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ABSTRACT 

Oil is an important source of energy, mainly in developing countries. Important research has been conducted 

to find cementing procedures that guarantee safe and cost-effective oil exploration below pre-salt layers. This 

work aimed to make a new cement paste with cement, seawater, silica, biopolymers (chitosan and sodium 

alginate) and hydroxyapatite (HA), found in nature. For comparison purposes, slurry without additives was 

prepared and characterized. The HA used was extracted from fish scales (Cynoscion acoupa) in optimized 

condition NaOH concentration, temperature and reaction time. Both slurry were prepared with ratios 

water/cement (w/c) and silica/cement (s/c) equal to 0.50 and 0.35, respectively. The new cement slurry was 

obtained with proportions of 5% of each biopolymer and HA with respect to the total weight of the cement. 

In the immersion tests, specimens were immersed in samples of hyper production of saline water by 35°C for 

15 days. Thereafter, they were washed, dried and its surface layers were scraped. Before, the resulting 

materials were characterized. The values of the ratios Ca/Si of new cement slurry (3.38 ± 0.06) were superior 

compared to standard (2.58 ± 0.05). The new slurry had high thermal stability and low amounts of small 

crystallite-type portlandite (35.70 nm). Conversely, a slurry standard formed larger crystals of about 50.3 nm. 

Significantly, after continuous long-term contact of both slurries with hyper-saline produced water from oil 

well fields operations, in comparison with standard slurry structural characteristics, the new slurry has 

practically maintained its pristine chemical structure, as well as has shown crystallite-type particles of NaCl 

and Friedel’s/Kuzel’s salts with lower proportion. The presence of the biopolymers and HA has driven the 

improved the self-healing properties observed in the new cement slurry. In this first study, the new slurry has 

shown adequate characteristics to contribute to cost effective and environmental-friendly oil well operations.  

Keywords: Cement slurries, biopolymers, hydroxyapatite. 

1. INTRODUCTION 

Oil is still an important source of energy, mainly in developing countries, with demands ranging up to about 

65 million oil barrels per day in a near future. Driven by such needs, oil and natural gas were recently found 

to lie below a 2,000-3,000 meter deep saline geological formation of the coast of South America and Africa 

(the pre-salt region), formed in remote ages due to evaporation of seawater [1]. However, most of oil below 

pre-salt layers has not leaked properly, because drilling through rocks to extract the pre-salt oil is very 

expensive and dangerous. Indeed, undersurface salts are typically plastic and mobile, and they produce 

undesirable shifts in overburden pressure over time and wells collapses [2]. Significant research efforts are 

therefore being spent on new cementing procedures to provide safe and cost-effective oil exploration below 

pre-salt layers. 



SANTOS, I.M.G.; SANTOS, D.O.; RIBEIRO, J.F.S.; ALVES, J.P.H.; FERREIRA, A.B.; CESTARI, A.R. Matéria, v. 22, n. 1, 2017. 

Appropriate water-based cement slurries have been used to provide both a reliable isolation to prevent 

undesirable migration of fluids between well zones and a good well integrity [3]. The quality of the water 

used to mix oil well cement is a very important parameter and varies depending upon the technical 

specifications of cementing procedures. Because of the growing offshore procedures, seawater has become 

very widely used for oil wells cementing [4]. On the other hand, oil and gas industries use large amounts of 

water-based compounds, which can solve specific underground problems. As a consequence, the so-called 

produced water is considered the largest water-based stream generated in oil and gas field.           

Produced water is a mix of inorganic and organic compounds, and its characteristics depend on the 

nature of the chemicals used in well procedures and the operational conditions [5]. However, it is reported 

that cement slurry properties can be negatively affected by long-term contact with hyper-saline water-based 

media. It is therefore important to address the characteristics of long-term contact of oil well cement slurries 

with hyper-saline produced water to assure long-term structural stability of the hardened slurry to avoid zonal 

isolation of some parts of oil wells and environmental contamination problems [6]. Specific polymers have 

been used to improve some important characteristics of oil well slurries for cementing procedures. 

Low amounts of water-soluble polymers have been used extensively in oil well cementing, mainly for 

partial completion and workover, with variable degrees of success [7]. Indeed, many polymeric systems 

employed in oil well cementing have not provided enough technological and economical characteristics to be 

used in routine operations in oil field. In this manner, polymers-incorporate cement-based materials with self-

healing properties may be a useful and effective option to be used in this field [8]. 

