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ABSTRACT

In this work the theoretical solutions based upon the upper-bound theorem recently proposed by
Pérez and Luri [Mech. Mater. 40 (2008) 617] for the equal channel angular extrusion process (ECAE) are
analyzed by performing a 25 central composite factorial analysis. The uniaxial mechanical properties of
commercial pure aluminium are considered by assuming isotropic nonlinear work-hardening combined to
von Mises and Drucker isotropic yield criteria to predict the ECAE load and the effective plastic strain. From
the proposed 25 factorial analysis, the main parameters affecting the ECAE pressure may be ranked as: (1)
Friction factor, (2) die channels intersection angle, (3) outer and (4) inner die corners fillet radii and lastly,
(5) plunger velocity. Alternatively, the effective plastic strain is mainly controlled by the die channels
intersection angle and, in a less extent, by the outer and inner die corners fillet radii.
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1 INTRODUCTION

The equal channel angular extrusion process (ECAE) is a severe plastic deformation process
employed to produce bulk ultra-fine grained materials with improved mechanical properties [1, 2]. In the
ECAE process, a well lubricated billet is forced to pass through a two-channel die with constant cross-
sectional area. The workpiece undergoes a large amount of plastic strain by simple shear within the
deformation zone located at the channels die intersection [3]. Thus, the knowledge of the kinematics of
deformation is essential to understand the basic mechanisms controlling the grain refinement in the ECAE
process. The consideration of material nonlinear work-hardening to predict the ECAE pressure, assuming a
frictionless condition with an outer die corner radius, was firstly proposed by Alkorta and Sevillano [4]. Their
analytical solution is based upon the upper-bound theorem and provides a good agreement with numerical
predictions determined from a plane-strain finite element model. Later on, Pérez [5, 6] evaluated the effects
of equal fillet die radii located at the die channels intersection with the help of the upper-bound theorem and
finite element simulations, respectively. Although the analytical model proposed by Pérez neglected the
effects of material work-hardening, the benefits of adopting a non-zero inner die corner radius were revealed
up to a maximum value from which the predominant deformation mode is bending.

Eivani and Taheri [7] presented the first upper-bound solution in which both the friction conditions
and nonlinear work-hardening behavior were considered for a die geometry containing only the outer die
corner radius. By varying the die channels angle between 90° and 135° and for a given friction factor, they
reported that both the effective von Mises plastic strain and normalized extrusion pressure decreases as the
outer die corner radius increases. Besides, it is verified that the effect of the die channels intersection angle
prevails over both tribological conditions and other geometrical or rheological parameters. Also, Eivani and
Taheri [8] also analyzed the effects of the formation of a dead metal zone in sharp-corner dies and established
an explicit dependence of the resulting strain per ECAE pass with the friction factor from the minimization of
the extrusion force. A better agreement with the measured load was achieved by this recent work by
comparison with the earlier results [7].
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Pérez [5] and Luri et al. [9] developed theoretical expressions for the shear strain calculations
considering all the possible die configurations. The authors showed a gain close to 11% of the effective
plastic strain per pass when the inner radius is 2.67 times larger than the outer die fillet radius. Recently,
Pérez and Luri [10] developed upper-bound solutions for the extrusion pressure, considering all die geometry
possibilities and including the friction effects for perfectly plastic materials. The authors pointed out that the
increasing of the inner fillet radius leads to an elevation of effective plastic strain combined with higher
extrusion pressure levels.

Based upon the review presented here above, it is clear the need for more general modelling
techniques to describe the effects of the relevant parameters on the strains and mechanical properties
resulting from the ECAE, namely, tooling geometry, billet material, friction conditions and processing
velocity. Into this context, the present work firstly aims at providing a sensitivity analysis with the help of the
2K central composite factorial design to evaluate the influence of these parameters on the effective plastic
strain and the extrusion pressure for commercial pure aluminum and some typical die configurations by
means of the variance analysis.

