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ABSTRACT 

The purpose of this study is to develop data mining models to predict restrained shrinkage crack widths of 

slag mortar cementitious composites. A database published by BILIR et al. [1] was used to develop these 

models. As a modelling tool R environment was used to apply these data mining (DM) techniques. Several 

algorithms were tested and analyzed using all the combinations of the input parameters. It was concluded that 

using one or three input parameters the artificial neural networks (ANN) models have the best performance. 

Nevertheless, the best forecasting capacity was obtained with the support vector machines (SVM) model us-

ing only two input parameters. Furthermore, this model has better predictive capacity than adaptative-

network-based fuzzy inference system (ANFIS) model developed by BILIR et al. [1] that uses three input 

parameters. 
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1. INTRODUCTION 

This study aims to estimate the drying shrinkage crack widths of mortars containing Granulated Blast Fur-

nace Slag (GBFS) as fine aggregate. Mortars are cementitious materials currently used in construction indus-

try. GBFS is commonly utilized as a fine aggregate substitute in mortar in order to reduce environmental 

problems related to aggregate mining and waste disposal. One of the most frequent problems in mortars is 

cracking that can be caused by several factors. One of these factor is the drying shrinkage that causes tensile 

stresses in the mortar due to restrictions to its free shortening. Drying shrinkage occurs after the mortar set-

ting, being originated by the evaporation of free capillary water from the interior of the mortar that was not 

consumed in the hydration reactions of the cement. 

           Herewith, the estimation of drying shrinkage is based on data mining techniques. These techniques 

include decision trees, artificial neural networks (ANN), support vector machines (SVM) and k-nearest 

neighbours (k-NN). There are in scientific literature many applications of intelligent tools relative to mortars 

most of them based on artificial neural networks. Thus, artificial neural networks were used to predict com-

pressive strength of mortar: for different cement grades (ESKANDARI et al. [2]); for mixtures containing 

different cement strength classes (ESKANDARI-NADDAF and KAZEMI [3]); containing metakaolin 

(SARIDEMIR [4]); using different saw waste for sand replacement (MAHZUZ et al. [5]); for different scoria 

percentages instead of sand (RAZAVI et al. [6]). Artificial neural networks were also used to predict rubber-

ized mortar properties (TOPÇU and SARIDEMIR [7]), model the influence of salt on desorption isotherm 

and hygral state of cement mortar (KONIORCZYK and WOJCIECHOWSKI [8]), evaluate sand/cement ratio 

on mortar using ultrasonic transmission inspection (MOLERO et al. [9]) and establish a relationship between 

microstructural characteristics and compressive strength of cement mortar (ONAL and OZTURK [10]). 

Fuzzy logic was used to predict rubberized mortar properties [7] and compressive strength of mortars con-

taining metakaolin [4].  Adaptive neuro-fuzzy methodology for prediction of sulfate expansion of PC mortar 

was used by İNAN et al. [11]. Optimized support vector machines were used to model the compressive 

strength of geopolymer paste, mortar and concrete by NAZARI and SANJAYAN [12] and a genetic algo-

rithm–artificial neural network model to predict the compressive strength of cement mortar was created by 

AKKURT et al. [13].  
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           The previous studies do not include the application of intelligent tools neither to drying shrinkage nor 

to cracking of mortars. Therefore, there is a lack in this field as the scientific literature has only focused on 

the application of intelligent tools to concrete shrinkage [14, 15, 16, 17, 18] or cracking [19, 20, 21, 22, 23]. 

No mention in the literature is found related to the prediction of retrained shrinkage crack widths of mortars 

or concretes by data mining techniques. 

           The main purpose of the present study is to construct predictive models for reliable estimation of dry-

ing shrinkage crack widths of mortars containing GBFS as fine aggregate using several data mining tech-

niques. For this purpose, a database published by BILIR et al. [1] was used. By using this database several 

prediction models were constructed. A total of 358 registers including the replacement ratios of GBFS as fine 

aggregate in mortars (RR), the drying time of ring specimens (DT), the free shrinkage length changes of 

GBFS mortars (FS) and the crack widths of GBFS mortars (CW) exposed to ring test were used for con-

structing prediction models. 

