

Descoloração de Rodamina B via reação Fenton usando nanopartículas de ferro suportadas em biomassa da casca de Castanha-do-Brasil

Decolorization of Rhodamine B by Fenton reaction using iron nanoparticles supported in Brazil nutshell biomass

Rossean Golin¹, Aline Gonçalves Barbosa² D, Viviane Cristina Padilha Lopes², Danila Soares Caixeta^{1,2}, Frederico Carlos Martins de Menezes Filho³, Evandro Luiz Dall'Oglio⁴ Leonardo Gomes de Vasconcelos⁴, Eduardo Beraldo de Morais^{1,2}

¹Universidade Federal de Mato Grosso, Departamento de Engenharia Sanitária e Ambiental. Avenida Fernando Corrêa da Costa, 2367, 78060-900, Cuiabá, MT, Brasil.

²Universidade Federal de Mato Grosso, Programa de Pós-Graduação em Recursos Hídricos. Avenida Fernando Corrêa da Costa, 2367, 78060-900, Cuiabá, MT, Brasil.

³Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas. Rodovia MG 230, Km 7, 38810-000, Rio Paranaíba, MG, Brasil.

⁴Universidade Federal de Mato Grosso, Departamento de Química. Avenida Fernando Corrêa da Costa, 2367, 78060-900, Cuiabá, MT, Brasil.

e-mail: golin.rossean@gmail.com, danilacaixeta@gmail.com, beraldo_morais@yahoo.com.br, barbosaaline041@gmail.com, vivianelops@gmail.com, frederico.menezes@ufv.br, dalloglio.evandro@gmail.com, vasconceloslg@gmail.com

RESUMO

Neste estudo, biomassa da casca de Castanha-do-Brasil suportada com nanopartículas de ferro (BCB-NPsFe) foi utilizada para a descoloração do corante rodamina B (RdB) via reação catalítica de Fenton. A maior taxa de descoloração foi de 94,5% obtida nas condições: solução contendo 20 mg/L de RdB, 1,0 g/L de BCB-NPsFe, 200 mM de H_2O_2 , pH 4,0, temperatura de 45 °C e tempo de reação de 240 minutos. A taxa de mineralização da RdB nessas mesmas condições foi de 61,3%. Por meio da equação de Arrhenius a energia de ativação da descoloração da RdB foi estimada em 36,25 kJ/mol, um valor baixo se comparado a outros estudos. A reutilização da BCB-NPsFe em cinco ciclos de descoloração mostrou que a descoloração da RdB não foi afetada. A BCB-NPsFe também foi eficiente na descoloração dos corantes verde Malaquita (97,1%), violeta cristal (87,0%), preto reativo B (91,2%) e vermelho reativo 239 (89,1%). Estes resultados indicaram que a BCB-NPsFe pode ser uma alternativa econômica e ambientalmente sustentável para o tratamento de águas residuárias contendo corantes.

Palavras-chave: Corantes têxteis; Oxidação Fenton; Cinética; Resíduos.

ABSTRACT

In this study, Brazil nutshell biomass supported with iron nanoparticles (BCB-NPsFe) was used to decolorize the dye Rhodamine B (RdB) using Fenton catalytic reaction. Higher discoloration rate was 94.3% obtained at the condition: solution containing 20 mg/L RdB, 1.0 g/L BCB-NPsFe, 200 mM H_2O_2 , pH 4.0, temperature of 45 °C, and reaction time of 240 minutes. The mineralization rate of RdB under these same conditions was 61.3%. Using the Arrhenius equation, the activation energy of RdB decolorization was estimated at 36.25 kJ/mol, a low value compared to other studies. The reusability of BCB-NPsFe in five decolorization cycles showed that the RdB decolorization was not affected. BCB-NPsFe also efficiently decolorized Malachite green (97.1%), crystal violet (87.0%), reactive black B (91.2%), and reactive red 239 (89.1%). These results indicated that BCB-NPsFe could be an economical and eco-friendly treatment strategy for wastewater containing dyes.

Keywords: Textile dyes; Fenton-like oxidation; Kinetic; Wastes.