Self-healing oil well cement systems typically are made of cement, water and specific swellable 

hydrophilic polymers, preventing diffusion of fluids into cement bodies. In addition, such polymeric 

networks can decrease or avoid the formation or precipitation of specific and undesirable compounds in the 

hardened slurry, which could weak the structural characteristics of the hardened cementitious body. 

Evidently, such self-healing performance strongly depends on the nature of the polymers in a given cement 

slurry [9]. In this sense, an alternative emerging approach is to utilize some naturally occurring polymers as 

low cost and effective self-healing materials for using in oil well cementing procedures, such as chitosan and 

alginic acid. 

Chitosan is a polysaccharide consisting of D-glucosamine and N-acetyl-D-glucosamine units [10]. On 

the other hand, alginates possess polysaccharide backbones comprised of linear copolymers of (1-4)-linked β-

D-mannuronate and residues of C-5 epimer α-L-guluronate, which are linked together in specific sequences 

[11]. Indeed, engineering interpenetrating polymeric networks of chitosan and alginates and can ionically 

interact each another to form cross-linked three-dimensional matrixes with outstanding properties. However, 

such polymeric networks are reported to present weak structural mechanical properties [10]. To try solve this 

problem, the inclusion of inorganic-type nano- or mesoparticles, such as hydroxyapatites, has been the main 

objective of improving the mechanical properties of chitosan/alginate polymeric matrixes [12]. Hydroxyap-

atite [Ca10(PO4)6(OH)2] constitutes the main inorganic matrix of bones and tooth tissues. Specifically, natu-

rally occurring hydroxyapatite (HA), resulting from highly specific biological processes, often exhibits im-

proved molecular-level characteristics in comparison with synthetic hydroxyapatites [13]. The unique proper-

ties of HA are believed to significantly improve the morphological characteristics of chitosan, via strong 

ionic interaction of protonated chitosan and anions from HA (mainly PO4
3-

 groups) [13].  

In this work, we report the preparation and structural characterization of a new cement slurry 

additived with chitosan/alginate/HA in seawater. HA was extracted from fish scales by a chemometrically 

optimized alkaline heat-treatment method. To the best of our knowledge, this is one of the very limited 

examples of the use of biopolymers and HA in cement slurries formulations. Additionally, the structural 

characteristics of the new slurry were presented and discussed, after long-term contact with a sample of 

hyper-saline produced water supplied from oil well procedures.  

2. MATERIALS AND METHODS 

2.1 Materials 

Class A oil well cement and silica are of particles diameters of 200-325 and 325 mesh, respectively, were a 

free gift from Schlumberger - Petroleum Services Ltd. The chitosan powder (CS), with 80% of deacetylation 

degree, was a gift from C.E. Roeper, Germany. The sodium alginate (ALG) was utilized in powder form and 

acquired Cromoline Company. The seawater and the produced water samples were both sent to our research 

group by Petrobras - Petroleum Services (Brazil), from an oil well plant near city of Nossa Senhora do 

Socorro, Sergipe state, Brazil. 
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Fish (Cynoscion acoupa) scales were washed with water to remove dirty substances and dried at room 

temperature for 24 h. A preliminary 2
3
 full factorial design study was randomly carried out to find the best 

experimental condition to obtain collagen-free HA from raw fish scales, using an alkaline hydrolysis 

procedure of collagen-based materials [14]. The best results were obtained for raw fish scales in contact with 

1.0 mol·L
-1

 NaOH solution, heated up to 60°C under continuous stirring for 24 h. 

2.2 Preparation of the cement slurries 

The cements slurries were prepared as described earlier in literature [15, 16], targeting final densities of the 

slurries of about 1.75 ± 0.15 g/cm
3
 [4, 15]. The main slurry was prepared with 200 g of dry cement, 70 g of 

silica, 100 mL of seawater (w/c = 0.50 and s/c = 0.35), and a mixture of CS, ALG and HA. In order to not 

change the mandatory rheological characteristics of the slurry, the ratio of each component of the mixture 

was 5:5:5 (%, in relation to cement mass) [17]. The cement gel obtained was mixed at 12,000 rpm for 15 s 

(pre-mixing of the wet and dried components) and 35 s for a enough mixing of all components of the wet 

slurry. The cement slurry was cast into 5.0 cm side cubic molds and stored in a desiccator saturated with the 

water vapor at room temperature for 6 h prior to removal from the molds. The cement bodies were then cured 

directly in seawater for 28 days at 25°C. A slurry with only cement, silica and water, as a control material, 

was prepared and hydrated using the same procedure. For simplicity, the cement slurries are hereafter 

denominated as slurry-standard (cement/silica) and slurry-pol (cement/silica/CS, ALG, HA).  

