to 
combine P-values from several independent tests against the hypothesis of spatial randomness of the 
particles. The basic idea of the method is to test whether collectively they can reject the hypothesis of spatial 
randomness. 

2 TESTING AGAINST SPATIAL RANDOMNESS FOR INDIVIDUAL SAMPLES 

For practical purposes, each particle is treated as a point defined by its coordinates and, therefore the 
spatial data can be assumed a map of all particle locations in an essential planar region. Using some 
functional spatial pattern descriptors such as F, G and K-functions is a natural way to proceed with the 
statistical analysis of spatial distribution of particle centers in individual planar sections of composite 
materials [7]. 

In this paper, we use the J-function, introduced by LIESHOUT et al. [9], since it performs very well 
in detecting departure from randomness towards both regularity and clustering alternatives. For a stationary 
point process, the J-function is given by the equation: 
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for all distances , such that F(x) < 1, where F(x) is the distribution function of the distance from an 
arbitrary fixed point to the nearest particle center of the planar section and G(x) is the distribution function of 
the nearest distance between two particle centers. 
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A suitable edge-corrected estimator for F(x)  is provided by the equation: 
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where m is the number of sample points in the planar section,  denotes the distance from the ith chosen 

point to the nearest of the n particle centers in the analyzed pattern, 

xi

( )x iI r  is an indicator function that takes 

the value 1 when  is less than or equal to x,  is the distance from each particle center the nearest point on 

the boundary of the planar section and 

xi ir

( ),x i iI x r is an indicator function that takes the value 1  when  is 

less than or equal to x and  is greater than or equal to x. An estimator for G(x) is provided by an equation 
analogous to equation (2), substituting the distance x by the nearest distance between two particle centers 
[

xi

ir

10]. 
The simplest estimator for J(x) is obtained by plugging into equation (1) the estimates of F(x) and 

G(x). It is easily seen that under the randomness hypothesis, , so . Values of  
smaller than 1 indicate clustering while values larger than 1 indicate regularity. 

ˆˆ ( ) ( )F x G x= ˆ( ) 1J x = ˆ( )J x

In order to define a statistical test for detecting departure against randomness, it is usual to choose a 
measure of discrepancy that examines the degree of agreement between the observed and the expected 
empirical distribution functions under the null hypothesis of randomness. A sensible measure to evaluate 
these differences over a range of distances ( x ) is given by the equation: 
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The statistic  does not have known sampling distribution. DIGGLE [iu 10] suggests the use of the 

following Monte Carlo based method to perform the test against randomness. Let  be the J-function of 

an observed point pattern with n events and  the J-functions from s simulations of random 

patterns with n events. Calculate the statistic  for the observed and simulated patterns. Then, the value  

for the observed pattern is compared with values  for the simulated patterns. If  ranks among the 

largest of , it indicates departure from randomness. Suppose 
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then reject the hypotheses of CSR if 
( 1 )s j

s
P α+ −
= ≤ , where P is the one-tailed P-value. For example, 

based on 99 simulations (s = 100), rejection at the 5% level occurs if )100(J1) J96(J ≤≤ . 

3 COMBINED TEST AGAINST SPATIAL RANDOMNESS 

Since the individual P-values of each sample are available, we can carry out a combined test for a 
statistical generalization to be made with respect to the combined evidence of a random distribution of 
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particles from all samples. For this, we consider each Monte Carlo test as an individual and independent 
study to test departure from randomness. Under this supposition, we advocate to use a technique for pooling 
results across different statistical tests against the hypothesis of randomness. This technique can provide one 
single P-value that allows us to decide the nature of the spatial distribution of the particles within the metal 
matrix. 

When data come in the form of one-tailed P-values, FISHER [11] suggests that they can be 
combined by forming a statistic that is their product. If we have k independent studies that give Pi as the tail 
probabilities, the statistic summarizing the result is the product 1 2... kP PP P= . 

If the null hypothesis is true, then Pi  have uniform distribution on the interval from 0 to 1. FISHER 
[11] noted that if Pi  is distributed according to the uniform distribution on the interval from 0 to 1, then 
consequently  is distributed like a chi-square distribution with 2 degrees of freedom. If all of the 
null hypotheses of randomness the k tests are true, then the statistic: 
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2

1

2 log
k
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j

Pχ
=

= − ∑ j  (4) 

will have a chi-square distribution with 2k degrees of freedom and so significance is tested by finding the 
probability of a larger value of  the statistic 2

oχ . 

4 EXPERIMENTAL DATA 

We have applied the combined test to eighteen metallographic samples of an aluminium silicon 
carbide composite material produced by the Department of Engineering of Materials, University of Sheffield, 
England, where silicon carbide second-phase particles had a volume fraction equal to 11%. The 
metallographic sample areas were  ≅ 192 × 288 μm. 

