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______________________________________________________________________ 
ABSTRACT 

The polymer blends obtained with residues that before were called wastes has been growing as a viable 

solution, allowing improvements in the mechanical properties and as sustainable alternative. This work 

reports the effects of blends of low-density polyethylene (LDPE) and natural rubber (NR), with sugar 

cane bagasse ash (SCBA) as filler, with and without polyethylene-graft-maleic anhydride (PE-g-MA) 

how coupling agent. The dynamic mechanical behavior and a stress-strain analysis were studied. The 

materials were further evaluated by differential scanning calorimetry and morphological observations. 

The results showed that incorporation of the PE-g-MA reduced the strain and improved the stress and the 

Young module of the mixtures. Moreover, the presence of SCBA increased the hardness while 

maintaining the tensile strength and the elongation behavior of the polymer. The results demonstrate the 

potential use of SCBA in the elastomer and thermoplastic mixture, free of vulcanization agents.  

Keywords: Sustainable blends, sugarcane bagasse ashes, natural rubber, low density polyethylene, 

polyethylene-graft-maleic anhydride. 

______________________________________________________________________ 
RESUMO 

As blendas poliméricas obtidas com resíduos que antes eram chamados de lixos vêm crescendo como 

uma solução viável, permitindo melhorias nas propriedades mecânicas e como alternativas sustentáveis. 

Este trabalho relata os efeitos de misturas de polietileno de baixa densidade (PEBD) e borracha natural 

(NR), com cinzas de bagaço de cana-de-açúcar (CBCA) como carga, com e sem polietileno-enxertado 

com anidrido maleico (PE-g-MA) como agente de ligação. Os comportamentos dinâmico-mecânico e a 

análise de tensão-deformação foram estudados. Os materiais foram avaliados por calorimetria diferencial 

de varredura e observações morfológicas. Os resultados mostraram que a incorporação do PE-g-MA 

reduziu a deformação e melhorou o estresse e o módulo Young das misturas. Além disso, a presença de 

SCBA aumentou a dureza, mantendo a resistência à tração e o comportamento de alongamento do 

polímero. Os resultados demonstram o potencial uso da CBCA na mistura de elastômeros e 

termoplásticos, livres de agentes de vulcanização. 

Palavras-chave: Misturas sustentáveis, cinzas de bagaço de cana-de-açúcar, borracha natural, polietileno 

de baixa densidade, polietileno-enxertado com anidrido maleico. 

______________________________________________________________________ 
1. INTRODUCTION 

Advances in the polymer industry have allowed the development of new environmentally friendly, 

recyclable composites [1]. Thermoplastic elastomers (TPE) have the processing characteristics of a 

thermoplastic material and the functional properties of an elastomer, in addition to high recyclability [2]. 
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The elastomers thermoplastics consists of both rigid and flexible areas, which can be copolymers [3] or 

polymer blends [4,5]. In these materials, the elastomer contributes to improved impact resistance and 

increased ductility.  Among the thermoplastics one of the most used in the world industry is the (LDPE), 

this polymer has a crystallinity between 40 and 50%[6] and has unique rheological properties compared 

to linear and high density PE due to its long branched chains that directly influence crystallinity.  

The LDPE is used in the industry of packaging, toys, household utensils, medical equipment, to 

insulation for threads, among others [7]. For this reason, is necessary to know their behavior in mixtures 

with natural residues and natural rubber and to know the influence of these in the physical properties 

mechanics, focused to contribute to reduze the negative impact during their industrial applications. On the 

other hand, the ash from sugarcane bagasse (SCBA) is a waste residue obtained from the burning of 

bagasse in the sugar industry, the production has increased annually with the sector’s grown [8-10].  

