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ABSTRACT 

The advantages of heterophasic thermoplastic polyurethanes (TPUs), such as their phase behavior and me-

chanical properties, make these materials an important class of adhesives. Whereas the amorphous phase con-

tributes to good adhesion properties, the crystalline phase is responsible for the cohesive force of TPU adhe-

sives. This work investigates the performance of a polyester based TPU and its potential for being applied as 

adhesive in the shoe industry. The TPU was formulated with three different additives. The crystallization 

kinetics of the TPU was evaluated by Differential Scanning Calorimetry and the Avrami equation was used 

to assess the influence of the additives on the geometry of crystal growth and nucleation conditions. It was 

found that the additives had no effect on the nucleation process, whereas the polymer chains had reduced 

mobility, mainly in the TPU comprising polyisocyanate ε-caprolactam. The best T-peel strength on a 

poly(vinyl chloride) (PVC) substrate was determined for the TPU with polycarbodiimide, which improved 

the adhesive bonding from 3.23 N/mm to 3.32 N/mm.  
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_______________________________________________________________________________________ 

1. INTRODUCTION 

Thermoplastic polyurethanes (TPUs) are an important class of thermoplastic and thermosetting polymers due 

to their mechanical, thermal, chemical and adhesive properties, which can be defined through the proper 

combination of a huge variety of polyols and isocyanates building blocks. These characteristics are related to 

the polymer's structure, soft and hard segment content, block length and chemical compatibility between the 

soft and hard segments. One can obtain polyurethane structures ranging from homogeneous to phase separat-

ed ones. Typically, two-phase morphology consists of hard domains with polar properties, and an amorphous 

soft phase having a relatively low glass transition temperature (Tg). The hard domains act as physical cross-

links to the soft matrix, and elastomeric properties are observed in TPUs with relatively low hard domain 

contents [1,2]  

           Phase separation affects the physical and mechanical properties of a TPU, e.g. its hardness and elastic-

ity modulus, abrasion resistance and strength resistance. This micro-phase separation is determined by com-

petitive hydrogen bonding between different segments and the crystallization of hard segments. BISTRIČIĆ 

et al. [3] identified in their studies no distinctive influence of nanoparticles on the glass transition tempera-

tures of soft segments, while the effect of nanosilica on the melting behavior of the hard phase was observed 

only in the samples with higher hard segment content.  

           The TPU solvent based adhesive was introduced in the shoe industry 70 years ago. ADSUAR [2] stud 
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ied several polyurethane solvent adhesives and found that the composition of TPUs influences their morphol-

ogy and properties. An increase in the hard segments content in TPUs reduces the degree of phase separation 

and the organization of hard domains, resulting in less crystalline polymers with worse adhesion properties. 

           Therefore, it is important to know the crystallization characteristics of TPUs in order to improve their 

bonding performance. TSAI et al. [4] studied the crystallization of poly(lactic acid) (PLA), varying some 

processing parameters, such as stretch ratio, heat setting temperature, and heat setting time, and found that 

the optical and mechanical properties as well as the dimensional stability of the resulting polymer films were 

governed by their crystallinity.  

           A TPU hot melt adhesive is a thermoplastic polymer that has been developed to reduce the volatile 

organic compounds in the industrial environment. The amorphous phase of the TPU hot melt is responsible 

for polymer flexibility and the crystalline phase for its cohesive strength.  

            In this work, the use of additives in a TPU hot melt adhesive was investigated with the aim to im-

prove the adhesion properties, using PVC as a standard substrate. According to standard ISO 20344:2004, the 

peel strength reference values for upper/sole adhesion in footwear designed for babies, children, women and 

men are: ≥2 N/mm, ≥4 N/mm, ≥3 N/mm and ≥4 N/mm, respectively [5]. In the shoe industry, the adhesive 

properties are paramount to ensure the quality of footwear [6]. 

