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ABSTRACT 

This paper presents a numerical-computational model for frames with geometric nonlinear behavior, by the 

Finite Element Co-rotational method, considering the Euler-Bernoulli and Timoshenko beam theories. The 

connection between structural members is simulated by a null-length connection element, which considers 

the axial, translational and rotational stiffness. The nonlinear equations system that describes the structural 

problem is solved by the incremental and iterative procedure of Potra-Pták, with cubic convergence order, 

combined with the Linear Arc-Length path-following technique. The solution method algorithm is presented 

and the numerical examples are simulated with the free Scilab program. The numerical results show that the 

slenderness of the structure, geometric nonlinearity and semi-rigidity influence the behavior of the structure. 

Structural analysis and design procedures that consider these factors attains less conservative design thus 

obtaining more optimized structures. 

Keywords: Shear deformation. Potra-Pták. Connection element. 

RESUMO 

Este artigo apresenta um modelo numérico-computacional para pórticos com comportamento não linear ge-

ométrico, por meio do método Corrotacional de Elementos Finitos, considerando as teorias de viga de Euler-

Bernoulli e Timoshenko. A ligação entre os membros estruturais é simulada por um elemento de ligação de 

comprimento nulo, o qual considera as rigidezes axial, translacional e rotacional. O sistema de equações não 

lineares que descreve o problema estrutural é solucionado pelo procedimento incremental e iterativo de Po-

tra-Pták, com ordem de convergência cúbica, associado à técnica de continuação Comprimento de Arco Li-

near. O algoritmo do método de solução é apresentado e os exemplos numéricos são simulados com o pro-

grama livre Scilab. Os resultados numéricos mostram que a esbelteza da estrutura, a não linearidade geomé-

trica e a semirrigidez influenciam no comportamento da estrutura. A análise estrutural e os procedimentos de 

projeto que consideram esses fatores alcançam um projeto menos conservador, obtendo-se estruturas mais 

otimizadas. 

Palavras-chave: Deformação de cisalhamento. Potra-Pták. Elemento de ligação. 

1. INTRODUCTION 

Light weighted structures are widely used in engineering applications such as buildings, industrial construc-

tions, off-shore platforms and aerospace structures. Linear models are generally used for the design of these 

structures. However, as its slenderness increases, the degree of geometric nonlinearity increases as well as the 

occurrence of instability phenomena [1]. 

Structural stability analysis using the Finite Element Method (FEM) involves solving a system of non-
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linear equations. Methods that combine incremental and iterative procedures are used to obtain the system 

solution. An efficient methodology must be able to trace the complete equilibrium path and identify and pass 

through all the existing singular or critical points of the structure under analysis [2, 3]. 

The key point in geometrically nonlinear analysis boils down to the description of the kinematics. 

There are three kinematics description formulations in literature for a flexible beam element, which are: total 

Lagrangian; updated Lagrangian; and Co-Rotational [4]. The two-dimensional co-rotational formulation for 

beams was developed by CRISFIELD [5] and is based on the explicit separation of rigid body movements 

(translations and rotations) and deformational movements [6]. The co-rotational formulation is substantiated 

in theory of infinitesimal strains. It has two coordinate systems, namely: the global coordinate fixed system; 

and the local co-rotational coordinate system. 

Two theories have been used to study deflections of beams and frames, which are the Euler-Bernoulli 

and Timoshenko theories. In the Euler-Bernoulli theory, the cross-sectional initially normal to the beam neu-

tral axis remains plane and normal to this axis after deformation [7]. This assumption ignores the effects of 

shear deformation and presents good results for isotropic homogeneous thin beams [8]. 

The Timoshenko beam theory, on the other hand, employs a more accurate representation of beam 

flexure which allows for the inclusion of shear strains and is, therefore, more suited for thick beam analysis 

[9]. It is considered that the cross-sectional initially normal to center axis of the beam remains plane, but not 

necessarily normal to the axis after deformation [7]. 

