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ABSTRACT 

Vitamin D3 has significant roles in bone growth and the prevention of osteoporotic fractures. The present 

study investigated the effect of hydroxyapatite nanoparticles decoration onto polyamide-6 nanofibrous scaf-

fold on adsorption behaviour of Vitamin D3. To synthesize the nanofibrous scaffold, an electrospinning de-

vice was used, and the surface of the scaffold was characterized by scanning electron microscopy, energy 

dispersive spectrometry, Fourier transform infrared spectroscopy, and measurement of the water contact 

angle. The antibacterial activity test against E. coli and S. aureus bacteria indicated no such activity of pris-

tine and hydroxyapatite decorated scaffold. The results demonstrated that a hydrophobic and high porous 

scaffold was formed, and hydroxyapatite nanoparticles were distributed inside the polyamide-6 nanofibers 

homogenously. Results showed that the hydroxyapatite nanoparticles improved the adsorption efficiency of 

polyamide-6 scaffold. It was found that the amount of adsorbed Vitamin D3 molecules onto the polyamide-

6/HA scaffold was rapid during the first hour of immersion (24.4 ng.cm
-3

), then declined over the next 3 h, 

and eventually reached a stable percentage of about 10.3 ng.cm
-3

. This phenomenon appears to be related to 

the high adsorption potential of porosities and the hydrophobic nanofibers during the first stage of immersion 

and non-occupied hydroxyapatite ceramic sites during the final stage of immersion. 
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1. INTRODUCTION 

Vitamin D3 (VD3) is an essential organic compound that has a significant role in bone growth and is required 

in the production of collagen, absorption of calcium and phosphorus, and the regulation of the immune sys-

tem [1-5]. On the other hand, the lack of VD3 is a major health problem [6,7]. According to clinical interpre-

tations, the adequate blood level of VD3 is 30-36 ng.ml
-1

, and above 100-150 ng.ml
-1 

is considered as toxic 

[8].  

            Plenty of studies have focused on the biological properties of VD3 and there are very few reports 

about colloidal and particle systems for the delivery of VD3 [9,10]. However, there have been no reports 

about the physiochemical behaviour of VD3 in relation to nanoporous media such as electrospun nanofibrous 

scaffolds. Nanofibrous scaffolds, which are fabricated by electrospinning, have numerous applications in 

tissue engineering due to having a polymer-ceramic composite scaffold and a nanoporous structure [11-13]. 

The scientific importance of the study of VD3 adsorption by a PA6/HA nanofibrous scaffold is explained by 

the critical role of VD3 in bone growth. A balanced amount of VD3 in the surrounding environment has a 

significant role in bone regeneration during long term scaffold implantation.  

             Hydroxyapatite (HA) is well known as a bioactive ceramic added to many artificial bone tissues and 

implants for orthopedic surgeries [14-16]. Not only polymer/HA composites exhibit the chemical and me-

chanical stability of natural bones [17,18], but also they can be designed in the form of porous materials that 

accelerate the circulation of essential biochemical agents such as VD3 [19]. Given the significant chemical 

(e.g. stability in human body) and mechanical (e.g. tensile strength and toughness) properties of polyamides, 

polyamide-6 (PA6) is utilized as the polymeric base of many biocomposite scaffolds [20,21]. 

Adsorption can occur through different routes by physical, chemical or physiochemical reactions between 

adsorbent and adsorbed species [22,23]. The hydrophobicity of the surface of the adsorbent has a significant 

role in the adsorption of vitamins and proteins [24-26]. Hydrophilic surfaces are wetted by the surrounding 

environment and do not allow more amino acid molecules (e.g VD3) to adsorb onto the scaffold [27]. HA 
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NPs are bound to the super hydrophobic PA6 fibers, helping achieve greater VD3 adsorption by these nano-

particles during implantation.  

            The present study has evaluated a nanobiomaterial, fabricated by the electrospinning procedure, in 

terms of its adsorption of VD3, which is essential for bone growth. For this purpose, PA6 and PA6/HA nano-

fibrous scaffolds was firstly synthesized by electrospinning and then characterized by SEM, EDS, FTIR, and 

WCA measurements. Finally the adsorption behaviour of VD3 was fundamentally investigated to determine 

the responses of the electrospun scaffolds to VD3 molecules.    