            The adhesives were produced and used in powder form, as an alternative for conventional solvent 

based polyurethane adhesives with a view to reduce the use of volatile organic compounds in the shoe indus-

try. Adhesion properties were investigated by T-peel strength tests, and DSC thermal analysis was also per-

formed. 

 

 

2. MATERIALS AND METHODS 

According to the supplier’s information, the characteristics of the thermoplastic polyurethane used in the ex-

periments (in pellet form) were as follows: polyester based polyurethane, with viscosity (15% methyl ethyl 

ketone – MEK) of 1800 cPs; Tg of -42 ºC; number average molecular weight (Mw) of 10.000 g/mol; and 

Ring and Ball (R&B) temperature of 44ºC. 

           Additive A: Polycarbodiimide: Mw: 3300 g/mol; density (20ºC): 1.05 g/cm³; R&B: 60 - 90ºC. 

           Additive B: Hydrocarbon resin: Mw: 50 g/mol; acidity (KOH mg/g) less than 0.1; Tg: 50ºC; R&B: 

105ºC. 

           Additive C: ε-caprolactam blocked polyisocyanate: Isocyanate (NCO) content: 12.8–15.7(%); Tg: 41 - 

53ºC; R&B: 62 - 82ºC. 

 

 

2.1 Formulation  

Table 1 shows the compositions of the adhesives. The components in powder form were physically mixed in 

a 0.5L reactor (at environmental temperature and under low shaking). The concentration of the additives was 

based on the indications of the respective suppliers. 

Table 1: TPU adhesive formulations. 

Component /Sample (%) TPU  TPUA TPUB TPUC 

TPU  100 - - - 

Additive A 99 1 - - 

Additive B 96 - 4 - 

Additive C 95 - - 5 
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2.2 Differential scanning calorimetry (DSC) 

Calorimetric data were obtained by DSC with a TA DSC Q100, according to ASTM D3418-12ε1. Experi-

ments were carried out using approximately 5.5 mg of sample, in a sealed aluminum pan. The samples were 

heated up to 80°C at a rate of 10°C/min to erase their thermal history and then cooled to -50°C to find out the 

crystallization temperature (Tc) and enthalpy (∆Hc). Then, the samples were heated again to 80°C to record 

the melting temperature (Tm) and enthalpy (∆Hm). 

            Equation 1 was used to calculate the crystalline fraction (Xc) of the adhesives, using the melting en-

thalpy values measured herein and the enthalpy values for 100% crystalline TPU, as reported in the literature 

[7]. 

 

   (          )                 (1) 

 

ΔH100%=196.8 J/g [7] 

 

2.3 Isothermal Crystallization  

The isothermal crystallization behaviors of the samples were investigated using a TA DSC Q100 thermal 

analyzer. All of the samples were melted at 80°C for 5 min to eliminate any previous thermal history, then 

rapidly cooled to the designated crystallization temperatures (Tc), ranging from 26 to 28°C, and maintained at 

that temperature for 30 min to complete the whole crystallization process. 

            The Avrami equation was applied to determine the geometry of crystal growth and the nucleation 

conditions. Relative crystallinity (Xt) was obtained using the following Equation 2: 

 

     ∫ (
   

  
)    ∫ (

   

  
)   

  

  

 

  
          (2) 

 

Where t0 and t∞ are time parameters denoting when crystallization begins and ends, respectively, dHc repre-

sents the change of enthalpy during an infinitesimal time range dt around time t. 

 

2.4 Peel Strength Test 

The tests were carried out using PVC specimens according to ABNT NBR 10456:2012 – Adhesives for 

Footwear and Resistance Bonding [8]. Injection molded samples had a Shore A hardness of 75 ± 5 Shore A; 

and the following dimensions: 30 ± 1 mm width, 160 ± 2 mm length and 3 ± 1 mm thickness. The steps taken 

for surface preparation and bonding of the PVC material described in Table 2. 