Standard analysis procedures for frame are usually based on the assumption of the ideal nodal connec-

tions. Two extreme idealizations for models with ideal connections are used: ideally pinned, no moment 

transfer; and perfectly rigid, with total moment transfer [10, 11]. Models with ideal connections between 

beam and column simplify the analysis procedure, but often lead to an incorrect estimate of the real structural 

behavior. In fact, the existing connections are between the two extreme assumptions and have some rotation-

al rigidity [12, 13]. 

Researchers have studied the semi-rigid connections of beam-column through numerical models and 

experimental investigations. NGO-HUU et al. [14] developed an independent zero-length connection element 

with six different translational and rotational springs connecting two identical nodes to simulate the beam-to-

column connections. HADADE et al. [15] presented the results of an experimental investigation on the semi-

rigid behavior of typical beam-column connections for precast concrete structures. MOKHTAR et al. [16] 

investigated the performance of a specific beam-to-column connection using partly hidden corbels with dif-

ferent anchorage arrangements in precast concrete structures. WANG et al. [17] presented experimental ef-

forts in steel framed substructure with bolted flange plate connections subjected to progressive collapse. A 

simplified modeling approach based on the shell element and ductile fracture criterion was introduced.  

Nonlinear analysis of structures, including any kind of flexible connection, takes on special im-

portance in engineering analysis. From this reasoning, it is necessary to develop a well-posed nonlinear for-

mulation allowing the accurate evaluation of displacements and efforts of conventional and unconventional 

structures [18]. In this context, this paper presents a numerical-computational model for the analysis of plane 

frames with geometric nonlinear behavior (hypothesis of large displacements and rotations, but small strains), 

by the Finite Element Co-Rotational method. 

The materials are considered isotropic and linear elastic and the cross section of the elements is uni-

form. Two beam-column models are implemented: one based on the Euler-Bernoulli theory [6]; and the other, 

on the Timoshenko theory [19]. The finite element formulation of these models - the stiffness matrix and the 

internal forces vector - is presented. The connection is simulated by the null-length connection element pro-

posed by DEL SAVIO et al. [20], in which it considers axial, translational and rotational rigidities. This ele-

ment allows to carry out elastoplastic analyzes of the connections and, even, of the structure bars simulating 

the formation of plastic hinges within each finite element of the bar. 

The system of nonlinear equations that describes the structural problem is solved by the iterative 

scheme of POTRA-PTÁK [21], proposed by SOUZA et al. [22], combined with the Linear Arc-Length path-

following technique (updated hyperplane constraint). The computational code was developed with the free 

Scilab program, version 6.1.0 [23]. Numerical simulations of nonlinear problems found in the literature (can-

tilever beam, Lee’s frame, semi-circular arch and Williams' frame) are studied, in order to verify the formula-

tion of the implemented beam-column models and the connection element. The behavior of structural sys-

tems is evaluated by their equilibrium path, and it was found that the shear effect can be significant on the 

mechanical response of these, depending on the slenderness of the structural elements. Furthermore, in the 

example of the Williams' frame, it was evident that the connection type can have a great influence on the 

overall structure behavior. 
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2. 2D BEAM-COLUMN CO-ROTATIONAL FINITE ELEMENT 

Geometric nonlinearity is considered by means of co-rotational formulation. This kinematic description aims 

to seek to explicitly separate rigid body motions from strain producing deformations at the local element lev-

el [5, 6]. It is assumed that there is no shear deformation in the beam and, therefore, the cross section remains 

plane and normal to its axis. Consider a typical beam-column element in its initial and current configurations 

as shown in Figure 1. 

 

Figure 1: Initial and current configuration for typical beam-column element. 