2 ECAE THEORETICAL MODELLING

2.1 Extrusion pressure

The upper-bound solutions developed by Pérez and Luri [10] for the extrusion pressure, p, for all
possible die geometries and including frictional effects are recalled. The tooling configurations are shown in
Figure 1 where the inner and outer fillet radii are defined by Rinner and Router, respectively, and have local
origin along line O. At the same time, ® is the die channels intersection angle whereas 3 denotes the angle
associated to nonzero fillet radii values. Also, r and x define the radial and horizontal directions.

(a) (b)

Figure 1: Die design for the extrusion pressure analytical solutions: (a) Rinner < Router and (b) Rinner >
Router.

Considering the material point q and its position vector Oiq and assuming the constant velocity V,

hypothesis for both the plunger and the point g, the extrusion pressure of rectangular samples can be
calculated by,

1 2H
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where K is the material pure shear yield stress and f is the Tresca’s friction factor. Also, H, L and W
denote the billet total height, width and thickness, respectively.
According to Pérez and Luri [10] the angle f is given by,

(1b)

B=2arctan (Router ~Rinner ) tan (q>2/ 2) for Ripner < Router
I-"'(Rinner _Router)""Ltan ((D/2) (23)
B =2arctan { (Rinner — Router )tan ((D / 2) } for Rinner > R

It
L+ (Rinner - Router )+ L tan2 (‘D / 2) o (Zb)

2.2 Plastic Material Behaviour

The billet material plastic behaviour is assumed as isotropic and temperature independent including
nonlinear work-hardening with strain-rate effects. Moreover, the yield surface shape influence on the pure
shear yield stress k and, therefore, on the extrusion pressure is evaluated by considering both von Mises and
Drucker [11] isotropic yield criteria. Thus, the plastic loading condition is defined as,

f(03,&",5°) =F(0j)- 0, E",s°) =0

3

where f denotes the yield function, F (cy) is a first degree homogeneous function of the Cauchy
stress tensor, ;i = owd; + Sy, defining the yield surface shape whereas o, is the uniaxial yield stress
identified as a function of the equivalent plastic strain and strain-rate scalar measures.

The von Mises and Drucker yield criteria are defined for the second and third invariants of the
deviatoric stress components of the Cauchy stress tensor, S;;, that is,

3
F(Gij IMises = E SijSij (4a)
o\ 116 o\ 18
J J
F(oi)orucker = (3 Jz)”2 [1 -c [g]] = F(oj)mises {' -C [gﬂ (4b)
J2 Jz
And assuming in-plane pure shear (S,, = S,; = K other S;; = 0) combined with Equation 3,
c
KyvonMises = —=
73 (52)
1/6
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Drucker — 3 27 y (Sb)
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where ¢ is a material constant satisfying the condition — 27/8 < ¢ < 2.25 [12] for the yield locus
convexity. Drucker’s yield criterion is suited to describe the crystallographic yield loci of both isotropic f.c.c.
and b.c.c. metals. In the present work, the parameter c is assumed to be equal to 2.0. This value has been
adopted by Ferron et al. [13] to fit the isotropic f.c.c. yield loci determined by Barlat and Lian [14] with the
Bishop and Hill [15] model.

The uniaxial tension yield stress oy is calculated by means of the average stress obtained from the
material Swift hardening law with multiplicative strain-rate sensitivity as,

P

- 1 p\n 8p p
Gy:G:E—p B(SO +& ) g de (6)

m

wherein Sp is the effective plastic strain, and the strain-rate effect is accounted for by introducing
the dwelling time in the ECAE deformation zone, tD, defined in section 2.3. Also, B, g;, n and m denote
strength coefficient, pre-strain, work-hardening exponent and strain-rate sensitivity exponent, respectively.
Equation. 6 is numerically solved through the trapezoidal rule in order to accurately determine the mean
stress. It should be noted that Equation 6 is restricted to a constant strain-rate deformation process. This
assumption is adopted hereafter based upon the idea of a total time resulting from the ECAE deformation
zone geometry. In the following, we assume that the elastic strains are small in comparison to the resulting
plastic strains from the ECAE process and can, thus be neglected.

