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ABSTRACT 

The increase in the technical and functional requirements of plastic items has led the development of multi-

materials. To achieve a good performance in the adhesion of dissimilar materials, in this case, polypropylene 

and coconut fiber composites, it is fundamental to understand the phenomena related to the specific interface. 

This work aims to evaluate the adhesion force of different multi-materials, namely between overmolded pol-

ymer-coconut composites using the digital image correlation (DIC) technique. First, coconut fiber composites 

were prepared using three different coupling agents, then they were overmolded with polypropylene. The 

results show that coupling agents have a positive influence increasing the mechanical properties of such mul-

ti-materials under tensile stress. The Lagrange vectors obtained by DIC analysis identified higher stress con-

centration at the joint edges, where the occurrence of surface cracks led the samples to fail in the region close 

to the overlap.  

Keywords: composite structures; digital image correlation; polymers adhesion; multi-component injection 

molding. 

1. INTRODUCTION 

Multi-component injection processes involving the adhesion of different materials and properties in a single 

product have been gaining attention in industry. They are being widely used as they enable a high degree of 

automation without additional assembly stages or post processing [1]. There is a range of multi-component 

processes, which can be used. The chose depends mainly on the complexity, the application and the cost of 

the product. The five most known multi-component injection processes are: co-injection, sandwich molding, 

bi-injection, overmolding and multi-shot molding [2]. 

The overmolding process, used in this work, is a complex process that uses a compound mold to pro-

duce a multi-component product. The first material is injected into a mold by the conventional technique of 

single material molding (SMM), and then the mold turn 180° around its center axis to receive the second ma-

terial, that is thus combined with the first [3]. The presence of a molded two-phase component, promotes a 

new and different procedure when compared with traditional injection processes. Despite its advantages, 

some drawbacks can be highlighted, such as incompatibility between materials, interactions among cooling 

systems of different phases, location of the injection points, polymer moldability and ejection problems [1]. 

To promote good adhesion between dissimilar materials, some information from bonding interface 

must be known previously, which can be considered a sum of physical and chemical forces at the contact 

surface that overlap and influence each other [4]. The physical forces are basically produced by mechanical 

interlocking between materials, including pores and roughness at the interface. According to da Silva et al. 

[5] on the mechanical interlocking theory, rough surfaces provide higher adhesion; however, it relies on good 
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wettability between the surface of both materials. For instance, the existence of pores at the interface which 

can lead to inefficient joining of the materials should be avoided.  

Other theories about the adhesion of polymers consist of electrostatic forces, adhesion by adsorption, 

diffusion (which encompasses the phenomenon of auto diffusion and coupling by entanglement), cooperativi-

ty and reptation theory, which have been applied in studies of adhesion between polymers [6,7,8]. 

The adhesion phenomenon between two dissimilar materials is complex, and it is difficult to predict 

the exact nature and quality of the interface. If the materials are dissimilar, such as polymers and composites, 

and if they are incompatible, then, only a mechanical interlock can successfully hold them together. If the 

polymers and composites are compatible, as is desirable for an overmolding operation, the joint interface 

should reach a temperature sufficiently high to ensure adhesion. According to the literature, the adhesion 

property depends mainly on two factors: intermolecular bonds and surface tension [9].  

A requirement for good adhesion is the adhesive being able to reach most of the adherend. In the pre-

sent case, both surfaces are not uniform as the composite surface presented several fissures and pores as the 

main defects. To ensure a good adhesion, a high wettability is necessary so that the added material can spread 

over the adherend surface, thus optimizing adhesion, covering a larger area (as much as possible) and mini-

mizing or even eliminating pores [7]. Incompatibility between fiber and polymer matrix is a major problem 

for interfacial adhesion and is of critical importance for desirable mechanical properties of the resulting mul-

ti-material. Coupling agents are designed to improve the chemical compatibility between hydrophobic plastic 

and hydrophilic fiber components, promoting improved adhesion and assisting the process [6,10,11]. The 

coupling agents are intentionally designed to contain chemical functional groups that can react with hydrox-

ylated inorganic surfaces, producing covalent bond linkages. The coupling agent then acts as a bridge to bond 

the fiber to the polymer matrix with a chain of primary bonds that, in principle, could be expected to lead to 

the strongest interfacial bond [11]. 

