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ABSTRACT 

In the present work, PTA welding process was used to investigate the influence of welding parameters on the 

dilution, microhardness and corrosion resistance of Inconel 625 alloy coatings on the API 5L X70 grade 

steel. The electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP) 

measurements were used to study the protection properties of the deposited layer when immersed in a 3.5% 

NaCl solution. The results of EIS and LPP have shown that the corrosion resistance results were more satis-

factory for coatings with higher dilution index. The results also showed that the dilution values D (%)varied 

from 15.33% to 4.39% at the maximum (18.99 kJ/cm) and the minimum (8.34 kJ/cm) welding energy levels.  

The most relevant dilution value obtained was 4.39%. 

Keywords: Plasma transferred arc-welding; coatings; dilution; corrosion. 

1. INTRODUCTION 

The concern with the environment comes motivating several researches on the use of new materials to extend 

the life of equipment that operates in harsh environments in oil and gas sector. One alternative that has been 

used is the application of coatings with high corrosion-resistance materials by welding process[1]. 

           Among the materials used for the manufacture of pipes, high-strength and low alloy (HSLA) steels, 

are the most widely used for this purpose. In Brazil the API 5L X70 grade steels are the most used in the 

manufacture of pipelines because of the following properties: good combination of, high mechanical strength, 

with good toughness, ductility and weldability [2–4]. However, these steels are susceptible  to corrosion by 

tension, hydrogen permeation and variation of the pH of the transported fluids[3,5,6]. To increase the service 

life of API 5L X70 grade steel and reduction of maintenance costs the surface protection techniques such as: 

thermal spray metallization, galvanization, electroplating, painting, diffusion, chemical reduction (nickel 

plating) and weld coating are used [1,7]. 

           Among the various welding processes used for the coatings application of, the Plasma Transferred 

Arc-Powder  (PTA-P) can be highlighted . In this process an constricted electrical arc (plasma) is established 

between a non-consumable tungsten electrode and the workpiece. The addition material is used in powder 

form (mixture of powder or atomized alloys), providing a coating of excellent quality.. When compared with 

other welding processes, PTA-P produces very low dilution measuring from 6% to 10% [8], much lower than 

20% to 25% obtained with other arc welding processes. The low distortion, small heat-affected zone and re-

fined microstructure are also highlights of this technique [9,10]. 

           The PTA-P is used in many applications, when low dilution, reduced heat transfer, high deposition 
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rate and ease of operation due to the better process control is necessary as coating application [11]. 

Between the available coatings alloys, nickel based alloy have gained prominence in recent years due to their 

great performance under conditions of corrosion, abrasion and high temperature with a relatively low cost 

[12]. 

According to AL-FADHLI., et al.[13], Inconel 625 has high corrosion resistance and high ductility that make 

it a material suitable for surface modification of oil and gas components, especially those made with HSLA 

steel. Thus, the lifetime of industrial parts is being diluted in severe corrosive media by this method. Inconel 

625 is a nickel-based non-magnetic superalloy of Nickel-chromium-molybdenum strengthened mainly by 

solid solution hardening effect of refractory metals, niobium and molybdenum in a FCC austenitic γ matrix. 

Given this, the present work is aimed to verify the influence of welding parameters on the dilution, micro-

hardness and corrosion resistance of coating of Inconel 625 superalloy applied by PTA-P process, making 

use of the factorial design experiment and response surface methodology (RSM). 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1 Material 

The base material used in the study was the API 5L X70 steel used in pipeline manufacturing. Nickel alloy 

AWS ER NiCrMo-3 (Inconel 625) in atomized powder form  with particle size 60 to 63 μm was used as filler 

metal. Argon gas with a purity of 99.99% was used for the three gas streams (shielding, plasma and drag 

gas). The chemical composition of the base metal and of the addition metal are presented in Table 1. 

Table 1: Chemical composition of API X70 steel and of Inconel 625 alloy. 

ELEMENT, 

(WT%) 
C Si Mn P S Cr Mo Ni Al Cu Ti Fe 

Nb+

Ta 

API 5L X70 0.19 0.24 0.7 0.018 0.018 0.064 0.008 0.07 - - - - - 

ER NiCrMo 

-3 
0.1 0.5 0.5 0.020 0.015 

20.0 – 

3.0 

8.0 – 

10.0 
58 0.4 0.5 0.4 3.8 

3.1 -

4.15 

 

 

2.2 Welding 

The depositions were conducted by the PTA_P welding process an electronic source of welding and data 

acquisition system for control of parameters was used. The welding parameters varied in the experiments 

were the current (A), welding speed (S) and powder feed rate (F). 