1. INTRODUÇÃO

O controle da contaminação das águas por poluentes orgânicos, inorgânicos e patógenos é um grande desafio aos pesquisadores e poder público nos dias atuais. Muitos desses poluentes são potencialmente tóxicos e podem trazer prejuízos aos diversos seres vivos incluindo a espécie humana. Dentre os poluentes orgânicos, os corantes são amplamente utilizados nas indústrias têxteis, de plástico, papel, borracha e de tintas e são responsáveis por problemas estéticos nos corpos hídricos devido à coloração, pela depleção do oxigênio dissolvido e redução da penetração de luz afetando a fotossíntese [1]. Além disso, muitos corantes e os produtos de sua degradação são tóxicos, mutagênicos ou carcinogênicos [2].

O tratamento tradicional de águas residuárias contendo corantes baseia-se principalmente em métodos biológicos. Entretanto, a natureza recalcitrante dos corantes devido às estruturas complexas de suas moléculas, podem levar a ineficiência dessa tecnologia [3]. Adsorção, radiação gama e eletrocoagulação também têm sido utilizados para a descoloração de corantes [4–7]. Todavia, o elevado consumo de energia elétrica, a geração de resíduos contendo o próprio corante e a necessidade de mão de obra especializada são algumas das desvantagens dessas tecnologias [8].

Os processos oxidativos avançados, como a reação Fenton, têm se destacado nas últimas décadas como uma tecnologia promissora, de baixo custo e ambientalmente sustentável para o tratamento de águas residuárias contendo compostos orgânicos perigosos, incluindo os corantes [9]. Na reação de Fenton, radicais altamente oxidantes e não seletivos como hidroxila (OH[•]) são usados para degradar ou até mesmo mineralizar os contaminantes orgânicos [10]. Os principais reagentes envolvidos na reação Fenton são peróxido de hidrogênio (H_2O_2) e catalizadores como íon Fe²⁺ ou nanopartículas de ferro de valência zero (NPsFe). Estes decompõem o H_2O_2 gerando radicais hidroxilas responsáveis pela oxidação dos compostos orgânicos. As NPsFe possuem algumas vantagens frente aos íons Fe²⁺ já que podem ser aplicadas em uma faixa de pH mais ampla, possuem alta reatividade química em sua superfície e podem ser recuperadas após o tratamento do efluente [11]. Além disso, as NPsFe podem também ser imobilizadas em diferentes tipos de materiais suportes diminuindo ainda mais a perda dos íons de ferro no efluente tratado [12].

A síntese das nanopartículas, incluindo as NPsFe, pode ser feita por métodos físicos e químicos como precipitação/coprecipitação, processos sol-gel, microemulsão e em micelas reversas e síntese hidrotermal. Tais métodos, entretanto, utilizam solventes e agentes estabilizantes e dispersantes que geralmente são tóxicos e caros, limitando sua produção em grande escala [12]. Por outro lado, a síntese biogênica de nanopartículas usando extratos obtidos a partir de biomassas vegetais representam uma alternativa de baixo custo e ambientalmente responsável. Esses extratos possuem compostos fitoquímicos que atuam como agentes redutores e estabilizantes das nanopartículas [13].

Resíduos vegetais oriundos das atividades agroextrativistas são abundantes no Brasil e praticamente sem valor econômico, e podem ser utilizados como precursores na produção de novos materiais, incluindo as nanopartículas. A castanheira (*Bertholletia excelsa*) é uma árvore nativa da América do Sul, que cresce em áreas bem drenadas da região amazônica (Brasil, Colômbia e Venezuela) e áreas vizinhas como Bolívia, Guiana e Peru [14]. O processamento da Castanha-do-Brasil gera um resíduo formado pela casca do fruto que já foi utilizado na produção de biossorvente e carvão ativado para a remoção de poluentes da água [14,15].

Neste estudo, nanopartículas de ferro suportadas em biomassa de casca da Castanha-do-Brasil foram avaliadas na descoloração do corante rodamina B (RdB) via reação Fenton. Este corante faz parte da classe xanteno com intensa utilização na indústria têxtil, de papel e couro, apesar de ser considerado tóxico aos seres vivos [16]. As influências dos fatores pH da solução de corante, concentração de H_2O_2 e temperatura no processo de descoloração foram investigados, assim como a cinética de descoloração e o possível mecanismo catalítico da RdB. Ademais, a aplicação das NPsFe na descoloração dos corantes verde Malaquita, violeta cristal, preto reativo B e vermelho reativo 239 também foi avaliada.