2.3 Long-term immersion tests in hyper-saline produced water 

The demoulded cement slurry was immerged in 100 mL of produced water in a continuous contact for 15 

days in a sealed container maintained in a temperature-controlled bath at 35ºC, which is the average 

temperature of contact of the main cemented bodies with hyper-saline produced waters in Brazilian oilfields 

[18]. The samples were then extensively washed with distilled water to remove inorganic or organic 

components precipitated on the surface of the specimens, until undetectable presence of the ions from 

produced water on the surface of the materials, which was verified by conductometric measurements [18]. 

After that, the samples were dried at 50ºC for 12 h. Cement samples were carefully removed from the surface 

of the cemented specimens and characterized. 

2.4 Characterization of the samples 

Fourier transform infrared spectroscopy (FTIR) spectrometry (Shimadzu FT-IR System Spectrum Prestige-

21) was employed to determine the characteristics of chemical groups in the cement slurries, at room temper-

ature [16]. KBr pressed-disks technique was used in a spectral from 4000 to 900 cm
-1

. Thermogravimetric 

analysis (TG/DTG) was made using about 10 mg of a given material, under nitrogen atmosphere from 25 to 

1000°C, in a SDT 2960 thermoanalyzer, from TA Instruments. Differential scanning calorimetry (DSC) 

analysis were performed in sealed Al pans, using about 10 mg of a given material, under nitrogen atmosphere 

from 25 to 500°C. The X-ray diffraction (XRD) diffractograms of the cement samples were obtained in a 

Shimadzu LABX 6000 diffractometer, in the 2θ range from 5 to 60° (accumulation rate of 0.02° min
−1

), us-

ing CuK radiation (λ = 1.5401 Å). 

The quantification of the main ions in the produced water sample was performed using a Thermo Sci-

entific Dionex ICS-3000 Ion Chromatography, with automatic both sample dilution and partial loop injection 

of the diluted sample [18]. Average elemental concentration of the main chemical elements of the samples 

was measured at different locations within individual particles by energy-dispersive X-ray spectroscopy 

(EDX) using an SHIMADZU 720 X-ray fluorescence spectrophotometer and normalized to 100 wt%. 

3. RESULTS AND DISCUSSION 

3.1 Characterization of the produced water 

Produced water has been described worldwide as a complex sample. The main inorganic components of the 

produced water are shown in Table 1. Indeed, the main components of produced waters are dissolved salts 

from inorganic components, exceeding those found in seawater. The values found in this study for inorganics 

in produced water are relatively similar to others described in literature. Heavy metals and organics were, 

however, found to be undetectable, because such components in Brazilian produced water samples are 

typically found to be in concentration averages lower than the detection limit of the analytical method 

(usually less than 0.1 mg·L
-1

) [18]. 
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Table 1: Concentration (mg/L) of the main inorganic ions in the water production. 

ION CONCENTRATION (mg/L) 

Cl- Mg2+ Na+ Ca2+ K+ SO4
2- S2- F- NO3

- NO2
- 

93,280 19,730 7,079 4,979 888.6 85.8 20.3 1.81 0.02 0.01 

3.2 Characterization of the main materials used for the preparation of cement pastes 

In the EDX analysis of the main materials used for preparation of cement pastes, presented in Table 2, were 

identified and quantified various chemical elements characteristic of silica and class A portland cement. 

Table 2: EDX analysis of the starting raw materials used for the preparation of cement pastes. 

 

SAMPLE 

ELEMENT (%) 

Ca Si Fe Al S Mg K Sr Ti Mn 

Class A portland cement 74.63 12.24 5.57 3.15 1.86 1.09 0.67 0.33 0.23 0.11 

Silica ND 97.46 0.25 1.63 0.31 ND ND ND 0.16 ND 

ND: Not detected. 