Table 2: Bonding process  

Steps Treatments 

1 
Clean the PVC material – Ketone solvent 

base 

2 Apply primer on the PVC surface 

3 
Apply powder adhesive (TPU) in a spray 

form 

4 Melt the adhesive (temperature 70-75ºC) 

5 
Apply pressing force of 222 N during 12 

seconds 

6 Allow 72 hours rest 

7 Peel at a 180° angle 

8 Speed: 100 mm per min 
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9 Samples 

 

3. RESULTS  

This section presents the results obtained from thermal analysis, as well as the findings regarding the crystal-

lization kinetics and the peel strength of the samples under study. 

 

3.1 Thermal evaluation of TPU 

Figure 1 illustrates the thermal fusion analysis for the investigated samples of adhesives. It may be remarked 

that, both for the neat TPU sample and for its mixtures with the three additives (TPUA, TPUB, and TPUC), 

the melt temperature (Tm) shows a single endothermic peak. 

 

 

Figure 1: Tm (ºC) of polyurethanes with different additives  

         Figure 2 presents the cooling curves of the studied samples, and allows identifying the crystallization 

temperatures (Tc).  

 

Figure 2: Tc (ºC) of TPU adhesives 
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         The calculated results for the crystalline fractions are tabulated in Table 3. The low crystallinity of all 

the formulations suggests a significant amorphous fraction for the base polymer [9]. 

Table 3: Thermal parameters obtained from the DSC curves of adhesives 

Sample Tm (°C) Tc (°C) ∆Hm (J/g) ∆Hc (J/g) Xc 

TPU 44 16 32.8 34.7 17% 

TPUA 45 16 34.1 35.5 17% 

TPUB 44 15 33.4 35.0 17% 

TPUC 44 13 31.3 31.5 16% 

Tm: Melting temperature; Tc: Crystallization temperature; ∆Hm: Enthalpy of fusion; ∆Hc: Enthalpy of crystallization; Xc: 

crystalline fraction. 

 

3.2 Crystallization Kinetics  

A series of isothermal crystallization data obtained from the DSC analysis of polyurethane with different 

additives (A, B and C) were used to determine the relative crystallinity (Xt). Figure 3 presents the sigmoid 

curve of TPU crystallization on time in various isothermal processes. 
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Figure 3: Relative crystallinity as a function of time: a) TPU, b) TPUA, c) TPUB, d) TPUC 

           Figure 4 depicts the behavior of pure TPU and its mixtures after thermal treatment at three different 

crystallization temperatures (26, 27 and 28ºC). 
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Figure 4: Heat flow at different isothermal temperatures (26, 27 and 28°C): a) TPU, b) TPUA, c) TPUB, d) TPUC. 

         Figure 5 shows the linear fit used to obtain the Avrami kinetic parameters for pure TPU and the formu-

lations containing additives. 
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Figure 5: Plot of lg[-ln(1-Xt)] versus lg(t) for isothermal crystallization: a) TPU, b) TPUA, c) TPUB, d) TPUC. 

          The TPU crystallization kinetics was evaluated and the effect of additives was systematically investi-

gated. Table 4 lists the crystallization half-time values for pure TPU and the TPU formulations with addi-

tives, for the calculated and experimental results. 
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Table 4: Crystallization half-time for pure TPU and its formulations with additives A, B and C 

Sample Temperature (°C) t1/2 Experimental (min) t1/2 Calculated (min) 

TPU 

26 1.71 1.74 

27 2.28 2.30 

28 2.76 2.77 

TPUA 

26 2.03 2.06 

27 3.01 3.00 

28 4.04 3.97 

TPUB 

26 2.05 2.50 

27 2.56 2.66 

28 3.48 3.35 

TPUC 

26 4.06 3.96 

27 5.18 4.91 

28 6.27 6.11 

t1/2: crystallization half-time 

         In Table 5, the kinetic values obtained from the Avrami study for pure TPU and its mixtures are shown. 