The global coordinates of nodes 1 and 2 of the element in the initial configuration are (X1, Y1) and (X2, 

Y2), respectively. The original length L0 is given by the following equation [6]: 

   √(     )
  (     )

   (1) 

For the beam-column element in its current configuration, the global nodal coordinates are (X1 + u1, 

Y1 + v1) for node 1 and (X2 + u2, Y2 + v2) for node 2, where ui is the displacement of the node i in the X di-

rection and vi is the displacement of node i in the Y direction, with i = 1, 2. The current length L of the beam 

element is [6]: 

  √(           )
  (           )

   (2) 

The global displacement vector p of element is: 

                 
 . (3) 

 The local axial displacement ( ̅) of the element is calculated as: 

  ̅        (4) 

If the difference between L and L0 is small, the Equation (4) is ill-conditioned for use in a numerical 

setting. Therefore, CRISFIELD [5] proposes the multiplication of  ̅ by (L + L0) / (L + L0) which gives better 

conditioned formula: 

 ̅  
(    )(    )

    

 
     

 

    

  (5) 

The strain  is assumed to be constant and is determined by  =  ̅/L0. The axial force (N) of the ele-

ment is then given by: 



 SOUZA, L.A.F.; VANALLI , L.; VANDERLEI, R.D.; et al.,  revista Matéria, v.26, n.3, 2021 

 

  
   ̅

  

 
  (     

 )

      
  

  [(
 
  

)
 

  ]

 
  

  
  (6) 

where A is the cross-sectional area and E is Young's modulus. Using standard structural analysis, the local 

end moments of the element ( ̅  and  ̅ ) are related to the arbitrary local nodal rotations (1l and 2l) as fol-

lows: 

[
 ̅ 

 ̅ 

]  
   

  

*
  
  

+ [
   

   
]  (7) 

where I is the moment of inertia of the cross-section. The rotations 1l and 2l are computed by, respectively: 

          (
                     

                     

)  (8) 

          (
                     

                     

)  (9) 

where 1 = 1 + 0 and 2 = 2 + 0. The angles 1 and 2 are the global nodal rotations calculated from the 

global matrix equations. The initial angle 0 and current angle  of the element are calculated by, respective-

ly: 

         (
     

     

)  (10) 

        (
           

           

)  (11) 

The tangent stiffness matrix Kel is determined as a function of the material stiffness matrix KM and 

geometric stiffness matrix KG: 

           (12) 

where 

         (13) 

   
 

 
    

 ̅   ̅ 

  
(       )  (14) 

The matrix D is the constitutive matrix given by: 

  
  

  

[
   
       

       
]  (15) 

where   √    is the radius of gyration and the vectors z and r are, respectively: 

               (16) 

               (17) 

where s = sin(β) and c = cos(β). The matrix B is: 
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]  (18) 

The following equations are used to calculate the sine and cosine values of angle β, respectively: 

   ( )  
           

 
  (19) 

   ( )  
           

 
  (20) 

The internal forces vector (Fel) is determined by: 

         ̅  ̅  
 . (21) 

A classic Timoshenko beam-column element with two nodes is defined with linear interpolations for u, 

v and θ in the local co-rotational coordinate system by, respectively [19]: 

  
 

  

    (22) 

     (23) 

  (  
 

  

)     
 

  

     
(24) 

The curvature κ, the shear deformation  and the strain  are defined by, respectively: 

  
 

  
  

   

  

 
   

  

 
       

  

  (25) 

  
  

  
    (  

 

  

)     
 

  

     
(26) 

  
  

  
    

  

  

 
       

  

   
(27) 

For calculating the material stiffness matrix KM, the constitutive matrix D is expressed as: 

  
 

   

[

     
          

           
 

           
          

 
]  (28) 

where G is the transverse shear modulus and parameter  is the sectional shear correction coefficient. The 

internal forces vector Fel is determined by the Equation (21) and the local end moments of the element  ̅  

and  ̅  are, respectively: 

[
 ̅ 

 ̅ 

]  

[
 
 
 
  

  

(       )  
 

 
     (       )

  

  

(       )  
 