 The welding was executed in the flat position, using a 2% thorium oxide (EWTh-2) tungsten elec-

trode, with 3.1 mm diameter and 1 mm indentation. The angle of the tip of the electrode was kept at 30° for 

all experiments. The inclination of the welding torch was 90° to the horizontal), in the "pushing" welding 

direction. DC current mode with reverse polarity and DBP of 10 mm were kept constant. An overlap of L/2 

relative to the width of the first weld bead was used, as shown in Figure 1, always maintaining the interpass 

temperature less than or equal to 100° C. 

 

 

Figure 1: Illustration of the overlap between the weld beads. 

2.3 Factorial Design 

An Experiment Design (DOE) associated to response surface methodology (RSM) was used as an optimiza-

tion tool. The use of these optimization techniques has increased in recent years in different areas of 

knowledge[1,14–17]. A complete factorial design of two levels and three factors (2³) was used, with three 

replications at the center point and, therefore, a total of 11 experiments were conducted in this study, for a 
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quantitative assessment of the influence of the parameters current (A), welding speed (S), powder feed rate 

(F) and dilution. The levels of the factors used in the PTA-P and its factorial design codes are presented in 

Table 2. 

Table 2: Control parameters and their levels. 

  
 FACTOR LEVELS 

PARAMETER UNITS NOTATION -1 0 + 1 

Current A I 184 205 228 

Welding speed m/min S 10 13 16 

Powder feed rate g/min F 28 30 32 

 

2.4 Dilution 

The dilution ratio is the percentage of the base metal that dissolves with the filler metal forming the chemical 

composition of the weld metal. For evaluation of the dilution (D%), the samples were taken from the cross-

section of each coated plate to obtain mean values and their respective variation for the D (%), calculated as 

illustrated in Figure 2. 

 
P-Penetration, R-Reinforcement, W-Width 

% Dilution = [Af/(Af+Ad)] x 100 

Figure 2: Weld bead geometry and illustration of D (%) calculation.  

 

2.5 Microhardness 

The microhardness profile was determined by standard microhardness testing using a Future Tech FM-700 

digital microhardnessmeter with a load of 100 grams-force (gf) for 15 seconds –the distance  between the 

indenting was  200 μm in WM, heat-affected zone (HAZ) and base metal (BM). Measurements of Vickers 

microhardness (HV) were carried out in each sample along three lines, as illustrated in Figure 3. This meth-

odology was employed to meet the hardness gradient along the coating (WM) and substrate (HAZ and BM). 

 

Figure 3: Provision of microhardness indents[1]. 

 

2.6 Corrosion Analysis 

Before carrying out the analysis of electrochemical corrosion of coatings, the surface of the samples were 

machined for planing, getting with a fixed height of 3 mm as regulatory norm N-1707 of Petrobras for coat-

ing [1,18]. Electrochemical corrosion measurements were performed on a conventional three-electrode elec-
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trochemical cell. The working electrode was the steel sample API 5L X70 coated with Inconel alloy 625, the 

saturated calomel electrode was used as reference electrode and spiral shaped platinum wire as counter elec-

trode. The linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) 

measurements were performed. The potentiostat/galvanostat Autolab PG STATE 30 connected to NOVA 1.9 

software was used for electrochemical measurements. The EIS measurements were carried out at an interval 

of 1000 kHz to 0.004 Hz frequency and an amplitude of 0.001 V. All tests were conducted in the corrosive 

medium containing 60 ml of 0.1 M NaCl at room temperature (around 25 °C). 

 

3. RESULTS AND DISCUSSION 

 

3.1 Effects of PTA-P process parameters on the dilution 

The values of the dilution (D%), iron content (Fe%), and heat input (H), employed in coating application 

resulting from the PTA-P process are presented in Table 3. The D values ranged from 4.39 to 15.33%, which 

are considered ideal for metal coatings applied by welding for applications such as hard coatings and corro-

sion resistant coatings. GATTO et al. [8], On the other hand, Petrobras adopts for pressure vessels with inter-

nal coating with dilution values in the range of 10%.   

Table 3: Dilution, iron content and welding energy employed in application of the coating resulting from the PTA-P 

process. 

EXPERIMENT I(A) S(cm/min) F(g/min) D% Fe % H (kJ/cm) 

1 -1 -1 -1 5.65 3.96 12.86 

2 1 -1 -1 15.33 15.18 18.99 

3 -1 1 -1 5.02 3.60 8.34 

4 1 1 -1 14.12 10.88 12.38 

5 -1 -1 1 5.06 6.62 12.48 

6 1 -1 1 14.71 15.84 18.10 

7 -1 1 1 4.39 1.43 7.61 

8 1 1 1 13.68 10.62 10.56 

9 0 0 0 10.59 6.94 13.38 

10 0 0 0 10.48 7.97 13.08 

11 0 0 0 10.61 9.37 13.98 

 

The assessment results of the effects of the PTA-P process parameters on the dilution were obtained 

using the factorial matrix and response surface methodology (RSM), in which a linear model, Equation 1, 

was obtained that allowed to investigate the parameters and form of interaction between them. 