Table 5: Kinetic values for adhesive TPU1 and additive formulations 

TPU1 n K R
2
 TPU1 B n K R

2
 

26°C 2.96 0.135 0.9989 26°C 2.77 0.089 0.9908 

27°C 2.79 0.068 0.9996 27°C 2.78 0.046 0.9899 

28°C 2.83 0.039 0.9999 28°C 2.61 0.030 0.9972 

TPU1 A n K R
2
 TPU1 C n K R

2
 

26°C 2.90 0.085 0.9965 26°C 2.66 0.018 0.9979 

27°C 2.61 0.046 0.9954 27°C 2.59 0.011 0.9938 

28°C 2.63 0.019 0.9974 28°C 2.71 0.005 0.9983 

 

3.3 Peel Strength Test 

The peel strength values of neat TPU and its mixtures with additives are presented in Figure 6. 
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Figure 6: Peel strength values for the TPU adhesive and its mixtures with different additives 

4. DISCUSSION 

It is critical to understand the correlation between the thermal behavior of an adhesive and its bonding prop-

erties. Therefore, the samples were submitted to DSC analysis in order to study their crystallization kinetics 

and peel resistance, to identify the formulation with the highest potential to be used as a thermoplastic adhe-

sive for shoe soles. 

         Figure 1 reveals acceptable characteristics of the TPUs due to the homogeneity of the formulations [7]. 

However, a clear difference in heat flow is observed in the formulations with additives, compared to that of 

neat TPU, indicating a decreasing trend of the heat flow values. The melt temperature behavior is directly 

related to the reactivation temperature for the peel resistance measurement. The TPU adhesive compositions 

were reactivated from 70 to 75ºC per 1 minute, and according to the DSC thermograms, this temperature 

range was suitable for achieving a complete melt (Tm between 44 and 45ºC) and the penetration of the adhe-

sives into the substrate.  

The TPU and the additive mixtures (TPUA, TPUB, and TPUC) showed a single crystallization peak, 

according to Figure 2. Both the crystallization onset temperature and the heat flow were lower for all the 

formulations comprising additives, when compared with pure TPU. FERRAGE et al. [10] also described the 

use of DSC for the study of non-isothermal crystallization kinetics, where the curves showed the effect of 

adding 0.5% nucleating agent to PP at a cooling rate of 5 K/min. The addition of 0.5% nucleating agent sig-

nificantly increased the onset of crystallization temperature. Nonetheless, in the present study, the presence 

of the additives led to an opposite effect.  

Another important finding of the present investigation is the peak broadening in the curves corre-

sponding to the TPU formulations B and C. The peak broadening could be explained by the restriction of 

polymer chain movement, caused by the presence of the additives. The same effect was identified by MO-

RALES et al. [11]. Enthalpy data were normalized with respect to the actual mass of the polymeric matrix in 

the samples.  

As regards the thermal properties of the investigated formulations, the thermal parameters listed in 

Table 3 reveal no significant differences between the values of the pure TPU and those of the formulations 

including additives. Thus, it may be concluded that the additives had no effect on the evaluated thermal prop-

erties. Tm was not affected, indicating little to no interaction between the additives and the hard segments of 

TPU, as opposed to the findings of SHIOMI et al. [12], who reported differences in crystallinity for 

poly(tetrahydrofuran)–polystyrene diblock copolymers (PTHF–PS). 
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4.1 Crystallization Kinetics 

As expected, the crystallization rate decreased as the crystallization temperature increased, due to greater 

mobility of the polymer chains [13]. All the curves had S-like shapes and they were linear from 10 to 90% in 

the S-like regions. Moreover, according to Figure 3, the greater the slope in the linear portions, the higher the 

crystallization rate is. Usually, at the beginning of crystallization, the nucleation of crystallites decreases the 

crystallization rate, whereas at the end of crystallization, the adjacent crystallite restricts spherulites growth 

[14]. 