 
     (       )]

 
 
 

  (29) 

and the axial force N is calculated by Equation (6). 
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3. CONNECTION ELEMENT 

The connection is simulated by the element proposed by DEL SAVIO et al. [20] whose length is null. The 

axial (Sa), translational (St) and rotational (Sr) rigidities are considered in the stiffness matrix Klig, which can 

be expressed by: 

     *
   

   
+  (30) 

with 

  [

    
    
    

]  (31) 

The connection element is inserted at the intersection points between structure members where the 

connections are located. This element behaves appropriately for any type of loading and also allows to simu-

late elastoplastic analyzes of connections, given the momentum-rotation curve that describes the connection 

behavior. 

4. STRUCTURAL PROBLEM AND SOLUTION METHOD 

The basic objective of the nonlinear analysis is to find the equilibrium configuration of a structure that is un-

der the loads action. The equation that governs the static equilibrium of a structural system with geometrical-

ly nonlinear behavior can be written by [3]: 

 (   )          ( )     (32) 

where g is the unbalanced forces vector, u is the nodal displacement vector, Fint is the internal forces vector, 

  is the load parameter and Fr is a reference vector characterizing the external load direction. 

POTRA and PTÁK [21] developed a two-step method based on the Newton-Raphson method for the 

solution of systems of nonlinear equations, and consists of two evaluations of the function and only the calcu-

lation of first order derivatives. With cubic convergence and an efficiency index higher than that of the New-

ton-Raphson method [24], the iterative scheme proposed by these authors was adapted in this paper to the 

structural problem whose equations are [22]: 

 (   )   ( )     
(   )

  (33) 

   
(   )

 [ ( ( ))]
  

[   
(   )

    ( ( )  ( ))], (34) 

   
(   )

 [ ( ( ))]
  

[   
(   )

    ( (   )  ( ))], (35) 

 (   )   ( )     
(   )

    
(   )

  (36) 

 (   )   ( )     
(   )

  (37) 

for all k = 0, 1, 2, ..., and K is the stiffness matrix representative of the structural system (Jacobian matrix). 

The load sub-increment δ i
(k+1)

, with i = 1, 2, is determined according to the Linear Arc-Length path-

following technique [25, 26]. The expression for the initial load increment (predicted solution) is given by (k 

= 0): 

  
( )  

  

‖   ‖
  (38) 

where Δl represents the arc length increment. Proposed by CRISFIELD [5], the increment Δl can be used as a 

control parameter in the current load step according to the equation: 
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      (
  

  
)

   

  (39) 

where 
0
 l represents the arc length increment at the initial load step t = 0, kd is the desired number of itera-

tions for the convergence of the current iterative process and 
t
k is the number of iterations needed to converge 

at the previous load step. To determine the correction of the load sub-increment (k > 0), the following expres-

sion is used [27]: 

     
        

       

  (40) 

with i =1, 2 and 

      ( )    (   )          ( )    (   )  (41) 

      ( )       (42) 

In Equation (40)  u is the displacements increment vector. Figure 2 shows the incremental-iterative 

procedure of the Potra-Pták Method combined with the Linear Arc-Length technique. The input data in the 

algorithm are: initial arc length (
0
 l); maximum number of iterations in each load step (kmax); number of de-

sired iterations in each load step (kd); tolerance (tol); load increment ( P); and maximum number of load 

steps (LSmax). The outputs of the algorithm are: nodal displacement vector (u); total load parameter ( ); total 

number of load steps (LS); the total number of accumulated iterations until convergence to the solution 

(ktotal); average number of iterations (kav); and processing time in seconds (t). 

 

Input: 
0
 l, kd, LSmax, tol, kmax,  P 

Output: LS, ktotal, , u, t, kav 

1.  u  0,  u  0,   0, ktotal  0,  l  
0
 l 

2. tic() (starts a timer) 

3. aux_1  tol  ||Fr( P)|| 

4.  For LS  1,, LSmax do 

5.     k  0 

6.     Calculate the stiffness matrix K 

7.     Decompose matrix K into triangular 

        matrices L and U (LU factorization) 

8.                   (  ) 

9.                    