The Digital Image Correlation (DIC) technique dates back to 1950s and 1960s proposals initially in-

volving character recognition, microscopy, medicine / radiology, and aerial photographs [12]. It appears that 

the first article using DIC in polymers was published in 1997, more precisely in the polymethyl methacrylate 

mechanical assay between -40 and 125 ° C [13]. 

2. MATERIALS AND METHODS 

For the adhesion strength study, a specific injection mold was developed to provide samples with variable 

overlap. One sample is illustrated in Figure 1(a/b). It was based on the measurements of ISO 527 Type 1A 

specimen.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

           (a)                                                                              (b) 

Figure 1: a) Sample model in perspective with large overlap between dissimilar materials. b) Injected specimens with 

overlap area of 120 mm2 between dissimilar materials. 
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2.1 Preparation of the composite 

To evaluate the influence of the coupling agents on the adhesion strength between dissimilar materials, more 

specifically a composite of a copolymer polymeric matrix with coconut fiber overmolded with polypropylene 

(PP), four formulations of composites with dry coconut fibers which were prewashed and crushed in a knife 

mill were prepared. The selected PP was EP 440L purchased from Braskem, an ethylene heterophasic copol-

ymer with flow rate of 6.0 g / 10min according to ASTM D 1238. The coupling agents used were: i) Orevac 

CA 100, a functionalized polypropylene (PP) with maleic anhydride (indentified as PPOCA100); ii) Orevac 

18507, a polyethylene (PE) functionalized with maleic anhydride - both supplied by Arkema (PPO18507); 

iii) Cesa® Mix PEA0601031, of the Clariant Company, which consists of titanate-functionalized polyeth-

ylene that uses stearamine as a lubricant (PPCM). This particular coupling agent was customized for a specif-

ic application in composites with natural fibers at SENAI CIMATEC. Table 1 presents the contents of coco-

nut fiber and the coupling agent, which are relative to the total mass of the composite sample (30wt.%), with 

the percentage of 6wt.% additive associated to the fiber content, resulting 1.8wt.% total mass. 

Table 1: Formulations used in the sample preparations (wt.%). 

Formulations PP EP 440L  Coconut Fiber 
Orevac     

CA 100  

Orevac 

18507  
Cesa® Mix  

PPFC 70 30 - - - 

PPOCA100 68.2 30 1.8 - - 

PPO18507 68.2 30 - 1.8 - 

PPCM 68.2 30 - - 1.8 

Legend: PP EP 440L –Polypropylene; PPCF – Composite of polypropylene and coconut fiber without coupling agent; 

PPOCA100 – Composite of polypropylene and coconut fiber with Orevac CA 100 as coupling agent; PPO18507 - Com-

posite of polypropylene and coconut fiber with Orevac 18507 as coupling agent; PPCM - Composite of polypropylene 

and coconut fiber with Cesa®Mix as coupling agent. 

 

After weighing the formulations, the premix was dosed at the main feed point of a corotating screw 

extruder manufactured by Imacom, model DRC 30:40 IF with thread diameter of 30 mm and L/D ratio = 40 

between length and diameter. The processing conditions for these composites were: i) screw speed: 140 rpm; 

ii) feeding speed: 8 rpm; iii) mass temperature: 184 °C. The thread profile used can be considered typical for 

the production of composites with vegetable fibers and is composed of two mixing zones formed with knead-

ing blocks of 45º and 90º and the other elements designed to the transport of material. 

2.2 Preparing injected and overmolded samples 

After the composite formulation step, the materials were dried at 100 °C during eight hours and used to pre-

pare the specimens. In this process a ROMI model Primax 100 R was used. The injection of the specimen 

was given at a pressure of 950 bar, 120 cm
3
/s and a temperature of 200 °C of the molten material. 

The overmolded samples were made in an ARBURG Allrounder 370S injection molding machine us-

ing two injection units: a horizontal one named "Injection Unit 1" and a vertical one named "Injection Unit 

2". With the aid of a rotating plate, specimens with an intersection of 120 mm
2
 (the overlap area) were ob-

tained as illustrated in Figure 2. 

 

Figure 2: Machine for overmold injection. Adapted by Authors. 
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The conditions adopted to open the mold and to promote the rotation of the plate was similar to those 

adopted by industry, i.e. wait until the material is completely solidified. Figure1(b) shows the profiles of 

specimens injected with dissimilar materials. 