The results of XRD analysis of the main materials used for preparation of cement pastes, in Figure 1, 

show that silica and class A portland cement are materials that exhibit high crystallinity, with well-defined 

crystallographic phases. The analysis of the diffractograms was made from data of Inorganic Crystal Struc-

ture Database (ICSD). For silica, the main peaks were identified in 2θ equal to 21.1, 26.8 and 50.3°. For class 

A portland cement, which is used to cement oil wells, the chemical composition are mainly found by silicate 

tricalcium, 3CaO·SiO2 (C3S, alite), silicate dicalcium, 2CaO·SiO2 (C2S, belite), tricalcium aluminate, 

3CaO·Al2O3 (C3A), and calcium aluminoferrites, 4CaO·Al2O3·Fe2O3 (C4AF), among others, for example 

calcium oxide (CaO) [4, 15]. In the Figure 1 (B), peaks were identified relating to C3S (2θ = 29.4, 32.3° and 

56.4°), C2S (2θ = 38.8 and 41.4°), C3A (2θ = 46.9°), C4AF (2θ = 45.9°) and CaO (2θ = 34.4 and 51.8°). 
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Figure 1: X-rays diffractograms of the starting raw materials used for the preparation of cement pastes.  Silica (A) and 

class A portland cement (B).  

3.3 Structural characterization of the cement samples 

During the cements hydration reaction with water, alite and belite undergo dissolution reactions generating 

mainly calcium-silicate-hydrates (C-S-H), a monosulfate-type phase [3CaO·(Al,Fe)2O3·CaSO4·nH2O] (AFm 

phase), which is produced when C3A reacts with CaSO4 as well as calcium hydroxide (CH, portlandite). 

CaCO3 is also produced due to secondary reactions between CH and C-S-H with CO2 [4]. C-S-H is the main 

responsible for setting of the cement and strength development. Silica in combination with the other 

components of cement slurry improves mechanical properties to the compositions and producing low-

porosity hardened slurries, which have the ability to properly withstand stresses found in subterranean 

conditions without significant formation of failures, crackings and occurrence of bond loss [19]. In this work, 

the cement slurries were prepared using seawater. The influence of seawater on the morphological 

characteristics of cement-based materials is rather complex due to the potentially aggressive ions present in 

such water medium such as carbonates, sulfates and chlorides [20]. 

Results from EDX analysis of the cement slurries are presented in Table 3. Measured atomic ratios are 

considered as an average chemical composition of the analyzed bulk of the material. In fact, the main 

hydrates in cement slurries contain Ca and are of particular interest. Some important qualitative structural 

characteristics of such hydrates have been found from the solid-state Ca/Si ratio of cement slurries [20, 21]. 

In the presence of low amounts of Ca
2+ 

ions, the Ca/Si molar ratios in the interlayer space of C-S-H are 

typically less than unity, and the silicate chains are typically long and linear with compensation charges made 

by alkaline ions (Na
+
 and/or K

+
). For Ca/Si molar ratios of about 1.5, tetrahedral silicate sheets contain 

mainly dimers, and for Ca/Si ratios higher than 1.5, and CH may be in the interlayer space, with Al 

redistribution in the tetrahedral C-S-H sites and absence of Si
4+

 substitutions, leading to mainly formation of 

silicate chains constituted of dimers [21]. Indeed, the Ca/Si ratio measured in the cement slurries increased 

(A) 

(B) 
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with the presence of CS/ALG/HA additives. In the case of slurry-pol, the higher amount of Ca content in 

relation to slurry-standard one may be caused a redistribution of Al in the silicate chains in favor of specific 

bridging sites, where Al
3+

 preferentially substitutes a nonbridging Si
4+

 [20, 21]. 

Table 3: EDX analysis of slurry-standard and slurry-pol. 

ELEMENT (%) SLURRY-STANDARD  SLURRY-POL  

Ca 63.30 ± 0.35 65.79 ± 0.31 

Si 24.58 ± 0.30 19.44 ± 0.43 

Fe 5.67 ± 0.11 5.28 ± 0.37 

Al 2.39 ± 0.01 2.74 ± 0.30 

S 2.50 ± 0.13 1.95 ± 0.04 

P ND 1.55 ± 0.01 

Mg 1.02 ± 0.05 1.11 ± 0.01 

Ti 0.26 ± 0.01 0.29 ± 0.01 

K 0.21 ± 0.01 0.50 ± 0.15 

Mn 0.07 ± 0.03 0.16 ± 0.01 

Ca/Si (Ratio) 2.58 ± 0.05 3.38 ± 0.06 

                                   ND: Not detected. 