In the graphics of Figure 4, one can observe a longer crystallization time and a reduction in the crys-

tallization rate as the isothermal crystallization temperature increases. This trend was also identified by MO-

RALES et al. [11] in a study on PP and its compounds with organoclay. Figure 4 also indicates an increase of 

the crystallization time with the use of the additives, which is most obvious for the formulation with additive 

C. MORALES et al. [11] attributed the slower crystallization rates to the restriction of polymer chain move-

ment. 

Figure 5 shows the linear fit used to obtain the Avrami kinetic parameters for the neat TPU and the 

formulations containing additives (A, B and C). The crystallization kinetics of TPU was evaluated and the 

effect of the additives was systematically investigated.  

The crystallization half-time is the time required for 50% of the crystallization process to occur. [15, 

16] It is a very important crystallization kinetics parameter and it has been used to characterize the crystalli-

zation rate directly, the longer the t1/2, the slower the crystallization rate [17]. The crystallization half-time 

values are tabulated in Table 4. The calculated values were obtained using Equation 3, and a comparison with 

the experimental DSC results for the studied temperature range (26ºC, 27ºC and 28ºC) indicates a strong cor-

relation. The t1/2 increased with the use of all three additives, most significantly with additive C (Polyisocya-

nate ε-caprolactam). The increase in isothermal temperatures also determined an increase in the t1/2.  

 

 
 

 
 (     )

 

 
            (3) 

 

The crystallization rate for the TPU/additive mixtures is significantly lower than that of the neat TPU 

under lower isothermal crystallization temperature, implying that the additives are not effective as nucleating 

agents and the half-life increase could be related to the size of the crystals formed [15]. 

The results obtained by the Avrami equation exhibit a reduction of the n values in the formulations in-

cluding the additives A, B, and C, as shown in Table 5. The n is the Avrami exponent, whose value is related 

to the mechanism of nucleation and the shape of crystal growth. The values of the Avrami exponent n for 

pure TPU and for the formulations with the additives decrease with an increase in the temperature, suggest-

ing changes in the type of nucleation and crystal geometries. The reduction in n values indicates the interfer-

ence of the additives in the crystal growth. The values of n range from 2.59 to 2.96, indicating three-

dimensional diffusion-controlled spherulitic crystal growth [17,18]. A lower n value can be identified for 

sample TPUC, which is visible in Figure 4, where the evident isothermal broadening curve is characteristic of 

low spherulite formation. 

The n values for the pure TPU and its mixtures with the additives exhibited low variation, similarly to 

the melting variation, which shows a similar temperature for all the samples of adhesives. Furthermore, when 

the Avrami exponent takes fractionated values, this indicates differences in the surface of the samples, ac-

cording to the n value found for each powder adhesive tested [19]. 

As expected, the values for the rate constant K decreased with the increase in isothermal temperature 

and with the presence of additives, supporting the lack of nucleation effect in the studied formulations [20]. 

In a work on compounding TiO2 with PP, Silva [21] noted an increase in K values, suggesting a high effect 

of nucleation kinetics. Nevertheless, in the present investigation, the presence of additives in the TPU led to 

opposite results.  

The crystallization process was successfully described using the Avrami equation for all the TPU for-

mulations under study, showing a good linear fit for the experimental data (linearization R
2
 ≥ 0.98) [21], ac-

cording to Figure 5 and Table 5. 
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4.2 Peel Strength Test 

Comparing the results from Figure 6 with standard values for peel strength (of ≥2 N/mm, ≥4 N/mm, ≥3 

N/mm and ≥4 N/mm in footwear designed for babies, children, women and men, respectively) according to 

PAIVA et al. [5], revealed that all the formulations achieved the minimum requirements for use in the shoe 

industry. The adhesives TPU (3.23N/mm) and TPUA (3.32N/mm) reached the standard values for adhesives 

for women’s shoe sole attachment, while TPUB (2.76N/mm) and TPUC (2.01N/mm) could be used only for 

bonding baby shoes [6].  