The eighteen metallographic samples were placed on a computer controlled optical microscope 
stage analyzer (Polyvar) which allowed fully automatic adjustment, focusing, positioning and scanning of the 
samples. The overall magnification used was 600 times, yielding a pixel size of 0.375 μm. Thus, the Polyvar 
produced eighteen digital images with area frame equal to 512 × 767 square pixels. 

The two-dimensional digital images were analyzed by using image-processing techniques to extract 
the coordinates (centre) of each particle within the images. The actual images were 512 x 767 pixels, out of 
which we used only the particles located in the left top square of 512 x 512 pixels. The 512 x 512 images 
were transformed into patterns with unit square area to facilitate the spatial analysis. 

5 RESULTS AND DISCUSSION 
The main aim of the present work has been to provide a statistical analysis of the spatial distribution 

of second-phase particle centers in two-dimensional distributed multi-phase materials. We have used 
eighteen samples of an aluminium silicon carbide composite material to answer the main scientific question: 
whether or not the composite material presents particles that are randomly distributed. We advocate that this 
question can be adequately answered by using a combined test from independent tests against the hypothesis 
of randomness. 

The analysis start by performing a Monte Carlo test against the hypothesis of randomness of the 
particle centers in each planar section of the composite material. To carry out these tests, we used 99 
simulations (s = 100) from a stationary Poisson process of intensity n (actual number of particles). As 
DIGLLE [10] points out s = 100 is usually sufficient since for greater s the power of the test increases only 
marginally with s. We use m sample points in a regular grid v v×  to estimate the values of  in 

equation (2), where 

ˆ ( )F x
v ≅ n . The integral in equation (3) was approximately calculated by a Riemann sum 

at 50 intervals between 0 and 0.05. Table 1 presents the results (one-tailed P-values) of the tests against 
randomness for the individual samples of the composite material. 
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Table 1: One-tailed P-values of the hypothesis tests against randomness of the particle centers for the 
eighteen samples of the aluminium alloy reinforced with silicon carbide particles 

SAMPLE 1 2 3 4 5 6 7 8 9 

P-value 0.04 0.03 0.60 0.69 0.03 0.12 0.02 0.61 0.40 

SAMPLE 10 11 12 13 14 15 16 17 18 

P-value 0.26 0.73 0.39 0.03 0.63 0.46 0.36 0.08 0.30 
 
The one-tailed P-values provided in Table 1 show that it is not easy to decide whether the composite 

material presents evidence that the second-phase particles are randomly distributed. Observe that if one had 
chosen, for example, sample 2 for his analysis, he had rejected the hypothesis of randomness. Otherwise, if 
he had chosen sample 3, he had reached an opposite conclusion. Thus, we suggest combining the one-tailed 
P-values with the purpose of obtaining a summary overall P-value for testing the same hypothesis of 
randomness for the whole group of samples. 

Applying equation (4) to the results presented in Table 1, we obtained  = 61.31. Because there 

are eighteen independent tests, one for each sample, there are 36 degrees of freedom and  = 61.31 is 
associated with P = 0.0054. Thus, the combined evidence from these eighteen samples indicates a strong 
rejection of the null hypothesis of a random distribution of particles in the composite material. Observe that 
the method leads to a rejection of the hypothesis of randomness even when the tests from single samples 
were ambiguous. 

χ o
2

χ o
2

The combined test works well when the alternative distribution has a density that is, approximately, 
a reversed J shape because then it is likely that Pi fall near 0 and produce a small product, and we are likely 
to reject the null hypothesis. The strength of this approach is that it has good power against the randomness 
for reverse J shaped alternatives [12]. The more serious disadvantage of this combined test is that it treats 
large and small P-values asymmetrically. It is asymmetrically sensitive to small P-values compared to large 
P-values [13]. 

There are several other statistical methods available for combining P-values of independent studies. 
They range from various counting procedures to a variety of summation approaches involving either 
significance levels or weighted statistical tests such as t and z tests [12, 13]. Despite the available methods, 
the combined test presented here remains one of the best known and applied because it is the simplest and 
most asymptotically efficient of them [13]. 

One observation that is important to add to any discussion about the method for combining P-values 
is that it can be applied to ask whether the accumulative information among tests on similar null hypotheses 
can reject that shared null hypothesis. Thus, this procedure may be applied not only to spatial analysis of 
particle centers but also to any statistical analysis in materials research where there is an interest to test the 
significance of aggregate independent hypothesis tests. 

 

6 CONCLUSION 

The statistical analysis of the spatial distribution of particles can be improved by taking and 
analyzing multiple samples of composite materials. The goal of this paper has been to advocate the use of a 
combined test for providing an overall assessment against the hypothesis of spatial randomness of the 
distribution of particles in composite materials. We have demonstrated that the combined test is efficient to 
test spatial randomness of particles even when the tests from single planar sections were ambiguous. 
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