The cane bagasse produced is combusted to generate power for use in the industry itself, while the 

resulting ashes are discarded to landfills or utilized as fertilizer in sugarcane plantations, leading to a 

serious environmental problem [10]. The main component of SCBA is silica [12-14], which allows the 

potential use of this waste as reinforcement in different elastomer materials or thermoplastics [15-17].  As 

an additional feature to improve the dispersion and interaction between the SCBA and the matrix [18,19] 

polyethylene-grafted with maleic anhydride (PE-g-AM) can be used as a “coupling agent [20,21]. This 

work reports the evaluation of (LDPE)/(NR-SCBA) and (PE-g-AM) mixtures of their mechanical and 

morphological properties sulfur free usually used in the rubber industry. 

2. MATERIALS AND METHODS 

The SCBA was provided by the Sugar Cane Plant Alto Alegre, Santo Inácio City-PR, Brazil. The particle 

size of the ash was chosen as 44 - 125 m was selected. The melting points were experimentally obtained, 

for the LDPE 115 ± 4 oC and the polyethylene-graft-maleic anhydride (PE-g-MA) was 107 ± 2 oC. The 

dry natural rubber (NR) of the commercial variety CCB (Crepe Claro Brasilero) financed by the DLP 

industria e comercio de Borracha e Artefatos(R) in the city of Polony/SP/Brazil. This NR or cis-1,4-

polyisoprene was obtained in processing plants by the coagulation of latex from Hevea brasiliensis 

species, clones RRIM 600 while the LDPE and the PE-g-MA were supplied by Sigma Aldrich/Brazil. 

 

2.1 Manufacture of blends 

The first step was the elaboration of the mixture between NR and SCBA which is called the master. For 

the production of the master, the NR and SCBA were mixed in an open chamber mixer (Makintec brand - 

model 379 m) during 20 min. at 70 °C and friction 1.0:1.25 for 15 min to obtain a homogeneous mass for 

next step with the LDPE mixture in the Haake rheometer process, explained below.  

2.2 Rheology 

The master was mixed with LDPE in a Haake rheometer equipped with a rotor type Roller to obtain a 

LDPE/master composite. The LDPE ̸master blends were produced in ratios of 90/10 wt.%, 70/30 wt.% 

and 50/50 wt.%, with 25 wt.% SCBA. A second series of blends was also prepared in the above ratios, 

with addition of 2.5 wt.% PE-g-MA. The mixing was carried out at 40 rpm and 125 oC for 10 min. in the 

Haake torque rheometer, with a subsequent pressing temperature of 150 oC for 4 min. these ratios were 

chosen with the aim of evaluating the effect of the PE-g-MA in the blend systems over a compositions 

with NR and SCBA mixed with high proportions of LDPE conditioned for the maximun volume in the 

rheometer mixture chamber (45 g). 

     These conditions were selected on the basis of previous experimental data and reports from the 

literature [22-24]. In the first step (minute one) was added the LDPE into the Haake mixture chamber, 

subsequently was added the NR in the second minute of rotors rotation; this process was maintained for a 

time of 10 minutes, until observing the continuity in the reometry curve, indicating torque equilibrium. 

2.3 Compression molding 

The material was molded using a hydraulic press with an applied pressure of 5 MPa at a temperature of 

150 °C for 6 min. using rectangular plates with internal dimensions of 150 mm x 110 mm x 2 mm. The 

cooling process was at room temperature in the same metallic plates. After, the samples were conserved 

for two days before cut the form suggered in the ASTM D 412 norm, for the stress-strain evaluation. In 

the Figure 1 is show the steps with which was obtained the blends.  
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Figure 1:  Process of obtaining mixtures.       

 

2.4 Characterization 

Morphological studies were carried out on a cross-sectional samples prepared using a cryogenic break 

with and without PE-g-MA. Analyses were performed by scanning electron microscopy to evaluate the 

interaction between the constituents in terms of the morphology, homogeneity, and dispersion of the 

particles in the developed matrix[25]. The scanning electron microscope used was the Carls Zeiss EVO 

model LS15, with a secondary electron (SE) detector. The samples measurements were performed directly 

on the metalized surfaces (sputter-coated with gold) first of the samples superficial faces and next of the 

cryogenical fractured surface obtained. 