2.3 Effective plastic strain

The plastic strain-rate components are determined assuming isotropic work-hardening from the
associated flow rule applied to the yield function, see Equation 3, as,

aGij acij (7)

where A denotes the plastic multiplier. It is well known that both von Mises and Drucker plasticity
criteria are first-degree homogeneous stress functions. Thus, by applying the Euler identity combined to the

equivalent plastic work-rate on the Equation 7, one can verify that the plastic multiplier is equal to the
effective plastic strain rate € conjugated of the effective stress measure G . In this way, the effective plastic

strain defined in terms of the von Mises yield criterion is obtained by multiplying both sides of Equation 7 by
P
gij thatis,

2P 2 PP
= ggij Sij (8)

where the Equation 8 is valid to von Mises and Drucker criteria, once for a pure shear stress state the
third invariant of the tensor Sij vanishes. Therefore, the total effective plastic strain is obtained by integrating
Equation 8, namely,

m

tD
- { PP
sp: g€ij gjj dt
3 ©)
t,=0

PP )
And, considering that for in-plane pure-shear stress state 2 ¢jj=y and assuming a constant shear

. P .
strain-rate as y = (y° /t ) one obtains:
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J3 (10)

where, according to Figure 1, the plastic shear strain-rate components are defined as V, / x by
assuming x = L into the regions AEB and DFC. Also, for the portion ABCD the associated shear strain
contribution is equal to V, / r [10]. The solutions for the shear plastic strain associated to die geometries
presented in Figure 1 were proposed by Pérez [5] and Luri et al. [9], that is,

D+ D+ )
P = 2cotan[?ﬁJ + (n—(D)P —cotan(zﬁjtan(zﬂ for Ripner < Router (11a)

(O (O ]
¥’ :200tan(2[3j+(ncb){1cotan[ 5 Bjtan(zﬂ for Rinner > Router (11b)

2.4 Deformation time

In the present work, the during which the billet undergoes severe plastic deformation along the die
channels intersection was assumed as the contributions from the regions AEB, ABCD and DFC depicted on
Figure 1 by considering that the inlet and outlet surfaces AE and DF have the same length. Thus, for the
continuous kinematically admissible velocity field defined by a constant velocity Vj, the time between the
inlet and outlet surfaces is given by,

th —\I;O{Z cotan [(DTM} (”;f))[l—cotan (q)%gj tar{%D[Rm + L(l—cotan [‘D;ﬁ)tan[%ﬁ } } Rinner < Router (12a)
tp = VLO { 2 cotan [q)T_ﬂ]+ (ﬁ;qu)) (] —cotan (q);ﬂ] ta{?j}{ F%nner + L(] —cotan[q);ﬂj tan[%)j :| } Rinner> Router ( 1 Zb)

2.5 The 2* Factorial Central Composite Factorial Design

The methodology proposed by Montgomery [16] for the single-replicate 2° central composite
design of experiments is adopted for theoretical simulations to classify the interesting parameters influence
on both extrusion pressure and effective plastic strain by means of a variance analysis. The parameters
considered are die geometry (Rinner, Router and @), friction conditions (Tresca friction factor f) and plunger
velocity (Vy). These parameters and their corresponding values are listed in Table 1.

Table 1: Parameters for the ECAE 2K factorial design.