           This paper has two main challenges. The first is to verify if, at least one of the DM techniques gives 

better results than ANFIS used by BILIR et al. [1]. The second is to check if one can get good results by re-

ducing the number of input parameters. 

 

2. DATA MINING 

 

2.1 Definitions 

The exponential development of the computational tools in recent decades has allowed the storage of large 

amounts of information. The need to extract useful knowledge from this information led to the emergence of 

the so-called Knowledge Discovery in Databases (KDD). KDD is an iterative process consisting of several 

steps, such as data selection, preprocessing of target data, data transformation, data mining and interpretation 

[24]. Data mining aims to extract useful patterns from data sets for decision-making purposes by applying 

automatic learning methods. DM can be applied to classification and regression tasks. The regression task 

consists of mapping several input variables to a numeric output. Usually in the DM process the dataset is 

splitted into two subsets denominated training set and testing set. The former set is used in a learning process 

of the algorithms whereas the latter is used to test the algorithms. During the learning process the various 

parameters of the algorithms are adjusted to optimize the results. The accuracy of the algorithms is assessed 

through metrics based on errors and the correlation coefficient. The validated algorithms are used as models 

to predict the value of the output variables. 

 

2.2 DM algorithms 

There are several DM algorithms such as Regression Trees (RT), Multiple Regressions (MR), Artificial Neu-

ral Networks (ANN), Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN). A brief description 

of them will be provided next. 

           The Decision Trees [25] have an inverted tree structure composed of nodes and descendent branches. 

The result of a test performed at each node indicates the branch to continue the process. This process is re-

peated until the final decision can be made and a class is attributed to the register. Regression trees are a par-

ticular case of decision trees where classes are replaced by values (Figure 1). 

 

Figure 1: Example of a decision tree. 
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           Multiple regressions are similar to simple regressions but with several independent variables instead of 

one independent variable. 

           ANN is a technique that seeks to mimic the way the human brain works. An artificial neural network 

has an input layer, some hidden layers and an output layer, each one consisting of several neurons. The neu-

rons in two adjacent layers are linked with associated weights wi,j (i and j are neurons or nodes) that deter-

mine the importance of the input. Each neuron has an activation function that introduces a non-linear compo-

nent [26, 27]. This study used a logistic activation function f given by 1/(1+e-x) and the following general 

equation: 

 (1) 

           where xi are the input parameters or nodes, I is the number of input parameters and o is the output pa-

rameter. 

           The multilayer perceptron (feed forward network) is the most popular neural network architecture [27] 

(Fig.2). Thus, this type of neural network was adopted in this study with one hidden layer containing HN 

(hidden nodes) processing units. The ANN performance depend on the number of hidden nodes. 

 

Figure 2: Example of a multilayer perceptron. 

           The SVM technique was initially proposed for classification problems by Vladimir Vapnik and his co-

workers [28]. It uses nonlinear mapping to transform inputs into a multidimensional feature space (Fig. 3). 

After this transformation, SVM finds the best linear separating hyperplane, related to a set of support vector 

points, within the feature space. The nonlinear mapping depends on a kernel function K(x,x’). This work uses 

the Gaussian kernel function, which is the most popular one: 

 (2) 

           The application of SVM to regression problems was possible after the introduction of the ε-insensitive 

loss function [29]. SVM performance is affected by meta-parameters C, ε and the kernal parameter, γ. Pa-

rameter C determines the trade-off between the model complexity (flatness) and the degree to which devia-

tions larger than ε are tolerated in optimization formulation [30]. Parameter ε controls the width of the ε-

insensitive zone, used to fit the training data and its value can affect the number of support vectors used to 

construct the regression function [30]. In order to limit searching space, C and ε were set using heuristics 

proposed by [30]: C=3 and N/̂   , where    N
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Figure 3: Example of a SVM transformation. 