     The tensile test were conducted on a Essays universal machine EMIC, model DL 2000. The stress-

strain test were carried out in accordance with the ASTM D 412 norm, using tie beakers type C; for the 

analysis was used a 100 N load cell and 500 mm/min cross-head speed. Tensile strength and modulus 

values correspond to the average of three samples. The average standard deviation attached to the 

measurements is it´s below 10%.  

      The hardness test were carried out in accordance with the Shore A, ASTM D 2240 norm. This 

method consists of forcing a penetrator on the test body, the analysis was made using a Portable hardness 

tester reference PCE-DX-AS of PCE instruments. The resulting in a lower value the greater the depth 

reached. The Shore A scale is directly related to the elastic modulus of the penetrator material. The test 

was performed with triple repetition on the three samples for mixture, according to the referred norm; the 

average standard deviation derived of the repetions attached to the measurements is lower than 10%. 

      The DMA was performed using NETZSCH 242C model 242C interface TASC 414/3A and 

controller 242 with 5.0 Hz frequency, in the temperature range of -120 to 150 °C and at a heating rate of 5 

°C/min, maximum dynamic force of 5.0 N, and static force of 1.5 N, in the three-point mode. The cooling 

process was carried out in N2 atmosphere. The average dimensions of the samples were 11 mm length, 

5.0 mm width and 1.5 mm thickness. All characterizations were performed after compression molding 

process, implemented to blends for the laboratório de tecnología de borrachas e applicações (LTBA), 

Presidente Prudente, SP-Brazil for the research in elastomers thermoplastics line. 

      The differential scanning calorimetry (DSC). In the thermal analysis measurements of the selected 

systems were performed by using a Perkin Elmer SC-7 analyzer. Samples of approximately 8 mg were 

heated from 25 oC to 250 oC by using of nitrogen flow of 100 mL/min and a heating rate of 10 oC/min. 

The cristallinity of the selected mixtures were determined by using of the following relationship:  
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      For the calculation of the crystallinity (Xc), the melting enthalpy value of the polyethylene with 

the crystallinity obtained from the literature in this case 290 J/g[26] was considered. The enthalpy values 

of the samples were obtained from the DSC curves of the same ones, being the determination of the value 

done by means of the software Proteus®. Calculation of crystallinity (Xc) for LDPE was performed using 

Equation (01) and for the mixtures was used the Eq. 02. Where ΔHm and ΔHmc are respectively, the 

fusion enthalpy values of the sample and enthalpy of the fully crystalline LDPE, (% mp) is the value of 

the proportion of the semicrystalline material present in the compound. The calculation of the crystallinity 

was made using the equation 01, where it was necessary to take the data of the specific heat (J/g) of the 

samples, the values were obtained following the ASTM D 3417 standard. 

 

3. RESULTS AND DISCUSSION 

3.1 Haake rheology 

Figure 2 shows the curves for the rheological behavior of the LDPE/master blends without the PE-g-MA. 

The highest torque (21 Nm) was observed for the 90/10 (wt.%) sample, because of the high energy 

requirement for the equipment to disentangle and shear the LDPE chains before they were mixed with the 

master. At instant of mixing the torque decreased to approximately 11 Nm.  This result was obtained by 

the amount of polyethylene in the mixture that directed the behavior of the torque in the equipment. 

Second, equilibrium torque values were measured. A value of 13 Nm was recorded for the 90/10 (wt.%) 

mixture. For the masses 70/30 (%w) and 50/50 (%w) the behavior showed in the graphical curves was 

similar, reaching 8 ± 0.2 Nm until the interruption of the mixture. The increase in torque is part of the 

interaction process between the constituent materials, whose blends delivered better performance in the 

stress-strain analyses because of the superior interface between the matrix and the SCBA particle system. 

This behavior has also been reported in the literature [27,28]. 

 
Figure 2: Haake rheometry curves of the blends (LDPE/master). 