 

2. MATERIALS AND METHODS 

2.1 Scaffold preparation 

The HA NPs were synthesized in accordance to the wet chemical precipitation method commonly described 

in literature [28,29]. The polymer solution was prepared by dissolving 2 and 20 wt% of HA NPs and PA6 

granules (1015b UBE, Mw; 15,000 g.mol
-1

) in formic acid (Sigma Aldrich, 64-18-6), respectively. The com-

ponents were dispersed in solution by the application of stirring and ultrasonication for 10 min at room tem-

perature. The homogenous solution was spun by means of electrospinning which was setup with the follow-

ing conditions: 15 kV apply voltage, 0.5 ml h
-1

 feed rate and 10 cm distance. The collected fibers were dried 

on a flat aluminium foil and then cut to appropriate size for further investigations. 

 

2.2 Characterization of scaffolds 

The thickness of the scaffolds was measured using a micrometer and the average of 10 measurements was 

reported. In order to study the morphology of the electrospun scaffold, the sample was sputter coated with 

gold and then scanning electron microscopy (JEOL- JSM 840A SEM) was applied at an accelerating voltage 

of 5 kV. Further investigations were conducted with ImageJ software (ImageJ 1.38, NIH, USA) to determine 

the diameter of the fibers and surface porosity. The morphology and composition of HA NPs and also the 

elemental distribution within the PA6/HA scaffold were analysed using SEM equipped with EDS setup 

(model Vega\TScan-20 kV). Functional molecular groups formed in the composite scaffold were evaluated 

using the Fourier transform infrared (FTIR) technique (Nicolet Avatar 360 FT-IR spectrometer, 4000 cm
-1

 to 

400 cm
-1

). The hydrophobicity of the scaffolds during the first minute was studied regarding water contact 

angle measurement (WCA) in three different locations of the samples by using a contact angle meter (VCA 

Optima-AST products, Billerica, MA). 

2.3 Antibacterial activity test 

The antibacterial activity test of PA6 and PA6/HA scaffolds were performed in a solution contacting two 

kinds of bacteria in accordance to the ASTM G21-1996. The S. aureus (ATCC 25923) and E. coli (ATCC 

25922) were the gram-positive and gram-negative bacteria in the solution, respectively. The samples were 

incubated for 24 h at 37 ˚C to evaluate their antibacterial activity. 

2.4 VD3 adsorption procedure 

A 1 ml VD3 ampoule (Cholecalciferol) containing 6.16 mg of was dissolved in 37.5 ml of deionized water by 

stirring at room temperature. Both sides of the PA6 and PA6/HA scaffolds (1cm×1cm) were vertically ex-

posed to 8 ml of VD3 solution (160 ng.ml
-1

) at room temperature as shown schematically in Fig. 1. Similarly, 

7 scaffolds were immersed in distinct cells in order to study the effect of soaking time on adsorption of VD3 

onto mentioned scaffolds during a period of 7 h. The quantity of adsorbed VD3 (Qt) on the scaffolds at any 

time was calculated according to the following equation [22]; 

( ).

.

i f
t

C C V
Q

A T


                                                                                                                                               (1) 

            where Ci and Cf (mg.ml
-1

) are the initial and remaining concentration of VD3 in solution, respectively. 

V (ml) is volume of the VD3 solution, A (cm
2
) and T (cm) stand for area and thickness of scaffolds respec-

tively. The remaining concentration of VD3 in solution was calculated using Beer's law [30]. For this pur-

pose, the adsorption intensity of the surrounding solution was measured by a UV-VIS instrument (model: 

Cary, 100 Cone) and Cf was calculated according to the calibration curve. 
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Figure 1: Set-up of VD3 adsorption test.  

   

3. RESULTS 

3.1 Characterization of the scaffold 

Prior to the fabrication of scaffolds, the synthesized HA powder was characterized regard to the morphology 

and composition. Fig.2 a and b present the SEM micrograph and EDS spectrum of HA powder, respectively. 