Paramoter Letter' for' the Adopted levels
combinations Low Center Axial - Axial © | High
Router (mm) (a) 3.5 5.5 0.7432 10.2568 7.5
Ripner (Mm) (b) 3.5 5.5 0.7432 10.2568 7.5
@ (degrees) (c) 90 105 69.5 140.35 120
f (d) 0.08 0.12 0.02486 0.21514 0.16
Vo (mm/s) (e) 2.5 3.75 0.7776 6.723 5.0
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Also, the rotatability parameter o is considered when the central and axial points are added on the
factorial analysis. Thus, for the 25 central composite design we have,

5
a=+y2" =+23784 (13)

To perform the variance analysis related to central composite factorial design, the calculations of
parameters effect (A, B,..., K), sum of the squares (SSA,B,..., K) for each individual effect, total sum of
squares (SSTA,B,..., K), pure quadratic curvature SSPQ, error (E) and mean error are needed. The
Equations 14 to 19 define each one of these variables, that is,

2sum(a,...,abcdef)
nr2" (14)

AB,...K=

ss.. . _(Sas k)

AB,...K —
nr2K (15)

22 2 2
$Sr,, =25 £y —L’KK
i=1j=1 K=1 nr2 (16)

_ngncp (YE-ycp)

SSpo =
e nF+nCP (17)
N
E =SS - >SS, =SS
TA,B....K IEI ! PQ (18)
Fo_ E
DOF, (19

where nr, nF, nCP, YF and ?cp denote number of replicates, numbers of factorial and central
points, averages between factorial and central points, respectively.
Finally, the variance, F,, is defined by,

_Ss,
Fo= E (20)

where the index 1 takes into account from I to N-th value in the summation over the most important

effects on either p or € denoted by SSI. Also, the combinations between the considered parameters for
each case simulated are listed on Table 2.
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Table 2: Combinations for the 25 factorial design treatment*.

Treatments Coded factors *
Router Rinner D f VO
1 -1 -1 -1 -1 -1
a 1 -1 -1 -1 -1
b -1 1 -1 -1 -1
c -1 -1 1 -1 -1
d -1 -1 -1 1 -1
e -1 -1 -1 -1 1
ab 1 1 -1 -1 -1
ac 1 -1 1 -1 -1
ad 1 -1 -1 1 -1
ae 1 -1 -1 -1 1
bc -1 1 1 -1 -1
bd -1 1 -1 1 -1
be -1 1 -1 -1 1
cd -1 -1 1 1 -1
ce -1 -1 1 -1 1
de -1 -1 -1 1 1
abc 1 1 1 -1 -1
abd 1 1 -1 1 -1
abe 1 1 -1 -1 1
acd 1 -1 1 1 -1
ace 1 -1 1 -1 1
ade 1 -1 -1 1 1
bed -1 1 1 1 -1
bce -1 1 1 -1 1
bde -1 1 -1 1 1
cde -1 -1 1 1
abcd 1 1 1 1 -1
abce 1 1 1 -1 1
abde 1 1 -1 1 1
acde 1 -1 1 1 1
bede -1 1 1 1 1
abcde 1 1 1 1 1
Central point 0 0 0 0 0
Axial " : Ryyer -2.3784 0 0 0 0
Axial " : Royeer 2.3784 0 0 0 0
Axial " : Rigner 0 -2.3784 0 0 0
Axial " : Ripner 0 2.3784 0 0 0
Axial : @ 0 0 -2.3784 0 0
Axial " : @ 0 0 2.3784 0 0
Axial ": f 0 0 0 -2.3784 0
Axial i f 0 0 0 2.3784 0
Axial ": V, 0 0 0 0 -2.3784
Axial "1 V, 0 0 0 0 2.3784

* - 1="low" ; 0 = "center"; -2.3784 = "axial™; 2.3784 = "axial "; 1 = "high"

3 RESULTS AND DISCUSSION

The mechanical properties considered in the present work are related to the commercial pure
aluminium tested in uniaxial tension by Bressan et al. [17], according to Equation. (6), defined by B = 235
MPa, g = 0.045, n = 0.21 and m = 0.027. Firstly, an evaluation of the adopted yield criteria and friction
effects on the extrusion pressure, p, is realized assuming a die with ® = 90° wherein the die fillet radii are
taken equal to zero together with a plunger velocity (V) value of 2.5 mm / s. Then, a 2K central composite
factorial design is employed to classify, in order of relevance, the die geometrical, frictional conditions and
process parameters upon the predictions of either p and assuming the billet dimensions as H =75 mm and L
=W =15 mm. The levels assumed for each parameter are listed in the Tab. 1.
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Table 3: Combinations for the 25 factorial design treatment.