2. MATERIAIS E MÉTODOS

2.1. Materiais

As cascas da Castanha-do-Brasil foram adquiridas da Cooperativa Mista do Guariba – COMIGUA, localizada no Distrito de Guariba, município de Colniza – MT. Todos os reagentes químicos utilizados foram de grau analítico, com exceção dos corantes preto reativo B e vermelho reativo 239, que foram utilizados em sua formulação comercial. Rodamina B (fórmula molecular: $C_{28}H_{31}ClN_2O_3$, massa molecular: 479,00 g/mol), peróxido de hidrogênio (H_2O_2 ; 29,0%, v/v), sulfato ferroso (FeSO₄.7H₂O, pureza mínima: 99,0%), verde Malaquita ($C_{23}H_{25}ClN_2$, massa molecular: 467,99 g/mol), violeta cristal ($C_{25}H_{30}ClN_3$, massa molecular: 408,00 g/mol), HCl e NaOH foram adquiridos da marca Synth. Preto reativo B e vermelho reativo 239 foram cedidos por uma

indústria têxtil localizada no estado de São Paulo, Brasil. Todas as soluções foram feitas com água destilada. O pH inicial desejado das soluções foi ajustado utilizando soluções 0,1 M de HCl ou NaOH.

2.2. Preparo da biomassa suportada com nanopartículas de ferro

As cascas da Castanha-do-Brasil foram lavadas com água destilada para a retirada de resíduos de sua superfície e secas a 80 °C em estufa por 24 h. Após, elas foram trituradas em moinho elétrico e passadas em peneira padrão de abertura 0,149 mm.

Para a síntese e suporte das NPsFe na casca da Castanha-do-Brasil, 10,0 g desse material foram adicionados em 1,0 L de solução 0,1 M de FeSO₄.7H₂O, e esta foi agitada a 80 °C por 2 h em um agitador magnético. A alteração da coloração dessa solução de marrom claro para preto indicou a formação das nanopartículas de ferro. Isso ocorre porque os compostos fitoquímicos oriundos da casca da castanha podem atuar como agentes redutores. A biomassa da casca da Castanha-do-Brasil suportada com nanopartículas de ferro (BCB-NPsFe) foi então coletada por centrifugação, lavada abundantemente com água destilada e secas a 80 °C por 24 h.

2.3. Caracterização da BCB-NPsFe

Os principais grupos funcionais presentes na superfície da BCB-NPsFe foram determinados por Espectroscopia de Infravermelho por Transformada de Fourier (FTIR). A análise foi feita na faixa espectral entre 4000-400 cm⁻¹ em um equipamento IRAffinity-1 Shimadzu. A morfologia e composição química da BCB-NPsFe foram determinadas por Microscopia Eletrônica de Varredura (MEV) (equipamento Jeol, modelo JSM-IT 300) acoplado ao sistema de EDS (Energy Dispersive System) (equipamento Balzers Union, modelo MED 010).

2.4. Experimentos de descoloração por meio da reação Fenton

Todas os experimentos de descoloração foram conduzidos em frascos Erlenmeyer contendo 50 mL de solução de 20 mg/L de RdB. Esses foram agitados em incubadora do tipo shaker a 200 rpm. A influência dos parâmetros pH (2, 4, 6, 8 e 10), concentração de H_2O_2 (100, 200, 300, 400 e 500 mM) e temperatura (25, 35 e 45 °C) no processo de descoloração foi avaliada. A concentração residual de RdB nas soluções foi determinada por meio da espectrofotometria em $\lambda = 542$ nm (espectrofotômetro UV-Vis Hach DR6000) após a BCB-NPsFe ser removida por filtração. A taxa de descoloração da RdB (D, %) foi calculada usando a Equação 1:

$$D(\%) = \frac{c_o - c_t}{c_o} \times 100$$
(1)

onde $C_0 e C_t$ são as concentrações de RdB (mg/L) inicial e no tempo t (min), respectivamente.

2.5. Mecanismo catalítico da RdB

A avaliação do possível mecanismo catalítico da RdB foi realizada por meio do espectro UV-Vis da solução de RdB submetida à descoloração em diferentes tempos de reação e por meio da mineralização da RdB, determinada a partir da demanda química de oxigênio (DQO) [17].