The functional chemical groups of the cement slurries were evaluated using FTIR spectrometry and 

the results are shown in Figure 2. This technique provides qualitative information related to the presences of 

polymerized silicates, CH, condensed tetrahedra chains (TO4), where T = Si or Al (Al-O-Si or Si-O-Si 

bonds), adsorbed water and compositional water, and carbonate polymorphs [22]. For the FTIR spectrum of 

slurry-standard, the bands with maximum at 3,697 and 3,450 cm
-1

 have been associated with the presence of 

CH and water bound in the hydration products, respectively. The bands centered at 1,445 cm
-1

 correspond to 

two elongation modes of C–O bonds of carbonates. The small band at 1,795 cm
-1

 is also associated the 

presence of C=O bonds from carbonates [23]. The bands from about 960 to 1,100 cm
-1

 are related to 

asymmetric Si-O stretching, out-of-plane and in-plane Si-O bending vibrations of SiO2 quartz. Figure 2 

shows the FTIR spectrum of slurry-standard after contact with the produced water. The absence of the band 

at about 3,700 cm
-1

 suggests the removal, at least partially, of CH. The main structural backbone 

characteristics of C-S-H of this slurry, however, seem not to be significantly affected. 
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Figure 2: FTIR spectra of slurry-standard (A) and slurry-pol (B). The insert figure in (B) is a magnified view of the 

bands about 1870 and 1260 cm-1. Black lines: before produced water contact; grey lines: after produced water contact. 

Polymers identification within cement-based matrixes is a challenging task, due to the low amounts of 

such components in cement-based samples. The bands associated with the polymers themselves are difficult 

to be detected, overlapping with bands of cement phases [24]. However, even the presence of low amounts of 

water-soluble polymers can influence the properties of the cement-based materials, and a polymer film 

formation takes place during cement hydration [25]. Anyway, for the FTIR spectrum of slurry-pol, the small 

bands at 1,380 and 1,655 cm
-1

 have been attributed to the bending vibration of CH2 and CH3 groups and 

stretching of C=O groups, respectively, all from the structures of the polymers in such slurry [26]. The main 

difference of the FTIR spectrum of slurry-pol in relation to slurry-standard one is concerned to the absence of 

CH band at about 3,700 cm
-1

, even before contact with produced water, suggesting a partial inhibitive effect 

(A) 

(B) 
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of the additives on the formation of CH in slurry-pol. 

The X-ray diffractograms of the slurries are presented in Figure 3 and 4. For slurry-standard, the main 

crystalline products are CH (2θ = 18.3 and 34.3°), poorly crystallized C-S-H (2θ = 26.8°) and ettringite 

(Ca6Al2(SO4)3(OH)12·26H2O, 2θ = 50.3°), as well as mixtures of quartz and CaCO3 (2θ = 42.5 - 58°). There 

are also the presence of unreacted components of cement slurry, such as silica (2θ = 21.3°), C3S (2θ = 29.4 

and 32.4°), C2S (2θ = 39.6°), C3A (2θ = 47.3°) and C4AF (2θ = 36.7°) [27]. The peaks of belite are frequently 

overlapped by ones of alite, which tends to difficult the analysis of many crystalline phases of cement 

samples. It is also difficult to rule out the presence of CaCO3 phases in the diffractograms of the samples, 

because most of carbonate-related peaks overlap peaks of unreacted alite and belite [28]. 

 

Figure 3: X-rays diffractograms of slurry-standard, before (A) and after (B) contact with produced water. 

For slurry-pol, a relatively similar diffractogram profile can be observed. The peak of CH at 2θ = 18° 

markedly decreased in intensity in relation to slurry-standard diffractogram, which is also consistent with the 

inhibitive effect of the additives of slurry-pol, as previously suggested by comparative FTIR spectra of the 

slurries. On the other hand, the high intensity of this diffraction peak is not necessarily related to a high 

concentration of crystalline CH, rather to CH crystals growth in specific directions [29]. Literature reports 

that some organic-type additives interact chemically with cement hydration products and may induce 

irregular crystalline formation of CH and C-S-H [29]. 

(B) 

(A) 
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Figure 4: X-rays diffractograms of slurry-pol, before (A) and after (B) contact with produced water. 

After long-term contact with produced water, additional crystalline products were detected in the 

diffractograms of both cement slurries: NaCl (2θ = 29.5 and 45.4°), CaCl2 (2θ = 38°), Friedel’s salt 

([Ca4Al2(Cl)2(OH)12·10H2O], 2θ = 11.2°) and Kuzel’s salt ([Ca2Al(OH)6]·[Cl0.50(SO4)0.25·2.5 H2O], 2θ = 

31.8°). The observed depletion of almost all CH has been attributed to washing out/leaching by the produced 

water, but some CH might also be consumed by possible formation of brucite [Mg(OH)2], calcium carbonate 

and ettringite, mainly close to the exposed surface of the specimens [30].  