     The Figure 3 shows the curves of the LDPE/master-PE-g-MA mixture. A torque of 16 Nm was 

observed for the 90/10 (wt.%) mixture while that for the 70/30 (wt.%)  and 50/50 (wt.%) samples reached 

9 Nm. Equilibrium torque values of 13 Nm, 7 Nm and 7 Nm were recorded for the 90/10 (wt.%), 70/30 

(wt.%), and 50/50 (wt.%) samples, respectively. With the melting of the material, the torque was 

stabilized, which indicated the final step of interaction between the constituents. 
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Figure 3: Haake rheometry curves of (LDPE /master)-PE-g-MA blends. 

 

3.2 Stress-strain behavior 

The Figure 4 displays the results of the stress-strain analyses of the mixtures with NR-LDPE without 

SCBA or vulcanization agents.  The highest tensile strength response was observed for the 90/10 (wt.%) 

sample. The curve showed a characteristic thermoplastic behavior, with a region of the linear elastic zone 

reaching almost 8.5 MPa at the limit of flow and breaking with 40 % elongation.  

      It could be concluded that the tensile strength and elongation behavior up to the rupture point for 

the LDPE used showed an expected behavior. However, with the addition of NR in 30 % and 50 % of the 

total mass of the mixture, the response capacity was lost due to the low level of adhesion and 

entanglement between the amorphous chains of the NR and LDPE. This was attributed to the lack of a 

third element, the so-called compatibilizer, which results in the formation of binding sites that facilitate 

the entanglement of the chains in the mixture. The behavior of the LDPE pure was similar until the yield 

limit was reached at the end of the linear behavior at 4.5 MPa, while the other samples showed a yield 

point below this limit. The prepared samples presented superior deformation properties, with almost 72 % 

deformation for the 90/10 and 31 % deformation for 70/30 (wt.%) blends. The 50/50 (wt.%) sample gave 

a low elongation of 26 %. 

 

 
Figure 4: Curves of stress-strain behavior of LDPE/NR. 

 

The deformation behavior of the LDPE/master blends without a compatibilizing agent is illustrated in 

Figure 5. It can be observed that the curves for the 70/30 (wt.%)  sample showed the best strain behavior. 

In the stress test, an elongation of 31 % was obtained over the initial length of the specimen until rupture, 

which indicated a tensile strength of 5.24 MPa. The curves obtained from the 50/50 (wt.%) sample 

presented an elongation of 28 % over the initial length of the specimen and a tensile strength of 2.76 MPa. 

The result for the 90/10 (wt.%)  sample showed an elongation of 38 % and a resistance of 8.57 MPa. 
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Figure 5: Curves of stress-strain behavior of LDPE/master. 

 

      From the calculated results, it was seen that the 90/10 (wt.%) sample had the highest modulus at 

69 MPa. The second highest modulus was observed for the 70/30 (wt.%) sample at 66 MPa, and the 

lowest value was observed for the 50/50 (wt.%) sample at 24 MPa. Thus, it was proven that the 

predominance for the responses is directly proportional to the percentage of LDPE in the samples and to 

the attraction between the polymer chains, which causes an increase in the torque during Haake 

rheometry. 

     The Figure 6 shows the deformation curves of the LDPE/master-PE-g-AM blends. The curves for 

the 90/10 and 50/50 (wt.%) samples presented the best deformation behavior and resistance to rupture, 

with elongations of 28 % and 23 % and tensile strengths of 7.6 MPa and 2.7 MPa, respectively. For the 

70/30 (wt.%) sample, the elongation to rupture and tensile strength were 17 % and 5.96 MPa, 

respectively. The yield point was observed below the 2 MPa limit, show deformation earlier, but a good 

resistance without using reticulation systems. 

 

 
 

Figure 6: Curves of stress-strain behavior of LDPE/ (master)-PE-g-MA. 