Adsuar [2] observed that the adhesion properties are worsened (i.e. smaller peel strength, cohesive 

failure) as the hard segments content in the TPU structure is increased, in accordance with a decrease in the 

degree of phase separation and structure organization. 

The formulation with additive A, polycarbodiimide, presented higher peel strength results. This addi-

tive is typically used to improve hydrolysis resistance as a result of a reaction with alcohols and carboxyl 

groups created during the hydrolysis reaction [22]. The polycarbodiimide (N=C=N) group reacts with the 

TPU's carboxylic groups (COOH), improving the bonding performance, [23] as shown in Figure 7. 

 

 

Figure 7: Reaction between polycarbodiimide and carboxic group.  

The TPUB adhesive exhibited lower values for peel strength, when compared to the pure TPU poly-

mer; this type of low molecular hydrocarbon resin is used in hot-melt adhesives to improve tack properties 

and reduce viscosity [24]. These features are necessary to control the penetration of the hot-melt adhesive 

into the substrate when applied in the molten state. In the present study, the adhesive was applied in powder 

form and therefore it had no effect in improving substrate penetration, consequently decreasing peel strength.  

The formulation TPUC with ε-caprolactam capped polyisocyanate presented the lowest resistance 

among the adhesives under study. This chemical compound has an electrophilic carbon atom that is highly 

reactive towards the hydroxyl groups present in the TPU. Despite the higher reactivity, the isocyanate group 

released during the reaction is potentially harmful and could represent a serious drawback for potential appli-

cations [25]. The blocked isocyanate reaction occurs when the caprolactam is exposed to an activation tem-

perature; the low peel strength results obtained suggested that the minimum temperature for the decoupling 

reaction to occur was not achieved.  

ZHANG et al. [26] reported that TPU may accelerate or inhibit the crystallization of polyamide 

PA1010. In the case of the PA1010/TPU (98/2) blend, a small amount of TPU, as a nucleation agent, may be 

favorable for the formation of nucleus, resulting in PA1010 with a higher Tc. Increased TPU content increas-

es the interaction between the two polymers, hindering PA1010 crystallization, and reducing Tc. In order to 

be effective, the nucleation agent needs good compatibility with the polymer, which involves wetting the 

heterogeneous additive. The nucleation agent must be insoluble in the polymer matrix and possess higher 

melting temperature [27]. The nucleating effect on polymer crystallization depends on several aspects, such 

as the size and geometry of the particles, the surface structure and interfacial interactions with the polymer 

matrix [20]. The study of the crystallization kinetics demonstrated that formulations A, B and C presented 

increased t1/2, when compared to the pure TPU polymer, suggesting a poor nucleation effect.  
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5. CONCLUSIONS 

In the presence of additives, the TPU adhesive exhibits a reduction in spontaneous nucleation and growth. 

The crystallization kinetics revealed that more time was necessary for the crystallization process to occur in 

the presence of additives, indicating that these types of materials are not recommended to be used as nuclea-

tion agents. 

The values calculated for the Avrami exponent n ranged from 2.59 to 2.96, indicating a three-

dimensional diffusion-controlled spherulitic crystal growth. When the additives were used, the n value de-

creased, because of the changes in the nucleation type and crystal growth geometry. 

Polycarbodiimide (TPUA) rendered similar values of peel strength to those of the neat TPU, which al-

lowed concluding that it may be suitable for use in bonding women’s and babies’ shoe soles. On the other 

hand, the formulation TPUC, which included the polyisocyanate additive, showed the lowest crystallinity and 

peel strength.  

The results of the kinetic study point out the fact that a longer time is required for the crystallization of 

TPU in the presence of additives, compared to that of neat TPU. The sigmoidal curves observed for the for-

mulation with additive C indicated the longest crystallization time and the lowest heat flow values among all 

the formulations under investigation, suggesting that the reduction in chain mobility in the formulation TPUC 

was more evident than that in the other adhesives. 
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