 

FSIFSFISIFSID ***0275.0**0175.0**02.0**117.0*228.0*442.0*715.4780.9%    (1) 

 

           Where: I = welding current; S= welding speed; F = Powder feed rate and I*S, I*F, S*F and I*S*F are 

the interactions of the parameters.  

The response surface built for dilution is presented in Figure 4. It is observed that the minimum per-

centage of dilution (4.8%) occurs at the current 184A (-1), welding speed 16 cm/min (+1) and powder feed 

rate fixed at 32 g/min (+1). This value is close to the experimental value obtained in experiment 7 under the 

same conditions as for 4.39%. 
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Figure 4: Response surface showing interaction effect of current (I) and welding speed (S) for dilution (%) at constant 

powder feed rate 32 g/min (+1). 

The results presented in Figure 4 indicate that as the welding current is increased from 184 A (-1) to  

228 A (+1), the dilution increases from 4.39 to 15.33%, due the increase in H, which promotes an increase in 

the heat of entry in the molten area of the weld pool.  

It is evident from Figure 4 that with increase in the welding speed the dilution decreases, due to the 

shorter time of heat input in the weld pool and the decrease in the deposited powder. When the welding speed 

increased from 10 cm/min (-1) to 16 cm/min (+1), the heat input decreased from 18.99 kJ/cm to 7.61 kJ/cm 

respectively,. This is because the speed is inversely proportional to the H, providing a lower amount of heat 

in the substrate, and promoting a greater reduction in the area of deposited metal [19]. 

It was observed that with the increase in feed rate the lowest dilution values were obtained. This be-

havior may be associated with the cooling of the plasma arc column which caused the heat to decrease in the 

area of the molten region [20].  

The results of the analysis of variance (ANOVA), F test and determination coefficient (R
2
) are pre-

sented in Table 4. 

 

Table 4: Analysis of variance to evaluate the dilution (D%). 

FACTOR SS DF MS FCALCULATED 

Regression 180.1882 7 25.74 1532.21 

Residue 0.0504 3 0.01680 - 

F. Adjust 0.035933 1 0.03593 - 

Pure Error  0.0145 2 0.00723 - 

Total 180.2386 10 - - 

R² 99.7% - - - 

F tabulated 8.89 Fcalc/Ftab = 172,35 

 

The data in Table 4 indicate that the model obtained, Equation 1, possesses determination coefficient 

(R
2
)  equal to 99.7% of the variations obtained explained by the model; ratio of Fcalculated and Ftabelated equal to 

172.35 indicate that the model is statistically significant with 95% confidence due to the ratio being greater 

than one, and it is useful for predictive purposes as a result of being greater than four [21]. 

 

3.2 Microhardness  

The microhardness profile of the cross section of weld metal (WM), heat-affected zone (HAZ) and base met-

al (BM) for the coatings of the experiments 2 and 3 are illustrated in Figures 5a and 5b. 18.99 kJ/cm H value 

was applied in the experiment 2, and 8.34 kJ/cm H value in experiment 3. The The microhardness values are 

presented on the Y-axis and the indents are on the X-axis. It can be noted that the behavior of the microhard-

ness profiles in both experiments are similar in regions of the WM and HAZ, showing a superior microhard-

ness level in WM than in HAZ. In case of H = 18.99 kJ/cm the WM and HAZ average hardness values were 

(259.44 ± 4) HV and (243.41 ± 5) HV respectively. And for H = 8.34 kJ it were (272.0 ± 7) HV and (261.37 

± 8) HV, respectively. The results showed an average increase of 17.96 (HV) microhardness of HAZ when 
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the H values were reduced from 18.99 KJ/cm to 8.34 kJ/cm. The lower heat input resulted in higher cooling 

rates and, consequently, in a higher microhardness value in HAZ. An increase of 20 HV in a HAZ on reduc-

tion of welding energy from 15kJ/cm to 11kJ/cm are reported in the literature [22]. This fact can be explained 

in function of the cooling rate variation and, consequently, in the microhardness levels of HAZ. 

 
(a)                                                                              (b) 

Figure 5: (a) Microhardness profile for H = 18.99 kJ/cm and (b) H = 8.34 kJ/cm. 