As can be seen, the semi-spherical particles with average size of 25.2 ± 3 nm were obtained via wet chemical 

precipitation method. These specifications are appropriate for blending in electrospun solution. The Ca/P 

ratio in HA NPs was also calculated based on the EDS spectrum, and it was found that mentioned ratio was 

1.62 indicating the well coincidence with theoretical value [16]. The typical morphology of the prepared PA6 

and PA6/HA scaffolds are shown in Fig. 2 c and d. It is obvious that HA NPs have been incorporated in the 

final microstructure of the scaffold. The HA NPs have been marked by circles, demonstrating the uniform 

distribution of HA aggregates within the nanofibers (NFs). According to their morphology, some NPs are 

attached to the stems of the fibers and some NPs are precipitated together at the junction points of the fibers. 

The physical specifications of nanofibrous scaffolds are given in Table 1. The obtained results declare the 

formation of extremely high porous, two-dimensional scaffolds, which are promising for the tissue engineer-

ing and drug delivery [31]. Moreover, the different chemical composition of nanofibrous scaffolds may make 

the different manner in VD3 adsorption regard to the surface properties. 

 

 

Figure 2: (a) SEM micrograph and (b) EDS of HA NPs, (c) PA6 and (d) PA6/HA SEM morphology of prepared scaf-

folds, the HA-NP is marked by circle.  

Table 1: Physical specifications of nanofibrous scaffolds 

Scaffold Thickness of scaffold (µm) Fibers diameter (nm) Surface porosity (%) 

PA6 120 ±10 265 ±10  74.3 ±2.3 

PA6/HA 130 ±10 382 ±30 72.1 ±5.1 

 

             In addition, EDS analysis was assigned to ensure the incorporation of HA NPs into the PA6 scaffold. 
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The microstructure and EDS analysis of a typical area of the PA6/HA scaffold are presented in Fig. 3. The 

white spots in the back scattered mode SEM image are attributed to HA aggregates and the grey spots belong 

to the junction of PA6 NFs (see Fig. 3.a). In EDS analysis, the highest peak in the spectrum shown in Fig.3.b 

at 1.5 eV is attributed to the carbon (C) element which constitutes the main structure of the PA6 scaffold. The 

incorporation of HA particles within the nanofibrous structure was also confirmed by EDS due to the pres-

ence of Ca and P peaks at 4 and 2 eV, respectively. 

 

 

 Figure 3: (a) BS-SEM image and (b) EDS analysis of typical area of PA6/HA scaffold. 

 

            In order to identify the functional molecular groups formed in the polymer/ceramic electrospun scaf-

fold, first FTIR spectra of HA NPs and PA6 scaffold were provided as illustrations in Fig.4, and then those 

were compared with FTIR spectrum of PA6/HA scaffold. The prominent twin peaks at 1546 and 1641 cm
−1

 

demonstrate the polyamide nature of the scaffold. The N-H stretching vibration bond of PA6 was detected at 

3298 cm
−1

, and CH2 asymmetric stretching bonds were recognized by 1265, 1368, 1460, and 2931 cm
−1

 

bands. The bands at 2861 cm
−1

 and 1170 cm
−1

 are attributed to stretching and wagging vibrations bond of 

CH2, respectively [32]. Furthermore, characteristic bands related to the HA particles were also observed in 

the FTIR spectrum of PA6/HA. These included a low intensity band at 928 cm
-1

 assigned to the stretching 

vibration of P-O(H) and transmission bands at 582 cm
-1

 and 1075 cm
-1

 attributed to the bending and stretch-

ing vibrations of P-O bonds, respectively. The other bands, such as those transmitted at 711 and 3086 cm
-1

, 

are related to the polyamide nature of the matrix [33]. Therefore, based on the experimental data from SEM, 

EDS and FTIR, it can be elucidated that HA NPs were incorporated inside of the PA6 NFs matrix without the 

creation of any new bonds. 
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Figure 4: FTIR spectrum of (a) HA NPs, (b) PA6 and (c) PA6/HA scaffold. 