2.6. Análise dos resultados

Os resultados foram apresentados como médias obtidas de três repetições (triplicata) seguidas pelos desvios padrão. Para a análise estatística desses resultados, utilizou-se o teste *t* de Student quando as comparações foram feitas entre dois níveis de um único fator ou a análise de variância (ANOVA) seguida das comparações múltiplas de Tukey quando havia três ou mais níveis de um único fator. Adotou-se o nível de significância de 5%, ou seja, os valores de *p* inferiores a 0,05 foram considerados estatisticamente significativos.

3. RESULTADOS E DISCUSSÃO

3.1. Caracterização da BCB-NPsFe

Com base na análise do espectro de FTIR foi possível identificar as bandas e os respectivos grupos funcionais presentes na BCB-NPsFe (Figura 1). A banda 3325 cm⁻¹ é atribuída ao estiramento vibracional da ligação -OH presente em álcoois e fenóis da estrutura de ligninocelulose da BCB-NPsFe. As bandas 2924 e 2854 cm⁻¹ representam a vibração assimétrica e simétrica de C-H dos grupos CH₂ e CH₃[18]. As bandas 1651 e 1543 cm⁻¹ correspondem ao estiramento de C=C de anéis aromáticos da lignina. A banda 1373 cm⁻¹ é atribuída à deformação angular de C-CH₃, enquanto a banda 1242 cm⁻¹ corresponde ao estiramento de C-O [12]. A banda 1056 cm⁻¹ é

Figura 1: Espectro de FTIR da BCB-NPsFe.

Figura 2: Imagens de MEV da BCB-NPsFe destacando sua morfologia irregular porosa (a-c) e NPsFe em sua superfície (d).

atribuída ao estiramento de C-O em álcoois e fenóis [19]. As bandas entre 450 e 700 cm⁻¹ estão associadas ao estiramento vibracional de Fe-O, indicando a deposição de nanopartículas de ferro na superfície da biomassa da casca da Castanha-do-Brasil [13].

As análises de MEV mostraram uma morfologia irregular porosa da BCB-NPsFe (Figura 2a-c) com as NPsFe distribuída em sua superfície (Figura 2d). Esses resultados são consistentes com aqueles apresentados por SU *et al.* [20]. A análise de EDS mostrou que a superfície analisada da BCB-NPsFe era constituída de 62,11% de carbono, 20,65% de oxigênio, 15,96% de ferro, 0,67% de enxofre e 0,62% de fósforo (Figura 3a).

(cc) BY

Figura 3: Espectro de EDS (a) e mapa de distribuição dos elementos químicos da BCB-NPsFe (b).

O mapa de distribuição dos elementos químicos mostrou uma distribuição uniforme dos elementos carbono, oxigênio e ferro (Figura 3b).

3.2. Influência de diversos parâmetros na descoloração

3.2.1. Influência do pH inicial

As águas residuárias da indústria têxtil possuem valores de pH variáveis dependendo dos corantes e processos utilizados [21]. Desse modo, é importante avaliar a influência desse parâmetro no processo oxidativo de Fenton a fim de otimizar o processo de descoloração. A influência de diversos valores de pH (2, 4, 6, 8 e 10) na descoloração da RdB foi avaliada durante o período de 120 minutos, a 25 °C. Experimentos para avaliar a descoloração da RdB pelo processo de adsorção nas mesmas condições também foram executados para fins de comparação, assim como também foi avaliado a possível descoloração em experimentos contendo somente o H₂O₂. As descolorações nos experimentos contendo apenas o peróxido de hidrogênio não foram significativas (< 1,6%). Como pode ser observado na Figura 4, fica evidente que a descoloração da RdB pelo processo oxidativo de Fenton (BCB-NPsFe + H₂O₂) supera a descoloração pela adsorção nos pHs 2, 4 e 6, diferença essa que foi ratificada pelo teste *t* de Student (*p* < 0,0001, *p* = 0,0039 e *p* = 0,0038 para o pHs 2, 4 e 6, respectivamente). Já nos pH 8 e 10, as descolorações via Fenton e processo de adsorção não apresentaram diferenças significativas.