     The deformation curves revealed that the yield points reached in the samples with the graphitized 

agent were characteristic of an elastomeric phase; the behavior was more elastic than plastic as compared 

to that of the pure samples, shown in Figure 4. Table 01 compares the values for the samples used in this 

study. 

     The data showed that the tensile strength of polyethylene increased upon mixing with 10 and 30 

(wt.%) NR, but the elongation decreased in proportion to the increase in NR content. This behavior is 

attributed to the poor interaction between the semi-crystalline chains of the LDPE and the amorphous 
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chains of the NR, so that high coupling levels were not achieved. The degree of coupling may be 

optimized using cross-linking agents such as peroxides and silanes[29-31]. The data for the blends of 

LDPE/master with PE-g-MA demonstrated that the tensile strength was improved in the presence of 30 

and 10 (wt.%) NR in the mixtures containing the graphitized agent and maintained a behavior against 

elongation with similar results.  

     The modulus of elasticity (E) for the blends was lower than that for the master NR-SCBA. As an 

exception, the modulus of elasticity was higher for the mixture with 50 (wt.%) NR, because of the 

optimized interaction between the amorphous branches of the LDPE chains and the amorphous phase on 

the chains of the NR. The samples with the highest proportion of NR melted and presented uniform 

rheological behavior in the final stage of the mixing process in the Haake tests.  

     The results for the samples containing PE-g-MA demonstrated that it is necessary to optimize the 

coupling interaction between the component materials, with the application of an peroxide to start the 

process of formation of free radicals with which the mechanical performance of the mix, although the 

values obtained are functional for the development of products in the industry, comparing the results with 

mixtures of PE and natural fibers [32,33]. 

 

Table 1: Stress-Strain Results. 

Samples  (wt %) 

Stress 

(MPa) 

±4 

Strain 

(%) ±4 

Module E 

(MPa) ±3 

LDPE 100 6.4 72 105 

LDPE/NR 

90/10 8.5 39 42 

70/30 5.2 31 26 

50/50 2.7 26 23 

B)  

PEBD/(master) 

90/10 7.4 30 38 

70/30 5.4 55 35 

50/50 2.3 40 33 

A) 

PEBD/(master) 

PE-g-MA 

90/10 7.6 28 69 

70/30 5.9 17 59 

50/50 2.6 23 32 

 

3.4 Shore A hardness 

The hardness of the composites is influenced by the interaction between the polymer chains of the 

constituents in the samples, which also affects the rheological properties as the elasticity modulus is 

related to the stiffness caused by the SCBA particles in the polymer. The greater the resulting value, the 

greater the hardness, therefore, the stiffness of the material.  This factor contributes significantly to the 

mechanical properties of the blend. Table 2 shows that the composites with 90 (wt.%) LDPE and 10 

(wt.%) master have the highest Shore A hardness. 

 

Table 2: Shore A hardness  

Samples Hardness Shore A (± 2) 

Total weight 

percentage (%wt) 

90/10 70/30 50/50 

LDPE/(master) 92 92 82 
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LDPE/( master)-PE-g-

MA 
94 89 86 

 

      The most significant increase in hardness upon the addition of SCBA to the samples was observed 

on the misture with PE-g-MA, which could be attributed to the optimization between the matrix and the 

SCBA interaction. The blends presented similar results in the hardness study as the 70/30 (wt.%) sample. 

The 90/10 (wt.%) sample was superior in hardness to the other mixtures studied. These trends result from 

the good interaction between the SCBA particles present in the master with the LDPE.  

      From the results, it can be concluded that the materials developed in this study are industrially 

attractive for the development of shock absorbers, among other products. According to information 

provided by the Apiplast Pessin© Group, which manufactures and supplies thermoplastic elastomers for 

industry in general, such as TPO Compounds bathroom fixtures APIGO P BIO PM 120®, the Shore A 

hardness can range from 50 to 90 and resistance the traction of 6.3 MPa; depending on the application in 

which the materials are 100% reprocessable [34]. It can be concluded that the material developed up to 

this stage is industrially attractive for products that do not require high mechanical stresses, above 5 MPa, 

among these, products for use in the home. 