By means of a pre-established control on the variables of the injection process, samples of the over-

molded and encoded materials were obtained as shown in Table 2. Unit 1 was responsible for injecting the 

composite material with coconut fiber, which justifies the gradient of increasing temperature from 180°C to 

210°C (5 zones), with the intention of not degrading the vegetable fiber. In unit 2, the pressure and the injec-

tion flow were stepped in three stages in order to avoid flashes on the part that had been injected in the first 

stage. 

Table 2: Parameterized values of the injection molding for the formulations of the previous table. 

PROCESS VARIABLES INJECTION UNIT 1 INJECTION UNIT 2 

Injection pressure (bar) 1000 400/400/300 (3 steps) 

Holding pressure  (bar) 400 300 

Holding time (s) 2,5 2 

Injection flow (cm3/s) 80 30/25/20 (3 steps) 

Temperature (°C) 180-210                    230 

Cooling time (s) 25 20 

2.3 Mechanical characterization of the composites and over injected samples  

The mechanical characterization was carried out according to ISO 527 in order to observe the influence of 

the coconut fiber on the tensile strength properties of the composites. The samples were analyzed with and 

without the addition of the coupling agent. Tests were conducted on a universal test machine Emic Model DL 

2000 at a strain rate of 1mm/min. All the ten samples were conditioned in an oven for 40 hours at a tempera-

ture of 23° C prior to testing. 

2.4 Digital image correlation 

The DIC is a measurement technique capable of correlating mechanical test results (i.e. a tensile test) to the 

amount of strain at each point of an analyzed structure, providing a better analysis of the mechanical behavior 

of a mechanical test. It consists of marking the surface of a certain area to be analyzed with random mi-

cropoints) and tracking its related movement during the mechanical test.  The multi-injection sample was 

painted first with a white ink, forming the background and then it was sprayed with an airbrush black ink 

over the area of interest from Evolution Gmbh, under a pressure of 0.8 bar. Prior to the test, the DIC cameras 

identify each point of the analyzed region. Figure 3 presents one prepared sample being visualized by the 

DIC system at the ISTRA 4D software screen. 

 

Figure 3: Example of sample ready for the DIC. Source: Authors. 

Each red dot in Fig.3 represents a recognized black ink spot which is tracked by the DIC system dur-

ing the tensile/shear test. The DIC system quantifies the amount of displacement of each point during the test 

(picture after picture) and correlates it with the current applied load, informed by the tensile load test ma-

chine. By doing this, the system analyzes the amount strain and stress distribution of the region of interest of 

each sample for a better understanding of the resulting Single Lap Joint (SLJ) failure load (FL) and its me-

chanical behavior. The camera was set with 4Hz to acquire the images of the analyzed area, registering a se-

quence of 4 pictures per second. The strain of the analyzed area was calculated via the Lagrange principal 
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strain method, which measures the amount of movement of each sprayed point in x and y directions between 

the beginning and the end of the mechanical test. The DIC system used in this work was the Q-400-RT, from 

LIMESS GmbH, Krefeld, Germany composed of two cameras of 2 megapixels and the software from the 

same company.  

The tensile load test machine used in this work was an Instron 4210, from INSTRON GmbH, Darm-

stadt, Germany following the reference in the standard DIN EN 1465, with displacement rate of 1 mm/min. 

This equipment was used to apply the load to the samples in a longitudinal way, resulting in shear load for 

the SLJ samples. The standard recommends the use of self-aligned grips and jaws or alignment shims and 

tabs, reducing misalignment and bending moment, providing a better condition for the tensile tests [14].  

In this work the strength of adhesion between the polypropylene and composites with coconut fiber 

with or without additives were evaluated by DIC to verify the influence of the pure (simple) shear and to 

evaluate the behavior of the Lagrange vectors during the tensile stress of over injected materials. 

2.5 Morphological characterization of composites and samples 

To aid in the analysis of the coupling agent effect on the mechanical properties of the composites with coco-

nut fiber and their influence on the tensile test of the composite samples, a Jeol Brand scanning electron mi-

croscope (SEM), model JSM - 6510LV, with tension ranging from 15 to 20 KV was used. The sample com-

posites were submitted to brittle fracture in liquid nitrogen around -196°C and later analyzed by means of the 

fractured surfaces. The analysis of the external surfaces of the composites were evaluated observing the oc-

currence of defects in the form of irregularities that can favor the mechanism of adhesion by mechanical in-

terlocking or as points of propagation of cracks during the tensile test. For this evaluation a Zeiss Scope A1 

optical microscope (OM) with magnification of 200 times was used. The software for image processing was 

Axio Release 4.8.2. 