           The k-Nearest Neighbor [31] is a simple supervised learning algorithm that can be used in classifica-

tion and regression problems. In classification problems an instance query is classified according to its 

neighbors’ classes (Figure 4). The dominant class among the nearest neighbors is attributed to the query in-

stance. In regression problems the property value for the instance query is obtained as the average of the 

weighted values of the k nearest neighbors. This implies calculation of the distance between the target and its 

neighbors in the multidimensional space. Generally, weights are attributed according to distance. The closest 

neighbors are given more weight than more distant ones. 

 

Figure 4: Example of k-NN. 

            In this work, the whole dataset was divided exactly in the same way used by BILIR et al. [1]. Thus, 

the training set consisted of approximately two-thirds of the total dataset (238 data) and the testing set was 

constructed with the remaining data (120 data). 

In this study the ANN, SVM and k-NN parameters (H, γ and k) were optimized through a grid search of H {0, 

2, 4, 6, ..., 20}, γ {2-15, 2-13, ..., 23} and k {2, 3, 4, ..., 12}.  

           The performance of the models was evaluated through a 10-fold cross-validation process by dividing 

the training dataset in 10 subsets of equal size [32]. A single subset is retained as the validation data for test-

ing the model, and the 9 remaining subsets are used as training data. The cross-validation process is repeated 

10 times, with each of the 10 subsamples used as the validation data. Under this scheme all the data are used 

for training and testing. By averaging the values obtained in each of the folds, a single value is obtained for 



                                                                                     MARTINS, F.F.; CAMÕES, A. revista Matéria, v.24, n.4, 2019. 

each of the considered performance measures. The model is retrained using all the training dataset whereas 

the testing dataset, composed of one third of the total data, is only used to validate the model. 

The evaluation of the performance of the regression models can be done using different metrics. This study 

uses the root mean squared error (RMSE) and the coefficient of correlation (R), defined as: 
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           where N denotes the number of examples, yi the real value, iŷ  the value estimated by the model, y   

the mean of the real values and ŷ  the mean of the estimated values. 

3. DATA USED IN DATA MINING 

The database used in this work was presented by BILIR et al. [1] and was composed of 358 data sets collect-

ed from free shrinkage tests determining the length changes and ring test determination of the restrained 

shrinkage cracks. These authors developed a model to predict crack width (CW) using this database and ad-

aptative-network-based fuzzy inference system (ANFIS). 

           Tables 1 and 2 present some statistical data of the parameters used in the analyses. Comparing both 

tables, it is possible to observe that there are no significant differences between the coefficients of variation 

of the training and testing data. The coefficients of variation of RR and CW are very similar. The same hap-

pens between the coefficients of variation of DT and FSH. This means that the RR-CW and DT-FSH pairs 

present similar variability. 

Table 1: Statistics of the input and the output parameters for the training dataset. 

PARAMETERS  MINIMUM MEAN MAXIMUM STD. DEV. COEF. VAR. (%) 

 RR (%) 0 42.94 100 30.74 71.58 

Inputs DT (day) 19 43.47 60 10.65 24.51 

 FSH (mstr.) 0.000911 0.002515 0.003880 0.000682 27.12411 

Output CW (mm) 0.003 0.577 1.3 0.405 70.081 

Table 2: Statistics of the input and the output parameters for the testing dataset. 

PARAMETERS  MINIMUM MEAN MAXIMUM STD. DEV. COEF. VAR. (%) 

 RR (%) 0 43.25 100 30.82 71.26 

Inputs DT (day) 20 43.38 59 10.64 24.53 

 FSH (mstr.) 0.000910 0.002508 0.003877 0.000688 27.43314 

Output CW (mm) 0.005 0.572 1.300 0.408 71.234 

4. RESULTS AND DISCUSSION 

With the databases built, the predictive models were trained to forecast the drying shrinkage crack widths 

obtained from the ring test (CW). 