10.    
(0)

   l / ur|| 

11.   If 
t
 u

T
  ur < 0 then 

12.       
(0)

  - 
(0)

 

13.   End-If 

14.    u   
(0)

  ur 

15.    u
(0)

   u 

16.   u  u +  u 

17.      +  
(0)

 

18.   For k  1, …, kmax do 

19.     k  k +1 

20.     Calculate the stiffness matrix K(u) 

21.     Decompose matrix K into triangular 

          matrices L and U (LU factorization) 

22.     g   Fr - Fint(u) 

23.                   

24.                    

25.                   (  ) 

26.                    

27.      1  -( u
T 
 ug)/( u

T 
 ur) 

28.      u1   ug +  1  ur 

29.     g   Fr - Fint(u +  u1) 

30.                   

31.                    

32.      2  -( u
T 
 ug)/( u

T 
 ur) 

33.      u2   ug +  2  ur 

34.      u   u +  u1 +  u2 

35.     u  u +  u1 +  u2 

36.     If  u
(k)T

  u
(k+1)

 < 0 then 

37.        2  - 2 

38.     End-If 

39.        +  2 

40.     If ||g|| < aux_1 or || u2|| < tol  ||u|| then 

41.       Finish running For 

42.     End-If 

43.   End-For 

44.    l  
0
 l (kd/k)

0.5
 

45.   ktotal  ktotal + k 

46. End-For 

47. kav  ktotal/LS 

48. t  toc() (reads the timer) 

Figure 2: Algorithm for the Potra-Pták method combined with Linear Arc-Length technique. 
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5. RESULTS AND DISCUSSION 

The Euler-Bernoulli and Timoshenko beam-column models are used for the purpose of comparing them, by 

the equilibrium path of structural systems with geometric nonlinearity (considering large displacements and 

rotations, but small strains). Four structures are analyzed numerically: cantilever beam; Lee's frame; semi-

circular arch; and Williams' frame. The units of the problems were maintained according to the original ref-

erences. 

The semi-rigid connection is modeled with the element proposed by DEL SAVIO et al. [20] and it is 

inserted at the intersection point between beam or column and support. The constitutive relation of the mate-

rial is considered linear elastic and the structures' own weight is neglected in the analyzes. 

According to CHEN et al. [28], axial, shear, bending and torsional forces are transmitted to a connec-

tion. However, by hypothesis in the analyzes performed here, large numerical values are adopted for axial 

and shear stiffness (that is, Sa   and St  , respectively) and only the value of rotational stiffness is varied 

(Sr). 

5.1 Cantilever beam 

Consider the cantilever beam subjected to a load P illustrated in Figure 3, whose longitudinal elasticity 

modulus is E = 1.0  10
7
 kN/m

2
, the shear modulus G is considered to be the half of E and coefficient  = 

1.0. This problem was also studied by SILVA et al. [29], using the beam-column element proposed by 

TANG et al. [30]. Figures 4 and 5 show the equilibrium paths obtained with the Euler-Bernoulli and Timo-

shenko models depending on the slenderness ratio (L0/h). The parameters considered in the analyzes for the 

Potra-Pták solution method are: initial arc length 
0
 l = 0.3; tolerance tol = 1.0  10

-6
; desirable number of 

iterations in the load step kd = 5; maximum number of iterations in the step kmax = 150; and increment load 

 P = 1.0  10
3
 kN. The structure is discretized by 40 beam-column elements and one connect element. To 

simulate the fixed support, the rotational stiffness Sr = 1.0  10
15

 (rigid connection) is adopted. 

 

Figure 3: Structural model of cantilever beam. 

 

Figure 4: Equilibrium paths of the cantilever beam for slenderness ratio  = L0/h = 2. 