 

             Surface hydrophobicity is one of the significant characteristics which determine the biological re-

sponse of a surface by affecting the arrangement of biomolecules near to the surface. Hence, the identifica-

tion of the wettability of the PA6/HA scaffold by means of WCA measurement was very important for un-

derstanding its behaviour during immersion in an aqueous solution of VD3. Fig. 5 shows the variation of 

WCA on PA6 and PA6/HA scaffold surfaces during the first minute of contact. It is obvious that the PA6 

scaffold is super hydrophobic because the average WCA during contact time was higher than 120º. In spite of 

HA presence, PA6/HA also depicted a hydrophobic surface. Therefore, it is hypothesized that VD3 molecules 

can arrange in a stable manner near the hydrophobic surface of the PA6/HA scaffold at preliminary time of 

adsorption test. This phenomenon allows the molecules to adsorb onto the surface in favourable conditions 

[34]. However, the WCA on PA6/HA scaffold decreased over one minute due to the unstable surface tension 

forces between liquid, solid and gas phases (water, scaffold and air respectively) [35]. 

 

Figure 5: Variation of WCA on PA6 and PA6/HA scaffold surfaces during the first minute of contact. 
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3.2 Antibacterial activity 

With developing the advanced materials in biomedical application, the antibacterial property of introduced 

material has been drawn to attention. The assessment results of the antibacterial activity of PA6 and PA6/HA 

scaffolds against E. coli and S. aureus showed that both scaffolds have no activity against both E. coli and S. 

aureus bacteria. There are many studies which have demonstrated that PA6 does not exhibit antibacterial 

activity [36,37]. The HA incorporation inside the PA6 NFs did not influence the antibacterial activity of PA6. 

The neutralized HA NPs have not interacted with the walls of the gram negative and positive bacteria [38].  

 

3.3 Vitamin D3 Adsorption 

Due to the upper limit of VD3 in the human body and the importance of its values in aqueous solution, the 

concentration variation of VD3 in the range of adequate to toxic values was examined according to Beer's 

law. Fig. 6.a shows the UV spectra of VD3 solutions with different concentrations within the mentioned 

range. It shows an absorbance peak at 257 nm, revealing the VD3 variation in different concentrations from 

20 to 160 ng.ml
-1

. As shown in Fig. 6.b, the calibration curve was plotted with respect to the aforementioned 

amounts in order to generate an appropriate linear equation. Experimental data have good correspondence 

with the line predicted from Beer's law, demonstrating the validity of the data from the examination of VD3 

adsorption. Furthermore, the large correlation coefficient (R
2
= 0.9836) demonstrated the appropriate dissolu-

tion of VD3 in solvent and the production of a homogenous aqueous solution. 

 

Figure 6: (a) UV spectra of VD3 solution with different concentration, (b) calibration curve in range between 20 to 160 

ng.ml-1. 

 

           The response of the PA6 and PA6/HA scaffolds to VD3 adsorption over a 7 h period was evaluated by 

Qt index given in Eq. 1. Fig. 7 shows the variation of Qt versus the immersion time. The variation of Qt dis-

play the rather constant amount adsorbed by PA6 scaffold which was about 5 ng.cm
-3

. In contrast, the results 

showed that the PA6/HA scaffold adsorbed VD3 molecules with high efficiency over the first hour of immer-

sion. The amount of adsorbed VD3 declined from 24.4 to 8.3 ng.cm
-3

 during the period of 1 to 4 h. Finally, 

adsorption efficiency improved partially and then remained constant during the period of 4 to 7 h. The final 

recorded amount for adsorbed VD3 onto PA6/HA scaffold was 10.3 ng.cm
-3

. Therefore, it was found that the 

HA NPs improve the adsorption efficiency, and three distinct stages can be assumed for adsorption: stage I: 

adsorption, stage II: desorption, and stage III: stability. 

 



                        ESFAHANI, H.; GHIYASI, Y. revista  Matéria, v. 25, n. 1, 2020. 

 

 Figure 7: Amount of adsorbed VD3 on PA6 and PA6/HA scaffolds, in period of 7 h. 