 

3.5 Differential scanning calorimetry  

In this section, we discuss the curves for the manufactured blends and the individual parent materials. The 

results presented in Figure 7 verify that the glass transition of natural rubber occurs at -60 ºC, which is 

similar to Tg values reported in the literature. The curve obtained for the SCBA is linear due to the 

amount of silica present in the sample and shows the expected behavior up to 900 oC, owing to the high 

thermal resistance of the SCBA. For the LDPE with PE-g-MA, a first-order transition at 115 °C is 

recorded due to the melting of the material, which correlates with the results of rheometry analysis. 

     The observed peak width relates to the transition, which in turn is dependent on the wide 

distribution of molar mass within the sample due to branching and the distribution and size variation of 

the crystals [35]. For other side, were identified the crystallinity values for the 70/30 mistures, due to the 

target of the exploration was identify the properties in percentage greater than 50% of NR. For the 

calculation of the crystallinity (Xc), the melting enthalpy value of the polyethylene with the crystallinity 

obtained from the literature was considered. The enthalpy values of the samples were obtained from the 

DSC curves of the same ones, being the determination of calculation of crystallinity (Xc) for LDPE was 

performed using Equations (01 and 02) showed item 2.4. The values were organized in Table 3. 

 

Table 3: Crystallinity values. 

 

 

 

 

 

 

 

 

 

 
 

      It is possible to conclude that the crystallinity of the samples, maintains a very close value 

crystallinity, but lower than the pure LDPE. It can be concluded that this value was modified by the high 

Samples ∆Hm (J/g) 

 

Xc (%) 

 

LDPE 

 
75 26 

LDPE/(master)-PE-g-MA 70/30 (%wt) 

 
45 15 

LDPE/(master)70/30 (wt%) 

 
44 15 
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concentration of SCBA particles and the NR in the samples, which originated the amorphous material 

with the obtained properties. 

 

 
Figure 7: DSC Curves obtained of the materials before the mixing process. 

     The observed changes in the fusion peak stem from the difference in the percentage crystallinity of 

the samples; the relative size of the endothermic peaks may change [36] if the material has a high 

percentage of amorphous character, as for the NR mixed with inorganic particles as reinforcement.  

     The samples with 30 % and 50 % of NR showed a reduction in the enthalpy of fusion with the 

presence of graphitized polyethylene, which may mean that there was no restriction in the 

macromolecular chain, together with an improvement in the interaction of the phases, resulting at a 

displacement in the melting temperature[37] value of 115 to 112 oC. 

 

 
 

Figure 8: DSC curves of LDPE/master (A); (LDPE/master)-PE-g-MA (B). 
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3.6 Morphological characterization 

Figure 9 displays the SEM images of cross sections of the samples; image A, 90/10 (wt.%) ; B, 70/30 

(wt.%); and C, 50/50 (wt.%) of LDPE/master. Similarly, images A1, B1, and C1 correspond to 

LDPE/master-PE-g-MA samples. 

      In the images A, B, and C can be seen as a response to the fatigue fracture on the sample, which 

occurs because of the resistance of the cut material during stress. A similar response was observed by 

Ismail et al.,who analyzed the surface failure in thermoplastic elastomers[38]. Some areas with higher 

volume in the white sample correspond to the polyethylene phase in mixtures. Samples containing 50 

(wt.%) of the elastomer phase (images C and C1) showed similar behavior, without presenting the peaks 

of the specimens with higher LDPE content.  Surface deformations decreases with reduction polyethlyene 

content due to the predominant plastic behavior over elastic behavior of natural rubber present in the 

samples. 

      In Figure 9, images A1, B1 and C1 correspond to mixtures without PE-g-MA. The images show a 

reduction in particle agglomerates and a more homogeneous surface compared to samples containing PE-

g-MA. The concentration of surface irregularities in the mixtures gradually increases with increasing 

LDPE content. This behavior confirms that the characteristics of the mixtures are directly related to the 

proportion of the thermoplastics present in the sample. 