Também é possível observar na Figura 4 que as taxas de descoloração obtidas pelo reação de Fenton para os valores de pHs ácidos (2, 4 e 6) foram maiores do que aquelas obtidas para os pH alcalinos (8 e 10), resultados esses que foram significativos de acordo com a análise de variância e comparações múltiplas de Tukey. Tais comparações também apontaram que houve diferença estatística significativa entre as taxas de descoloração obtidas nos pH 2 e 4 da reação de Fenton. Já a descoloração obtida para o pH 6 não diferiu daquelas dos pHs 2 e 4 (Figura 4). A maior eficiência da BCB-NPsFe em descolorir a RdB em condições ácidas pode ser explicada pela oxidação do Fe⁰ gerando Fe²⁺ e Fe³⁺, os quais irão gerar radicais OH[•]. Já em valores de pHs alcalinos o potencial de oxidação dos radicais OH[•] é menor e há a formação de hidróxido de ferro que acaba se precipitando, removendo dessa forma os íons Fe²⁺ e Fe³⁺ da solução [21,22].

3.2.2. Influência da concentração de H₂O₂

A concentração de H₂O₂ também é um fator que pode influenciar significativamente a degradação dos compostos orgânicos em processos oxidativos de Fenton uma vez que está relacionado com a quantidade de radicais

Figura 4: Influência do pH na descoloração da RdB por BCB-NPsFe (Condições do experimento: $[RdB] = 20 \text{ mg/L}, [H_2O_2] = 200 \text{ mM}, [BCB-NPsFe] = 1,0 \text{ g/L}, T = 25 °C, tempo de reação = 120 min). * Indica diferença significativa entre as taxas de descoloração pelos processos Fenton e de adsorção segundo o teste$ *t*de Student no nível de significância de 5%. Letras diferentes indicam diferenças significativas entre a taxa de descoloração obtidas em diversos valores de pH segundo a ANOVA seguida pelo teste de Tukey no nível de significância de 5%.

Figura 5: Influência da concentração de H_2O_2 na descoloração da RdB por BCB-NPsFe (Condições do experimento: [RdB] = 20 mg/L, pH = 4, [BCB-NPsFe] = 1,0 g/L, T = 25 °C, tempo de reação = 120 min). Letras diferentes indicam diferenças significativas entre a taxa de descoloração segundo a ANOVA seguida pelo teste de Tukey no nível de significância de 5%.

hidroxilas liberados no processo [23]. A descoloração da RdB teve um aumento significativo (p < 0.05) de 47,7 para 61,0% quando a concentração de H_2O_2 passou de 100 para 200 mM (Figura 5), provavelmente devido a maior quantidade de OH liberada no sistema. O aumento da concentração de H_2O_2 para 300, 400 e 500 mM, entretanto, não ocasionou incremento na taxa de descoloração. Em altas concentrações de H_2O_2 , o excesso de peróxido pode atuar como sequestrante de radicais hidroxila levando a geração de radical hidroperoxila (HO_2^-), o qual possui menor poder oxidante, impedindo o aumento na taxa de descoloração [24].

3.2.3. Influência da temperatura, cinética de descoloração e energia de ativação

A influência de diferentes valores de temperatura (25, 35 e 45 °C) no processo de descoloração da RdB foi avaliada em experimentos contendo solução de 20 mg/L de RdB, pH 4, 200 mM de H_2O_2 , 1,0 g/L de BCB-NPsFe (Figura 5). Com o aumento da temperatura, houve o aumento da descoloração da RdB, o qual foi significativo de acordo com a análise de variância (p < 0,0001). As porcentagens de descoloração nas temperaturas 25, 35 e 45 °C, após 240 minutos, foram de 72,2, 88,8 e 94,3%, respectivamente (Figura 6). Isso é devido a maior

Figura 6: Influência da temperatura na descoloração da RdB por BCB-NPsFe (Condições do experimento: [RdB] = 20 mg/L, pH = 4, $[H_2O_2] = 200 \text{ mg/L}$, [BCB-NPsFe] = 1,0 g/L, tempo de reação = 240 min).

Figura 7: Curvas obtidas para a descoloração da RdB a partir do modelo cinético de pseudo-primeira ordem em diferentes temperaturas (Condições do experimento: [RdB] = 20 mg/L, pH = 4, $[H_2O_2] = 200 \text{ mM}$, [BCB-NPsFe] = 1,0 g/L, tempo de reação = 240 min).

produção de radicais OH em temperaturas mais elevadas em decorrência do aumento da frequência de colisão entre as moléculas de H_2O_2 e BCB-NPsFe. Da mesma maneira, as moléculas de RdB também colidem mais facilmente aos radicais OH resultando em maiores taxas de descoloração [22].