    

              The micrographs pertaining to the adsorption test of the VD3 on PA6/HA scaffold is presented in 

Fig. 8. A high porous scaffold with interconnected and open porosities was observed in the sample at the 

starting point of the test (Fig. 8.a). This appearance dramatically changed only 0.5 h after immersion in VD3 

solution. As it can be seen in Fig. 8.b, not only the surface porosities were blocked by VD3 molecules but 

also the fibers were covered by a thin layer of VD3. Extreme adsorption also occurred for the sample which 

was immersed for 2 h (see Fig. 8.c). These observations are in strong agreement with results obtained by Qt 

calculations. The maximum adsorption was recorded after 1 h immersion, relating to the end of stage I. More 

micrographs showed that blocked porosities were reopened over time, indicating the release of VD3 into the 

surrounding solution. The increase in open porosities and the removal of VD3 from NFs are demonstrated 

from the micrographs of the sample immersed from 2 to 4 h. This behaviour coincides with stage II and can 

be recognized in the area shown in Fig. 7. A similar behaviour was also observed for the immersed sample at 

5 h. It is worth mentioning that the amount of adsorbed VD3 by the last two samples was rather similar. 

Eventually, a rather blocked porous scaffold was observed throughout the final stage. The related micrograph 

may predict the long-term appearance of a PA6/HA scaffold implantation. 

 

 

Figure 8: SEM micrographs of PA6/HA scaffold regarding to different times of immersion in VD3 solution. 

 

            It seems that during stage I, VD3 suddenly made a concentration gradient to adsorb on an extremely 

large surface area of the nanofibrous scaffolds. This rapid adsorption occurred due to the high amount of 

open pores at surface of scaffolds, as well as the super hydrophobic nature of the adsorbent. However, incor-

poration of HA NPs could intensify the adsorption efficiency of PA6 scaffold three of times. Afterwards, the 

main reason for the release of VD3 from the scaffolds during stage II was the wetting of the surface after 1 h 

of immersion. This phenomenon resulted in repulsing VD3, and thus the amount of adsorbed VD3 decreased 

rapidly. This is in strong agreement with results reported in other research which describe that the wettability 

of polymeric substances is increased by the addition of amino acid species such as proteins and vitamins 
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[5,31]. It is worth mentioning that hydrophilic HA sites could promote the wettability of scaffold too. During 

stage III, HA sites of scaffolds had significant roles in holding VD3. This is proven by the rather uniform 

distribution of adsorbed VD3 on the scaffold surface as observed in the micrograph shown in Fig. 8 related to 

the sample at 7 h. Moreover, the amount of adsorbed VD3 did not change perceptibly because the HA sites 

were occupied by the previously adsorbed VD3. Finally, an equilibrium gradient was established between the 

solution and scaffold resulting in a scaffold with an area occupied by VD3 for osteoblast progress, and open 

porous media for necessary biological interactions [39]. 

 

4. CONCLUSIONS 

The goal of this study was to explore the adsorption behaviour of VD3 onto electrospun nanofibrous PA6 

scaffolds decorated by HA NPs. The SEM micrographs of the scaffold showed a relatively homogenous 

distribution of HA particles within the PA6 NFs. The average diameter size of fibers and surface porosity of 

PA6/HA scaffold were 213±30 nm 72.1 ± 5.1 %, respectively. EDS analysis of the PA6/HA scaffold 

confirmed the presence of HA particles within the fibers, and FTIR spectrum also depicted the incorporation 

of HA particles within the PA6 matrix, while new bonds were not formed between polymer fibers and 

ceramic particles. The variation of WCA during one minute signified the hydrophobic nature of the PA6/HA 

scaffold, helping the scaffold to adsorb more vitamin molecules. The variation of Qt showed that the 

adsorption of VD3 occurred in three stages: (I) adsorption, (II) desorption, and (III) stability. Experimental 

data showed that amount of adsorbedVD3 molecules onto the PA6 and PA6/HA scaffolds was about 8.1 and 

24.4 ng.cm
-3

 over the first hour of immersion, and eventually reaching a stable amount of about 5 and 10.3 

ng.cm
-3

 respectively, which depicts the significant role of HA NPs in VD3 adsorption. The morphology study 

of the PA6/HA scaffold at different times of immersion indicated dramatic changes in fibre thickness and 

blocked porosities after 1 h of immersion. However, an open porous media with fibers occupied by VD3 

persisted after 7 h of immersion. With the results obtained from the evaluation of VD3 adsorption by a 

PA6/HA scaffold, the opportunity of creating totally controlled conditions for bone regeneration within 

implantations arises. 
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