It can be seen, in Figure 4, that for the slenderness ratio L0/h = 2 the Euler-Bernoulli model presented 

a more rigid numerical curve, differing from the numerical response of the Timoshenko model; however, the 

curves tend to be closer together at smaller load intensities. With the increase in slenderness (L0/h = 10), it is 

observed that the responses of the models were very close (Figure 5). The numerical results obtained with the 

Timoshenko beam theory are shown in Table 1, as to the total number of load steps (LS) and accumulated 

iterations until convergence to the solution (ktotal), average number of iterations per load step (kav) and pro-

cessing time in seconds (t). 
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Figure 5: Equilibrium paths of the cantilever beam for slenderness ratio  = L0/h = 10. 

Table 1: Cantilever beam - numerical results with Timoshenko's theory. 

Slenderness ratio LS ktotal kav t (s) 

L0/h = 2 16 30 1.8750 2.7075 

L0/h = 10 15 28 1.8670 2.5161 

5.2 Lee’s frame 

The structure illustrated in Figure 6, known as Lee's frame, is often used to validate nonlinear solution strate-

gies. This numerical problem was studied by SCHWEIZERHOF and WRIGGERS [31] and BATTINI [19]. 

The vertical and horizontal bars of the frame have cross-section area A = 6.0 and moment of inertia I = 2.0. 

The material of the bars has the properties: longitudinal elasticity modulus E = 720; shear modulus G = 

276.9230; Poisson's ratio  = 0.3; and coefficient  = 1.0. This structure was discretized with 20 beam-

column elements (ten elements for each bar) and two connect elements. The parameters adopted for the solu-

tion method are: 
0
 l = 9.0; tol = 1.0  10

-7
; kd = 5; kmax = 150; and  P = 2.0. 

 

Figure 6: Structural model of Lee’s frame. 

Figure 7 shows the equilibrium paths (vertical displacement at node 14 x load P curves) with two 

force limit points and two displacement points, for both beam models. Figure 8 shows the structure equilibri-

um configurations referring to the initial position (LS = 0) and the deformed positions (LS = 5, 20, 40 and 

56), obtained with the Timoshenko beam model. It is observed in Figure 7 the good numerical agreement 

between the curves obtained here and equilibrium points obtained by BATTINI [19]. The load-displacement 

curves considering the two beam theories were very close, since the members (beam and column) of the 

frame are slender (slenderness ratio  = L0/h = 60). The numerical results obtained (LS, ktotal, kav and t) with 

Timoshenko's beam theory are shown in Table 2. 
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Figure 7: Lee’s frame - equilibrium paths. 

 

Figure 8: Lee’s frame - equilibrium configurations. 

Table 2: Lee’s frame: numerical results with Timoshenko's theory. 

Solution Method LS ktotal kav t (s) 

Potra-Pták 56 173 3.0892 7.3113 

5.3 Semi-circular arch 

Consider the semi-circular arch of radius R = 50 m subjected to a centered load P at its top and with pinned 

supports (Sr = 0), as shown in Figure 9. The mechanical properties of the material are: longitudinal elasticity 

modulus E = 2.0  10
4
 kPa; shear modulus G = 8.3333  10

3
 kPa; Poisson's ratio  = 0.2; and coefficient  = 

1.0. The arch has cross-sectional area A = 0.8 m
2
 and moment of inertia I = 4.2667 m

4
. 

 

Figure 9: Structural model of semi-circular arch. 
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The structure was discretized by 36 beam-column elements, two connect elements and 39 nodes. The 

following parameters are considered in the analyzes with the Potra-Pták method: 
0
 l = 2.2; tol = 1.0  10

-8
; kd 

= 7; kmax = 150; and  P = 100 kN. Table 3 shows the numerical results (LS, ktotal, kav and t) obtained with 

Timoshenko's beam theory. Figure 10 corresponds to the equilibrium paths in the load-displacement space of 

the structure with respect to the node where the load P is applied (node 20 of the mesh), obtained with the 

Euler-Bernoulli and Timoshenko beam models. Four force limit points (horizontal tangents) and three dis-

placement limit points (vertical tangents) are observed in these curves. Figure 11 shows the structure equilib-

rium configurations referring to the initial position (LS = 0) and the deformed positions (LS = 50, 150, 250 

and 301), obtained with the Timoshenko beam model. 