Source of Degrees of

variance Sum of squares Freedom Mean square Fo
Main oy P Y =P =P
effects p (MPa) € (MPa) | € p (MPa) € p (MPa) 'S
A (Router) | 3354.613484 [ 0.013763313 | 1 1 3354.61348 0.013763313 | 0.63052866 0.53328489
B (Rinner) | 2540.422764 | 0.020234735 | 1 1 2540.42276 0.020234735 | 0.477494463 | 0.784032039
C () 147977.2759 | 1.818131421 | 1 1 147977.276 1.818131421 | 27.81361072 | 70.4468481
D (f) 193720.0477 | 0.000621995 | 1 1 193720.048 0.000621995 | 36.41136089 | 0.024100351
E (V0) 463.1281321 | 0.000621995 | 1 1 463.128132 0.000621995 | 0.087048944 | 0.024100351
2 factors - - - - - - - -
AB 10.96155461 | 0.000623089 | 1 1 10.9615546 0.000623089 | 0.002060319 | 0.024142735
AC 1333.252108 | 0.009000828 | 1 1 1333.25211 0.009000828 | 0.250596282 | 0.348753646
AD 0.286393932 | 0.000622807 | 1 1 0.28639393 0.000622807 | 5.38302E-05 [ 0.024131794
AE 0.293721652 | 0.000622807 | 1 1 0.29372165 0.000622807 | 5.52075E-05 [ 0.024131794
BC 1010.606521 | 0.009003914 | 1 1 1010.60652 0.009003914 | 0.189952249 [ 0.348873226
BD 3.882144835 | 0.000621995 | 1 1 3.88214484 0.000621995 | 0.000729683 | 0.024100351
BE 0.222432828 | 0.000621995 | 1 1 0.22243283 0.000621995 | 4.18082E-05 | 0.024100351
CD 315.5369051 | 0.000622807 | 1 1 315.536905 0.000622807 | 0.059307894 [ 0.024131794
CE 12.95651113 | 0.000622807 | 1 1 12.9565111 0.000622807 | 0.002435288 [ 0.024131794
DE 16.9616313 0.000621995 | 1 1 16.9616313 0.000621995 | 0.003188086 | 0.024100351
3factors - - - - - - - -
ABC 3.70769399 0.000621713 | 1 1 3.70769399 0.000621713 | 0.000696893 | 0.02408942
ABD 0.063314433 | 0.000622807 | 1 1 0.06331443 0.000622807 | 1.19005E-05 [ 0.024131794
ABE 0.000959768 | 0.000622807 | 1 1 0.00095977 0.000622807 | 1.80397E-07 [ 0.024131794
ACD 0.386801023 | 0.000621995 | 1 1 0.38680102 0.000621995 | 7.27026E-05 | 0.024100351
ACE 0.116736046 | 0.000621995 | 1 1 0.11673605 0.000621995 | 2.19416E-05 | 0.024100351
ADE 2.50774E-05 | 0.000622807 | 1 1 2.5077E-05 0.000622807 | 4.71351E-09 [ 0.024131794
BCD 0.907500191 | 0.000622807 | 1 1 0.90750019 0.000622807 | 0.000170573 [ 0.024131794
BCE 0.088486042 | 0.000622807 | 1 1 0.08848604 0.000622807 | 1.66317E-05 [ 0.024131794
BDE 0.000339927 | 0.000621995 | 1 1 0.00033993 0.000621995 | 6.38922E-08 | 0.024100351
CDE 0.027627542 | 0.000622807 | 1 1 0.02762754 0.000622807 | 5.19284E-06 [ 0.024131794
4 factors - - - - - - - -
ABCD 0.003135805 | 0.000621995 | 1 1 0.00313581 0.000621995 | 5.89402E-07 | 0.024100351
ABCE 0.000324628 | 0.000621995 | 1 1 0.00032463 0.000621995 | 6.10166E-08 | 0.024100351
ABDE 5.54445E-06 | 0.000622807 | 1 1 5.5445E-06 0.000622807 | 1.04213E-09 [ 0.024131794
ACDE 3.38665E-05 | 0.000621995 | 1 1 3.3866E-05 0.000621995 | 6.36549E-09 | 0.024100351
BCDE 7.94682E-05 | 0.000622807 | 1 1 7.9468E-05 0.000622807 | 1.49367E-08 [ 0.024131794
5 factors - - - - - - - -
ABCDE 2.74541E-07 | 0.0006 1 1 2.7454E-07 0.000621995 | 5.16023E-11 | 0.024100351
Pure 1 66.034 0.0006 - - 66.034 - - -
quadratic
?I';s;’l“te 1.7025E+05 | 0.8259 32 32 | 53203188 | 0.0258 - -
TOTAL 180581.5835 | 2.7128 31 31 - - - -