Kuzel’s salt is composed of a positively charged layer of [Ca2Al(OH)6]
+
 cations and a negatively 

charged interlayer, with the presence of Cl
-
 and SO4

2-
 anions. In this work, the formation of Kuzel’s salt on 

the cement samples is likely to be related to the presence of Cl
-
 and SO4

2-
 ions in the produced water. 

However, it can be noted that Kuzel’s salt was only detected in slurry-standard (2θ = 31.8°) and the reason 

for this is unknown to the authors. The hydrated cement slurries exposed may also induce reaction between 

NaCl, CaCl2 and CH with C3A, producing both Friedel’s and Kuzel’s salts [31].  

From inspection of Figure 3 and 4, additional ettringite is found only in the diffractogram of slurry-

standard (2θ = 38°). Crystals of ettringite have been described as columns of Ca3[Si(OH)6·12H2O]
3+

 cations 

with channels contain the SO4
2-

 anions and H2O. The SO4
2-

 in the produced water could form gypsum 

(CaSO4) with additional CH (Equation 1), and the gypsum will lead to ettringite formation (Equation 2) [23, 

32]. 

SO4
2-

 + Ca(OH)2 → CaSO4 + 2OH
-
 (1) 

C3A + CaSO4 + 32H2O → C3A·3CaSO4·32H2O (2) 

Additionally, it is relatively well accepted that ettringite formation can promote the ingress of Cl
-
 ions 

(B) 

(A) 
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in hardened cement bodies. According to current understanding, the presence of Cl
-
 from ettringite in a 

particular cement slurry may lead to an increase in the solid volume, which might lead to undesirable 

expansion and cracking of cement specimen [4]. In this work, the presence of SO4
2- 

from produced water may 

result in enrichment in ettringite, which can affect Cl
-
 ingress into the cement specimens. “Free” Cl

-
 ions can 

be bound in calcium chloroaluminate hydrates forming Friedel’s salts or Kuzel’s salts in the pore solution, 

according to the general Equation 3 and 4. 

C3A + CH + 2Cl
-
 + 10H2O → C3A·CaCl2·10H2O + 2OH

-
 (Friedel’s salt) (3) 

C3A + 0.5CH + 0.5CaSO4 + 2Cl
-
 + 10H2O → C3A·(CaCl2)0.5·(CaSO4)0.5·10H2O (Kuzel’s salt) (4) 

The analysis of the diffractogram of slurry-pol, however, indicates the presence of lower amounts of 

CH in relation to the slurry-standard one, as well as apparent absence of ettringite, both characteristics 

contributing to physical stability of this slurry in the presence of high-saline produced water. The absence of 

such XRD peak at 2θ = 38º seems to be related to the lower amount of CH in slurry-pol. Therefore, there is 

an apparent direct relation between the presence of CH with formation of Kuzel’s/Friedel’s salts and 

ettringite [30, 31].  

In order to reach specific understanding on the structures of the cement slurries, the crystallite size of 

some components of the cement slurries was calculated by Scherrer’s equation (Equation 5) [33]. The results 

are presented in Table 4. Only specific diffraction peaks of CH, NaCl, Friedel’s and Kuzel’s salts were 

chosen for calculating the respective crystallite sizes, because some important diffractions peaks of these 

compounds are sharp and relatively isolated from others. 

cosθB

0.89λ
=L

hkl

 (5) 

L is the crystallite size of a given crystalline compound, hkl are the Miller indices of the planes 

analyzed, λ is the wavelength of the X-rays, Bhkl is the width at half-maximum of a given X-ray diffraction 

peak in radians and θ is the Bragg angle. The average crystallite sizes of all selected crystalline phases for 

both slurries were smaller when they are present in slurry-pol. Thus, this finding seems to reinforce the 

findings described earlier in this report that the presence of the additives in slurry-pol partially inhibited the 

growth of CH, NaCl and Friedel’s/Kuzel’s salts. 

Table 4: Crystallite size of some crystalline compounds of slurry-standard and slurry-pol, before and after long-term 

contact with hyper-saline produced water. 

 

SLURRY- 

 

XRD PHASE (hkl) 

CRYSTALLITE SIZE (nm) 

BEFORE PW CONTACT AFTER PW CONTACT 

 

 

standard 

CH (001) 50.32 20.77 

NaCl (111) ND 29.20 

Friedel’s salt (006) ND 34.87 

Kuzel’s salt (110) ND 41.49 

 

 

pol 

CH (001) 35.70 ND 

NaCl (111) ND 20.08 

Friedel’s salt (006) ND 9.37 

Kuzel’s salt (110) ND 31.58 

   PW: Produced Water. 