2.6 Contact angle test - wetting  

A wettability study using contact angle measurements was performed at the surfaces of the composite mate-

rials. Each measurement took into account a drop volume of 20 μl of deionized water that was repeated three 

times. The results were obtained by the average of the last 50 points after a stabilization time of 10 min. The 

equipment used for the test was a Krüss – Drop Shape Analyzer DSA41.0.2.7. 

3. RESULTS AND DISCUSSION 

The analysis of mechanical properties of the composites associated with both microscopy and DIC are dis-

cussed in terms of tensile strength of the overmolded joint and the stress distribution analysis of the overlap 

region. 

3.1 Mechanical characterization 

The mechanical tests were applied to the samples injected with composites and in the over-injected samples 

to evaluate the adhesion strength. The tensile strength of the polypropylene, coconut fiber and composites are 

shown in Table 3. 

Table 3:Tensile strength results for the formulations studied. 

MATERIALS YIELD STRENGTH (MPA) 

PP - EP440 L* 17.18 ± 0.12 

Coconut Fiber (CF) 100.9 ± 25.7 

PPCF 16.95 ± 0.29 

PPOCA100 22.35± 0.32 

PPO18507 17.41 ± 0.22 

PPCM  16.17 ± 0.29 

 * PP- EP 440 L was submitted to an extrusion in the same conditions of composites to injection of samples. 
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           The yield strength value for the coconut fiber (FC) was more than five times higher (absolute values) 

when compared with the pure polymer matrix. Analyzing the results for the composites, the best configura-

tion was obtained using Orevac CA 100 (indicated as PPOCA100 in Table 3). A hypothesis for this result, 

based on some similar research, is that the participation of the coupling agent served to intensify the interac-

tion with the fibers through strong covalent bonds or even through secondary interactions, resulting in a bet-

ter interfacial adhesion between the coconut fiber reinforcement with the polymer matrix [15;16]. In the tests 

using composites with Orevac 18507 and Cesa Mix, which have a polyethylene base, the interaction of the 

additive with the heterophasic polypropylene matrix was not satisfactory, and no significant variations were 

observed in the values of tensile strength in relation to the composite without a coupling agent. The increased 

stiffness in the composites with coconut fibers can be attributed to the hindrance of movement of the polymer 

matrix chains due to the strong interaction of the additive reacting with the free OH on the fiber surface. 

This behavior has been observed in studies using vegetable fibers with polypropylene composites in particu-

lar [16]. Commonly, the effect of a coupling agent can be better observed at higher stresses when measuring 

the tensile strength, because a strong interface is crucial [17]. In fact, this behavior was more visible in 

PPOCA100 as shown in Figure 4 including more resistance to an elongation at break. 

Figure 4: Graph of Stress Strain of the composites. 

           The mechanical tests showed that all the samples failed on the composite probably due to crack prop-

agation in the region next to the overlap, indicating that there was a good adhesion among dissimilar materi-

als. It was observed also that the PPCA100 composite presented an adhesion force which was slightly higher 

than other samples (including the sample without any additive). As presented in Figure 5, in this composite 

the fiber with the polymer matrix interacted better, enhancing the resistance to rupture in the zone close to the 

overlap. 

3.2 Morphological analysis of the composites 

For a better understanding of the results obtained from the mechanical tests, associated to the reinforcement 

theory, the samples surfaces were analyzed using SEM and OM. The images in Figure 5 show the fracture 

region of the composite surfaces. 

 

Figure 5: SEM images of the composite surfaces. (a) CF sample without additives; (b) with Cesa®Mix; (c) with Orevac 
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18507; and (d) with Orevac CA 100. 

           When the material was tensile stressed, part of the load was absorbed by the fiber and thus increased 

the tensile strength of the composite [18]. If the adhesion between fiber and matrix is strong, the fibers break, 

showing that the interface is more resistant than the fiber. When the interaction is weak, as shown in the red 

circles, the fibers cannot assume full strength, and part of these fail to adhere with the matrix. Figure 5(a) 

shows the presence of voids and fiber pull-outs in the composite without additive, which may indicate the 

existence of a low affinity of the polymer matrix with the coconut fibers. These voids can occur due to the 

incomplete wetting of the resin on fibers, forming air bubbles (or pores) that can be trapped due to the high 

viscosity of the resin or due to the presence of volatile compounds that are released in the injection process 

[19].  