Figure 2: Influence of yield criterion and friction conditions on the pressure.
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Figure 2 presents the effects of the plasticity criterion defined in terms of the ratio /o, equal to 0.54
for Drucker and 0.58 for von Mises isotropic descriptions and the friction factor f on the ECAE pressure
assuming @ = 90°, Rinner = Router = 0 mm along with Vo, = 2.5 mm / s. As expected, one can observe the
existence of a direct effect from the frictional conditions, namely, the ECAE pressure increases significantly
with the friction factor f or in a less extent with the yield stress ratio k/c,. The Drucker yield surface presents
a flattening between plane tension/compression and pure shear stress states which is responsible for the
decreasing of the ratio k/c, in comparison to the von Mises yield criterion. Hereafter, the Drucker isotropic
yield criterion is adopted for all the analysis related to factorial analysis on the pressure predictions.

Table 3 presents the variance (F,) analysis associated to the 25 central composite design employed
in the present work. In relation to the pressure, p, the influence of the parameters considered for the factorial
design can be classified in order of importance as: (1) friction factor m, (2) intersection die angle @, (3) outer
fillet radius Router, (4) inner fillet radius Rinner and (5) the plunger velocity V,, respectively. As expected,
in the case of the effective plastic strain the variance results confirmed the large dependence only with the die
geometrical parameters ordered as: (1) intersection die angle ®, (2) inner fillet radius Rinner and (3) outer
fillet radius Router.

4  CONCLUSIONS

Analytical investigations based upon the upper-bound method, including the material strain-rate
effects and two isotropic plasticity yield criteria are proposed in the present work in order to evaluate the
extrusion pressure and the effective plastic strain associated to the processing of a commercial pure
aluminium. The effects of the plasticity criteria on the extrusion pressure are evaluated to point out the
formulation responsible to processing load decreasing. Finally, a variance analysis based on the 2° central
composite factorial design was performed to quantify the relevance of these parameters on the ECAE
pressure and the effective plastic strain. From these analyses, the following conclusions can be outlined:

1) The analysis of the influence of yield surface shape and friction conditions on the extrusion
pressure proved to be a useful tool to better understand the frictional conditions effects arising from a single
pass of ECAE at room temperature. In particular, the isotropic Drucker yield criterion is more appropriate to
reproduce the pure shear and plane tension /compression stress states than the von Mises criterion and, thus,
should be adopted in the analytical predictions of fcc materials deformed via ECAE;

2) From the performed variance analysis, the ECAE parameters most affecting the extrusion
pressure can be classified in the following order of importance: (1) friction factor, (2) intersection die
channels angle, (3) outer fillet radius, (4) inner fillet radius and (5) the plunger velocity, respectively. Also,
for the effective plastic strain the significance order for the affecting parameters is: (1) intersection die
channels angle, (2) inner fillet radius and (3) outer fillet radius.
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