 

Figure 9: Scanning electron microscopy with 3000X magnification of the cross-sectional samples, A 90/10, B 70/30, C 50/50 (wt.%)  

of LDPE/master)-PE-g-MA; and A1 90/10, B1 70/30, C1 50/50 (wt.%) of LDPE/master. 
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3.7 Dynamic mechanical analysis 

Figure 10 shows the Tan δ curves for LDPE/master mixtures. The curves show a peak centered at -21 ºC, -26.1 

ºC, and -21.4 ºC for the 50/50, 70/30, and 90/10 (wt.%) samples respectively. These peaks are related to the NR 

glass transition, which is shifted by the polymorphism of the mixture of SCBA and LDPE. It can be noted that 

the materials are less elastic than the pure rubber due to the presence of particles and strong interaction with the 
matrix, leading to reinforcement. This causes an increase in the elasticity modulus of the mixtures because of 

improved compatibility with the grafted polyethylene. 

 

Figure 10: Image A corresponding curves to Tan δ and B image corresponding to storage module of mixtures (LDPE 

/master). 

 

      Figure 11 presents the curves generated to study the modulus of LDPE/master mixes. At low 

temperatures (-100 °C), the blends had high energy storage modulus values. The 50/50 (wt.%) thermoplastic 

elastomer showed the highest value because of the higher stiffness index achieved by the presence of equal 

amounts of NR and LDPE. The 70/30 and 90/10 (wt.%) composites showed lower values as a result of a smaller 

proportion of NR in the mixture. The image B shows that the storage modulus decreases proportionally with the 

increase in temperature during analysis. At 60 oC, the values for the 90/10(wt.%), 70/30(wt.%), and 50/50 (wt.%) 

samples were 243 MPa, 87 MPa, and 61 MPa respectively. The values were attributed to the prevalence of 

LDPE in the blend.  

      The obtained curves corresponding to the Tan δ of the LDPE/master-PE-g-MA mixture are shown in 

Figure 10, image A. The curves shows peaks at -19 ºC, -21 ºC, and -21 ºC for the 50/50(wt.%), 70/30(wt.%), and 

90/10 (wt.%) samples respectively. These peaks are related to the glass transition temperature of NR, which is 

shifted due to the polymorphism of the master mixture with SCBA and LDPE components. The presence of 

particles and the improved interaction with the matrix lead to an increase in the modulus of the mixtures.  

      The curve rises until the polyethylene melting temperature is reached, because the increased temperature 

results in greater disentanglement of the chains. At 50 oC, the highest storage modulus is observed for the 90/10 

(wt.%) sample and that for the LDPE/master mixture reaches 351 MPa. 
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Figure 11: Image A. corresponding curves to Tan δ and B image corresponding to storage module of mixtures of blends 

(LDPE /master) -PE-g-MA. 

     The 70/30 (wt.%) sample mixed with PE-g-MA gave the strongest system response of 243 MPa, while the 

50/50 (wt.%) mixture gave a response of 64 MPa. These values were achieved due to the strong interaction 

between the constituent materials during physical mixing using the Haake rheometer. 

 

4. CONCLUSIONS 

Were demonstrated that the beneficial effects of improved interaction between the constituents apply PE-g-MA. 

The results showed that incorporation of the coupling agent PE-g-MA reduced the strain but improved the stress 

behavior and the module of the mixtures in presence of SCBA, were increased the hardness while maintaining 

the elongation behavior of the polymer. Was observed that the melting point of the blends were reduced by the 

addition of the coupling agent. By SEM analysis was observed that, the samples obtained good surface 

distribution of the SCBA particles throughout the matrix.  Is possible to conclude that environmentally friendly 

blends, without vulcanization agents, can be used within the polymer industry because of the favorable 

mechanical and thermal properties afforded through optimization of additives, such as sugarcane residues and 

PE-g-MA. 
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