       The image in Figure 5(b) indicates a partial adhesion to the composite using Cesa® Mix because there 

were voids in the interfacial region between the fiber and the matrix, but it still exhibited a porous fracture 

surface of the fiber. Similar behavior can be observed for the compound with Orevac 18507 in Figure 5(c), 

where some regions with poor adhesion and fiber pull-out were observed, however, there is some evidence of 

partial adhesion. It was not possible to observe phase segregation between the HDPE contained in these cou-

pling agents and the PP polymer matrix, indicating an apparent compatibility of the materials. Figure 5(d) 

presented shear of the fibers with no signs of pulling out of the polymer matrix, supporting the results of su-

perior mechanical properties in this composite. The SEM results complement the mechanical characterization 

study because the additive samples showed an increase in tensile strength of up to 24% in relation to the 

PPFC composition and this is in agreement with results of other authors [11;17;20]. In line with Figure 6 

(a,b,c,d), an optical reflection microscopy of the composites, a smoother surface with fewer defects, such as 

surface irregularities can be observed in the composites with added coupling agents. 

Figure 6: Reflection optical microscopy of the surfaces of the composites. 

           The low interfacial adhesion is associated to the low polarity and chemical affinity between the matrix 

and the vegetable fiber, which causes the formation of voids/pores in the interface that can compromise the 

mechanical performance of the composites [21]. This was verified in the tensile test result of the PPFC com-

posite that was slightly lower than the PPOCA100 composite. According to Fig. 6 (a), the composite without 

a coupling agent, grooves were observed at the interface between the fiber and the polymer matrix, indicating 

low adhesion of the fiber with the polymer, which can act as a stress concentrator region [6]. 

3.3 Composite contact angle measurements 

Figure 7 shows contact angle results, that was very close to each other, being the higher value presented by 

the PPFC sample. It can be seen that the composites with a coupling agent presented lower contact angle - 

that is, a higher wettability, which is related to a more effective adhesion of the coconut fiber with the poly-

mer matrix. This result is in agreement with the with the images obtained both OM and SEM and is in 

agreement with the results of the mechanical tensile test. 
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Figure 7: Contact angle of the composite materials. 

           According to results from literature, the polymer-fiber interface is improved with the use of coupling 

agents (CAs), whose function is to promote chemical bonds, as covalent, secondary (acid-base) or hydrogen, 

between the phases of the polymer matrix and the fiber by changing the surface energy of the reinforcement, 

thus allowing a more efficient wetting of the fiber with the polymeric matrix [17;21;22]. Based on the contact 

angle measurement, it is possible to note that the use of the coupling agent was efficient, leading to a reduc-

tion in the composite contact angles. The PPOCA100, which had the lowest contact angle, was the most ef-

fective in the union of the fibers with the polymer matrix. Instead, the composite without coupling agent pre-

sented a higher angle of contact as well as lower tensile strength.  

3.4 Digital image correlation – DIC 

In most cases of tensile tests involving SLJ with ductile or low yield strength substrates, the failures found 

resulted from peeling stresses (mainly secondary forces) related to the bending moment at the edges of the 

overlap region [23;24;25;26]. In these cases, it is common to detect crack propagations through the overlap 

region with the aid of the DIC technique [23;25], as can be seen from the results shown in Figure 8 (a,b,c,d). 

Figure 8: Stress state analysis of the SLJs through DIC. Note cracks occurring in the direction of the composite and the 

visualization of Lagrange vectors. 

In this work, however, it was found that the addition of coupling agents between the fiber and polymer 

matrix were effective because they prevented the failure by incidence of peeling stress in the region of over-

lap and consequent crack propagation located at the interface. The failure observed in the mechanical tests 
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was a consequence of the bending moment derived from the geometric aspect of the specimen (i.e. the closer 

to the overlap region, the greater the bending moment) associated to the substrate necking (reduction in the 

transversal section due to plastic strain). In Figure 8 it can be seen that the overlapping region, despite de-

flected, maintained a uniform load distribution along the adhesion interface. Additionally, the region of the 

substrate that was close to the overlap region, due to the bending moment, presented a compression zone (in-

dicated by “A” in Figure 9) and a traction zone (indicated by “B” in the same Figure 9). As a consequence of 

this stress state, a crack propagated perpendicular to the substrate, leading the sample to failure, preferentially 

on the side of the composite. The Lagrange vectors indicated specimen necking on the free length of the sub-

strate (outside the overlap region). In addition, the results indicated a transfer of tensile loads converted into 

shear along the overlap region due to the geometric aspect of the samples. 