Table 3: Semi-circular arch - numerical results with Timoshenko's theory. 

Solution Method LS ktotal kav t (s) 

Potra-Pták 301 607 2.0166 50.0421 

 

Figure 10: Semi-circular arch - equilibrium paths. 

 

Figure 11: Semi-circular arch - equilibrium configurations. 

5.4 Williams' frame  

This example aims to investigate the effect of connection flexibility of the Williams' frame. The structure 

illustrated in the Figure 12 consists of two rigidly connected beams, with the supports located at the ends and 

one vertical load P applied at its top. The axial and flexural stiffness of the beams are EA = 1.885  10
6
 lb ( 

8.3848  10
6
 N) and EI = 9.274  10

3
 lb in

2
 ( 26.6145 N m

2
), respectively. The sectional shear correction 

coefficient is  = 1.0. Three types of support are considered: ideally pinned (Sr = 0); perfectly rigid (Sr = 1.0 

 10
15

 lb in/rad  1.1298  10
14

 N m/rad); and semi-rigid (Sr = 1.8  10
3
 lb in/rad  203.3717 N m/rad). The 

structure was discretized by eight beam-column elements and two connect elements. The parameters for the 
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solution method considered in the simulations are: 
0
 l = 0.065; tol = 1.0  10

-8
; kd = 4; kmax = 150; and  P = 

1.6 lb ( 7.1171 N). 

The numerical results (LS, ktotal, kav and t) with the Timoshenko model and the types of supports are 

shown in Table 4. The equilibrium paths (vertical displacement/h versus load P curves) obtained with two 

load limit points are shown in Figure 13. There is good numerical agreement with the equilibrium points ob-

tained by TIN-LOI and MISA [32]. 

 

Figure 12: Structural model of the Williams' frame. 

Table 4: Williams' frame: numerical results. 

Types of supports LS ktotal kav t (s) 

Ideally pinned 23 46 2.0000 0.9709 

Perfectly rigid 21 27 1.2857 0.6714 

Semi-rigid 22 44 2.0000 0.9212 

 

Figure 13: Williams' frame - equilibrium paths. 

5.5 Numerical results analysis 

Lee's frame and semi-circular arch are characterized by a strongly nonlinear behavior, in which the equilibri-

um paths exhibit load limit points (snap-throughs) and displacement limit points (snap-backs). The tangent is 

horizontal at the load limit points (maximum or minimum points) and at the displacement limit points the 

tangent is vertical in the path. When the structure reaches the limit points it can become unstable, so their 

identification is of great importance for an engineering design. 

The equilibrium paths with the Euler-Bernoulli and Timoshenko beam models are close to the initial 

loading levels, regardless of the structural element slenderness. However, as the load intensity increases the 

paths may diverge (Figure 4 - cantilever beam, Figure 10 - semi-circular arch and Figure 13 - Williams' 

frame). The structural system response does not depend on the theory adopted for higher slenderness values 

(relation between length L0 and height h of the transversal section), that is, the load versus displacement 

curves become close or coincident (Figure 5 - cantilever beam and Figure 7 - Lee's frame). The Timoshenko 

beam model for thick structural elements (lower slenderness) produces more accurate results due to the inclu-
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sion of the shear effects. 

The critical load and the post-buckling strength of structural systems are affected by the slenderness 

ratio and are lower for structures composed of elements with low slenderness. In other words, the large dis-

placement behavior of these systems is affected by shear deformation, and this deformation must be taken 

into account when the structure components have low slenderness. 