   ND: Not detected. 

The TG/DTG curves of the slurries are shown in Figure 5 and 6. Thermal analysis has the ability to 

analyze specific low crystalline cement phases, which do not appear by XRD technique. Since TG curves of 

slurry-standard and slurry-pol are relatively similar each other in shape, a more accurate analysis of thermal 
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behavior of the slurries can be made by using the respective DTG profiles. The TG curve of the slurries can 

be divided into three major parts, representing different kinds of reactions [34]. 

 

 

 

Figure 5: TG (A) and DTG (B) plots of slurry before contact with produce water. Black lines: curves of slurry-standard; 

grey lines: curves of slurry-pol. 

From 25°C up to about 410°C occurred removal of physically adsorbed water from hydrated products, 

typically C–S–H and ettringite. The range of mass loss in the first part is relatively broad and the 

corresponding peaks overlap one another during continuous heating processes. Several steps are likely to take 

place in this area, attributed to loss of capillary pore-, interlayer- and chemically interacted water. Capillary 

(A) 

(B) 
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water is found in capillaries larger than about 50 Å. Interlayer water is the water associated with C–S–H 

structure by hydrogen bonding. Chemically interacted water is a relatively stable part of the hydration 

products and removed by high-temperature thermal processes [4]. 

 

  

  

Figure 6: TG (A) and DTG (B) plots of slurry after contact with produce water. Black lines: curves of slurry-standard; 

grey lines: curves of slurry-pol. 

The DTG plot of slurry-standard reveals an initial peak with maximum at 76°C due to loss of 

physically adsorbed water. For the DTG plot of slurry-pol, the maximum of this peak is shifted to a 56°C. 

The small peaks in both DTG curves with maxima at ~106°C are due to loss of water of the C–S–H phase. 

For the DTG curve of slurry-standard, the small broad peak with maximum values of mass loss at 325°C has 

been assigned to the loss of bound water from decomposition of both C-S-H and carboaluminate hydrates 

(A) 

(B) 
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[34]. For the DTG curve of slurry-pol, the thin peak with maximum at 300°C is most likely in agreement 

with thermal degradation of the biopolymers CS and ALG. 

From 410°C up to about 500°C occurred thermal dehydroxylation of CH. Among the compounds 

obtained due to cement hydration, CH has been considered of relative precise quantitative determination. The 

formation of CH determines the overall hydration reaction, as well as influences its mechanical properties of 

the slurry. The content of CH (%) in all materials was determined using Equation 6, according to the 

following equation [18, 35]: 

WM

CH(%)xMCHΔ
=(%) CH  (6) 

Where ΔCH (%) is the mass loss due to dehydration of CH, MCH is the molar weight of CH and Mw is 

the molar mass of water. 

For the slurry-standard and slurry-pol, the CH contents were 7.86 and 5.18%, respectively. After in-

teraction with the produced water, for the slurry-standard, the mass loss related to dehydroxylation of CH is 

undetectable, but decreased to 1.52% for slurry-pol. It is clear that the addition of the biopolymers and HA 

reduces the formation of CH, due possibly to absorption of CH on the polymeric films. These results suggest 

that CH has different structural characteristics in the cement slurries evaluated in this work. 

During the reaction of cement with water, the fresh slurry becomes supersaturated with respect to CH, 

which precipitates in the bulk of the slurry in layered forms with distorted edge-sharing CaO6 octahedron and 

can be exfoliated on different substrates [36]. Intralayer bonding in CH is mainly ionic, where each hydroxyl 

group is linked to three Ca atoms and surrounded by three other hydroxyl groups from an adjacent layer. CH 

interlayers interactions are, however, of a weak dispersion-type force, since CH crystals are reported to be 

unable to overcome specific stresses due to nucleation and grow of some hydrates during hydration. The 

structures and compositions of CH, as well as hydrated silicate and aluminate species have been shown to 

depend strongly on the presence of polymers, depending mainly on the brand of polymer and the 

cement/polymer [37]. Polymer particles and films usually act increasing the interparticle bonding between 

the different layers and strengthen the microstructure of the cement slurry. In the presence of specific 

polymeric dispersions, CH becomes capable of withstanding those stresses [36, 37]. 