 

Figure 9: DIC stress state analysis of the PPOCA100 composite. 

The failure location observed in this work agrees with the bending moment theory of Tsai-Morton 

[27], as explained by SILVA and NUNES [28]. The SLJ geometric aspect favors the generation of a bending 

moment, since the tensile stress T is converted into T' due to the misalignment of the sample, as shown in 

Figure 11. In addition, the PPOCA100 sample, due to the higher failure load, was submitted to a greater 

bending moment M0, as can be verified by the Tsai-Morton Equations (1) and (2) (see TSAI-MORTON, 

1994) [27]. 

    [       ]                                                                                                                                                 

where M0 is the bending moment; αn is the misalignment coefficient (deflection angle); T is the tension load; 

l is the adherend free length factor; and w1 is the vertical displacement (of the analyzed point). The deflec-

tion angle, αn, shown in Figure 10, can be calculated by Equation (3): 

   
    
    

                                                                                                                                                                

where t is the adherend thickness; ta is the adhesive layer thickness; and c is half of the overlap length. In this 

work, ta was considered null as no adhesive was used. 

The fact that all samples behaved the same regarding substrate deflection and the absence of peeling 

stress failure indicated that even without the coupling agent, the adhesion of the dissimilar materials were 

effective. 

Analyzing the location and failure mode in this experiment, the overlap region can be considered a re-

inforcement of the joint, unlike some adhesion cases of joining dissimilar materials, such as welding of met-

als, usage of rivets and screws in solid substrates, where the adhesion region is considered as a defect in the 

part or a stress concentrator point. 

The results using the DIC technique confirm that the coupling agent CA100 was the most effective in 

binding the fiber with the polymer matrix, in agreement with the mechanical tests results of other composites 

and optical and scanning electron microscopies. The surface of the composite with a more homogeneous ap-

pearance and the less evidence of defects such as pores and other irregularities may have favored the tensile 

strength of the joint because it had fewer stress concentrators at the joining and at the failure regions, as re-

vealed by the DIC test. 



   PISANU, L.; BARBOSA, J.; BAMBERG, P., et al. revista Matéria, v.24, n.3, 2019. 

 

 

In spite of a good adhesion between the polypropylene and the composites, the influence of the bend-

ing moment and its secondary forces over the stress concentrator points, presented in Figure 9, led the sam-

ples to fail at the region next to the overlap, initially at the composite side. This study may contribute to the 

dissemination of the adhesion technology of dissimilar materials, increasing the possibility of using compo-

sites with natural fibers in multi-component injection processes. 

4. CONCLUSIONS 

Understanding the effects of the coupling agent on the adhesion strength of thermoplastic composites over-

injected on a polypropylene polymeric matrix is a task that requires very careful study and experiments. In 

this work three different coupling agents were used to modify the surface tension between a fiber and poly-

mer matrix in different ways. We found that the Orevac CA100 was the most efficient among the coupling 

agents analyzed, promoting a better interaction of the matrix with the coconut fiber. The PPOCA100 compo-

site led to a significant increase in the tensile strength and a smaller contact angle, which favored the wetting 

and the adhesion property of the materials. Changes in the morphology of the PPFC composite without a 

coupling agent caused imperfections in the composite surface that may have acted as stress concentrator 

points leading to fracture. By means of the Digital Image Correlation (DIC), the Lagrange vectors indicated a 

high shear stress condition in the joining of the two adherends for all the cases, which is an interesting condi-

tion for bonded joints. The failure took place at the edges of the overlap area, in the adherends, due to the 

bending moment and its related secondary forces (i.e. peeling stresses and normal forces) generating stress 

concentrator points. In joints using ductile materials, usually a failure happens due to peeling stress and crack 

propagation from the edges to the center of the interface. This was not the case in the joints used in this work, 

indicating good adhesion between dissimilar materials. The increased stiffness in the coconut fiber compo-

sites led to failure preferably on the side of the composite before the peeling stresses forces happened. 
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