The iterative and incremental procedure of Potra-Pták associated with the Linear Arc-Length path-

following technique was able to obtain equilibrium paths with load and displacement limit points of the stud-

ied structures. Note that in the iteration of this procedure, the same stiffness matrix (Jacobian matrix) is used 

to solve the systems of linear equations (see Equations (34) and (35)); thus, these systems can be solved via 

decomposition (for example, LU or Cholesky decomposition), since a single factorization at the beginning of 

the iteration is necessary. 

The Potra-Pták method has already been tested in nonlinear problems of plane and spatial trusses [22, 

33], proving to be more efficient than the Newton- Raphson method, regarding processing time. Despite the 

more expensive computational cost of iteration, compared to the Newton-Raphson iteration, it achieves the 

problem solution with a lower number of load steps and accumulated iterations necessary for convergence, 

given the tolerance. The Potra-Pták method can be quite advantageous in solving nonlinear equations systems 

of structural problems with a large number of unknowns. 

The device for checking the change in the sign of the initial load increment ( 
(0)

) proposed by 

KRENK and HEDEDAL [34], in the predicted solution (see lines 11 to 13 of the algorithm in Figure 2), is 

easy to implement and presented accurate results in all the studied examples. Furthermore, to guarantee the 

correct signal of the load sub-increment ( 
(k)

) in the iterative cycle (load increment correction phase), the 

following condition was added: if  u
(k)T

  u
(k+1)

 < 0, then  2  - 2 (see lines 36 to 38 of the algorithm in 

Figure 2). 

Models with ideal connections simplify the analysis procedure, but often do not represent the actual 

behavior of the structure. The nodal connections of plane frames are subject to the action of bending mo-

ments, axial forces and shear forces; however, the effect of these forces is usually neglected, and only the 

influence of the bending moments is of practical interest. From the numerical results of the Williams' frame, 

the flexibility of the connections has significant influence on the structural behavior, both in the nodal dis-

placements and in the distribution of the internal forces. It is also noted that the structure failure load de-

creases with the increase in the connection flexibility. 

6. CONCLUSION 

This paper presented a numerical-computational model for static analysis of plane frames with geometric 

nonlinearity and semi-rigid connections. The structural systems were discretized with 2D beam-column co-

rotational finite elements, based on the Euler-Bernoulli and Timoshenko beam theories. The connection be-

tween the structural members was simulated by a zero-length element, which considers axial, translational 

and rotational rigidities. The system of nonlinear equations that describes the structural problem was solved 

by the Potra-Pták incremental-iterative procedure associated with the Linear Arc-Length technique. 

The numerical results showed that for geometric nonlinear analyzes with thick elements (less slender-

ness) the shear effect becomes important as the magnitude of the load on the structure increases. Thus, a fi-

nite element model whose formulation is based on Timoshenko's theory is more precise in terms of obtaining 

the structural response represented by the equilibrium path with limit points. 

The simplifying hypothesis that the beam-column connection is perfectly flexible or completely rigid 

in structural designs can lead to an incorrect estimate of the mechanical behavior of frames. Connect defor-

mation has a negative effect on the frame stability, since it increases the lateral displacement of the structure 

and causes a decrease in the stiffness of the member that is connected to the joint. 

In order to perform the nonlinear analysis of structures, with greater precision, it is of utmost im-

portance that incremental and iterative procedures that can appropriately consider the effects of large rota-

tions and displacements, and allow the complete tracing of the structure's equilibrium path. The Potra-Pták 

method combined with the Linear Arc-Length path-following technique proved to be suitable for the analysis 

of structural systems (beams, frames and arches) with geometric nonlinear behavior. 

Therefore, the consideration of geometric nonlinearity, the proper beam theory and the semi-rigidity 

of beam-column connections in structural analysis and design procedures can reduce the system's own weight, 

thus obtaining more optimized structures. 
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