           The data mining models were tested using a single input variable and combinations of two or three 

variables (RR, DT and FSH). The mean values of the root mean square error (RMSE) and the coefficient of 

correlation (R) obtained during the training process are presented in Tables 3 and 4. 



                                                                                     MARTINS, F.F.; CAMÕES, A. revista Matéria, v.24, n.4, 2019. 

Table 3: Mean values of R obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 RR DT  FSH RR&DT RR&FSH DT&FSH RR&DT&FSH 

RT 0.921 0.024 0.772 0.941 0.937 0.937 0.943 

MR 0.911 0.035 0.326 0.931 0.923 0.923 0.937 

ANN 0.927 0.076 0.754 0.987 0.974 0.974 0.993 

SVM 0.918 0.103 0.552 0.994 0.980 0.980 0.989 

k-NN 0.846 -0.188 0.769 0.987 0.977 0.977 0.984 

Table 4: Mean values of RMSE obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 RR DT  FSH RR&DT RR&FSH DT&FSH RR&DT&FSH 

RT 0.158 0.410 0.258 0.137 0.141 0.301 0.134 

MR 0.167 0.405 0.382 0.147 0.155 0.384 0.141 

ANN 0.152 0.415 0.267 0.066 0.092 0.256 0.049 

SVM 0.161 0.409 0.345 0.044 0.081 0.319 0.062 

k-NN 0.216 0.437 0.261 0.065 0.086 0.333 0.071 

 

           From the analysis of Tables 3 and 4 it can be seen that the best result using only one input parameter 

was obtained with the ANN and RR input. The best model with two input variables is the SVM with RR and 

DT inputs. ANN is the best model when all the input parameters are used. 

           Among all the combinations and models, the best performance was obtained with the SVM model 

using RR and DT as input variables. This model was fitted with all the training set and the result is graphical-

ly presented in Fig. 5, which also presents the values obtained with the testing set. Figures 6 and 7 presents 

the results for the best models with one and two input parameters. It must be highlighted that the testing data 

were not used in generating the model.  

           Figures 5 and 6 confirm the good predictive capacity of the best models that use two or three input 

parameters. Figure 7 shows a set of scattered points above the 45 degrees line and some sets of points ar-

ranged in steps. This confirms the poor predictive capacity of models with only one input variable. 

           The model developed by BILIR et al. [1] presented a good performance. The values of R and RMSE 

extracted from Figures 5 to 7 and obtained with the BILIR et al. [1] model are summarized in Table 5. The 

values presented in this table confirm the best predictive capacity of the SVM model with RR and DT input 

parameters. Furthermore, the best models developed in this study with two or three input parameters have a 

better performance than the model developed by BILIR et al. [1]. 

Table 5: Measures of performance of the best models of this study and the model of BILIR et al. [1]. 

Input RR RR&DT RR&DT&FSH 

Model ANN SVM ANN ANFIS* 

R Training 0.932 0.999 0.998 0.998 

Testing 0.928 0.997 0.995 0.992 

RMSE Training 0.146 0.021 0.024 0.024 

Testing 0.151 0.029 0.042 0.050 

* BILIR et al. [1] 
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a) b) 

Figure 5: Performance of the SVM model using the combination RR and DT with: a) training data set; b) testing data set. 

a) b) 

Figure 6: Performance of the ANN model using all the input parameters with: a) training data set; b) testing data set. 

a) b) 

Figure 7: Performance of the ANN model using RR with: a) training data set; b) testing data set. 
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5. CONCLUSIONS 

Data mining techniques have the capacity to learn from examples. In this study several data mining tech-

niques were used to predict drying shrinkage crack widths of mortars containing GBFS as fine aggregate. 

The cross-validation scheme indicates that with one or three input parameters the ANN models provide the 

best prediction results. Among all the developed models the SVM using only two input parameters (RR and 

DT) leads to the best results. Furthermore, this model and ANN with three input variables have better per-

formances than the model ANFIS developed by BILIR et al. [1]. 
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