3.3 Analysis of electrochemical corrosion 

The analysis of coatings electrochemical corrosion was conducted by linear potentiodynamic polarization 

(LPP), which is a standard method to evaluate corrosion resistance of materials in certain environments. It 

has the advantage of determining the corrosion rate by anodic or cathodic polarization of a few millivolts 

around the corrosion potential of metal or metal alloy [23,24]. The electrochemical impedance spectroscopy 

(EIS) technique was used for confirmation of the results of the LPP. The EIS is used to study the electro-

chemical behavior of materials and interfaces, which is widely used in the study of the corrosion phenomena 

[25].   

The polarization curves of experiments 2 and 7 are illustrated in Figure 6, which had the highest and 

lowest level of dilution, 15.33% and 4.39% respectively, among the 11 experiments performed.  

The experiment 2 with higher level of dilution and iron content presented corrosion potential (ECorr), -

0.343 V, that is, more positive than that of experiment 7, (-0.519 V), with higher dilution and iron content. 

This result demonstrates that the experiment 7 has noncorrosive properties less than that of experiment 2, as 

the potentiodynamic polarization results shown in Table 5.  
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Figure 6: Polarization curves of experiments 2 and 7 obtained at atmospheric temperature (+ 25oC). 
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Table 5: Results of the potentiodynamic polarization tests. 

*Corrosion current density (Jcorr), corrosion current (Icorr), polarization resistance (Rp) and corrosion potential (Ecorr). 

 

For confirmation of the results of LPP curves on the corrosion resistance, EIS measurements were 

done Electrochemical impedance spectroscopy is a technique used to study the electrochemical behavior of 

materials and interfaces, which is widely used in the study of corrosion [26]. According to Macdonald and 

Sun [27], impedance electrochemistry is used to evaluate the corrosion resistance of metals and alloys, as 

well as to characterize the oxide layers. 

The Nyquist diagrams of coatings with Inconel 625 of experiments 2 and 7 that were evaluated by 

LPP are presented in Figure 7 (a) and (b), which had the highest and lowest level of dilution, 15.33% and 

4.39%, respectively. 
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Figure 7: Nyquist diagrams of: (a) experiments 2, and (b) experiment 7 obtained versus SCE at atmospheric temperature 

(+ 25oC)  

According to the results shown in Figure 7 (a), the experiment 2 presented higher results of imped-

ance, showing the largest semicircle formed with the real axis. This indicates that the sample was more pas-

sive due to increased difficulty of conducting current, that is, the rate of corrosion is less when compared 

with the experimental sample 7. Therefore, these results confirm the values found by LPP, which indicated 

that the experiment with higher level of dilution and higher iron content presented a greater polarization re-

sistance.  

According to Souza et al, [28] this increased corrosion resistance in coatings applied with greaterheat 

input , despite the higher dilution and consequently higher iron content on the surface, should be due to lower 

cooling speed and hence favoring proper chemical balance between the phases, that outperformes the high 

iron content on the surface. The explanation may also be related to the level of compressive residual stresses, 

that is, the higher theheat input , greater will be the level of compressive residual stresses, consequently 

greater the corrosion resistance. Similar result was obtained by Melo  [29], who obtained the deposition by 

submerged arc welding (SAW) process, an increase of 41 MPa in compressive residual stress by increasing 

the 12.90 kJ/cm welding energy to 14 kJ/cm, resulting in a polarization resistance of 194kΩ.cm
2
 (12.90 

kJ/cm) and 206 kΩ.cm
2
 (14 kJ/cm). 

 

4. CONCLUSIONS 

Based on the study of this work, the following conclusions can be drawn: 

The PTA-P welding process obtained coatings ranging from 4.39% to 15.33% dilution values 

It was observed that the best dilution values were obtained with 184 A welding current, 16 cm/min 

welding speed and 32 g/min feed rate for getting a value of 4.39% dilution. 

EXPERIMENT JCorr (µA/cm²) ICorr  

(µA) 

CORROSION RATE  

(mm/year) 

Rp  

(KΩ.cm
2
) 

ECorr  

(V) 

2 141.61  141.61  0.0016 169.76 -0.343 

7 4.667 4.667 0.054 10.95 -0.519 
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 An average increase of 17.96 (HV) microhardness of HAZ occurred on reducing the welding energy 

from H = 18.99 kJ/cm to 8.34 kJ/cm.  

The best result of corrosion potential observed was -0.343V for the sample of experiment 2 (228 A, 10 

m/min and 28 g/min)  

 The best values of corrosion potential and polarization resistance were obtained with the higher dilu-

tion and iron content. 
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