From about 500°C up to about 1000°C occurred thermal decomposition of carbonate-like phases. The 

two DTG peaks with maxima at 635 and 665°C have attributed to the decomposition of carbonate-like 

phases, mainly CaCO3 [28]. Carbonation reactions may proceed rapidly in the presence of water because of 

the presence of water-dissolved CO2. A simple description of thermal decomposition reaction for CaCO3 is as 

follows: 

CaCO3 (s) → CaO (s) + CO2 (g) (7) 

Typically, temperatures below 60°C enable the formation of calcite, and presence of aragonite occurs 

at higher temperatures. It is well accepted, however, that part of carbonate-like phases may also be formed 

during thermal analysis [28]. Carbonates are known in three main forms: vaterite, aragonite and calcite. In 

general, vaterite transforms to calcite or aragonite in the presence of water. CaCO3 is indeed several orders of 

magnitude less soluble than CH but in some circumstances; a layer of calcite can significantly protect CH 

against carbonation and dissolution [38]. 

For the DTG plots of both slurries, the peaks with maximum intensities at 810 and 830°C have been 

associated with a C–S–H gel phase formed upon hydration reactions between cement and silica. The exact 

amount of carbonated phases in cement bodies, however, cannot be reliably calculated from the TG/DTG 

data, because some C-S-H-type structures also contribute to measured mass loss within this temperature 

range [35]. 

The DSC curves of the cement slurries are presented in Figure 7. For the slurry-standard DSC plot, 

there are three major peaks. The first two broad endothermic peaks centered at 68 and 122°C are the result of 

removal of physically adsorbed water and loss of water due to dehydration reactions of both C-S-H and 

ettringite, respectively. The third peak from 295 to 420°C corresponds to the dehydroxylation of CH. For the 

DSC curve of slurry-pol, there is a first smaller broad endothermic peak from 25 to 165°C. This suggests that 

C-S-H and ettringite phases have lower amounts of physically adsorbed- and chemically combined water, as 

well as the peak due to dehydroxylation of CH. Additionally, it is also important to point out that the 
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behavior of the baselines of the DSC curves also provides additional information on the thermal stability 

characteristics of slurry-standard and slurry-pol. 

 

 

 

Figure 7: DSC plots of the slurries. Black lines: curves of slurry-standard; grey lines: curves of slurry-pol. (A): before 

contact with produced water. (B): after contact with produced water. Dashed lines show the behavior of the baseline 

shifts. 

The onset/endset temperatures of CH-related endothermic peaks are 295/420°C (maximum at 374°C) 

for slurry-standard and 312/430°C (maximum at 388°C) for slurry-pol. It is worthy to point out the DSC 

(B) 

(A) 
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curve of slurry-standard has changed its slope significantly, before and after thermal degradation of CH 

[sequence 1 → 2 in Figure 7 (A)]. On the other hand, the slope of baseline of the DSC curve of slurry-pol has 

barely changed, before and after thermal degradation of CH [sequence 3 → 4 in Figure 7 (A)]. For the DSC 

plots of both slurries after contact with produced water (Figure 7 (B)), the baselines of such plots present the 

same comparative behavior, for the same sequences 1 → 2 (slurry-standard) and 3 → 4 (slurry-pol). All these 

findings suggest that slurry-pol has preserved its chemical structure characteristics compared to the slurry-

standard ones, even at high temperatures [39, 40]. 

4. CONCLUSIONS 

The presence of the biopolymers and HA has driven the improved self-healing properties observed in the new 

cement slurry. An important aspect to point out is related to the presence of lower amounts of small crystal-

lite-sized CH in the new cement slurry, in relation to the CH characteristics of standard slurry. Important 

structural changes have observed for the C-S-H structure of the new slurry, which has presented improved 

thermal stability characteristics in relation to C-S-H of standard slurry. Significantly, unlike standard slurry, 

the new slurry has practically maintained its original chemical structure, as well as has shown crystallite-type 

particles of NaCl and Friedel’s/Kuzel’s salts with lower dimensions, after long-term contact with produced 

water from Brazilian oil well fields operations. Because large-size crystalline CH, NaCl and 

Friedel’s/Kuzel’s salts are well reported to be weak crystalline phases in most cement-based matrixes, the 

identification of such slurries components with small crystallite sizes drives the improvement of the self-

healing characteristics observed in the new cement slurry. 

Further research is needed, evidently, to apply the new slurry for routine oil well cementing 

operations, from insights gained into characterization. However, the new cement slurry has shown potential 

to provide improvements in cost effective and environmental-friendly oil well operations.  
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