De acordo com estudos prévios [25–27], a dinâmica de descoloração da RdB pode ser descrita por modelo cinético de pseudo-primeira ordem. O modelo é expresso pela Equação 2:

$$ln \frac{C_t}{C_o} = -kt \tag{2}$$

onde $C_0 e C_t$ são as concentrações de RdB (mg/L) inicial e no tempo t (min), respectivamente, e k é a constante de pseudo-primeira ordem (min⁻¹).

Como era de se esperar, as constantes de pseudo-primeira ordem tiveram um aumento com o aumento da temperatura (Figura 7). Para as temperaturas 25, 35 e 45 °C os valores de *k* foram 0,0048, 0,0089 e 0,0120 min⁻¹, respectivamente. Os valores do coeficiente de determinação (R^2) de 0,955, 0,987 e 0,963 para as temperaturas de 25, 35 e 45 °C indicaram o bom ajuste dos dados pelo modelo de pseudo-primeira ordem.

Figura 8: Representação gráfica da equação de Arrhenius para a descoloração da RdB.

Figura 9: Espectros UV-Vis da solução de RdB submetida a descoloração por NPsFe em diferentes tempos de reação e estrutura molecular da RdB. (Condições do experimento: $[RdB] = 20 \text{ mg/L}, \text{ pH} = 4, [H_2O_2] = 200 \text{ mM}, [BCB-NPsFe] = 1,0 \text{ g/L}, temperatura = 45 °C).$

A energia de ativação para a descoloração da RdB foi calculada a partir das constantes de pseudo-primeira (*k*) usando a equação de Arrhenius (Equação 3):

$$lnk = lnA_0 - \frac{E_a}{RT}$$
(3)

onde A_0 é o fator pré-exponencial, E_a a energia de ativação (J/mol), R é a constante universal dos gases (8,314 J/mol K) e T é a temperatura (K). O valor de E_a foi 36,25 kJ/mol, calculado a partir do gráfico *lnk* versus I/T (Figura 8). Este valor da energia de ativação é menor do que o reportado em outros estudos de descoloração da RdB pela reação Fenton. Por exemplo, BRITON *et al.* [10] reportaram uma energia de ativação de 55,2 kJ/mol durante a degradação da RdB por carvão ativado funcionalizado com nanopartículas de ferro, enquanto que GAN e LI [28], usando sílica derivada da casca de arroz impregnada com ferro encontraram uma energia de ativação de 82,53 kJ/mol, para a degradação do mesmo corante.

3.3. Mecanismo catalítico da RdB

A Figura 9 apresenta os espectros UV-Vis da solução de RdB submetida à descoloração pela NPsFe em diferentes tempos de reação. A principal banda de absorção situada em 553 nm é atribuída ao grupo cromóforo de corantes da classe xanteno, enquanto as bandas 354 e 258 nm correspondem à fração aromática do corante [29].

Figura 10: Descoloração da RdB pela reação de Fenton reutilizando a BCB-NPsFe em ciclos sequenciais (Condições do experimento: $[RdB] = 20 \text{ mg/L}, [H,O_2] = 200 \text{ mM}, [BCB-NPsFe] = 1 \text{ g/L}, T = 45 ^{\circ}C, tempo de reação = 240 min).$

Figura 11: Descoloração de outros corantes pela reação de Fenton usando BCB-NPsFe (Condições do experimento: [corante] = $20 \text{ mg/L}, [\text{H}_2\text{O}_2] = 200 \text{ mM}, [\text{BCB-NPsFe}] = 1,0 \text{ g/L}, T = 45 \text{ °C}, tempo de reação = 240 min). Letras diferentes indicam diferenças significativas entre as taxas de descoloração segundo a ANOVA seguida pelo teste de Tukey no nível de significância de 5%.$

A descoloração da RdB pelo processo Fenton normalmente se inicia pela N-desetilação e clivagem do grupo cromóforo o que pode ser constatado pela expressiva redução da banda 553 nm [10,30]. Paralelamente, também foi observado a redução das bandas espectrais da região do ultravioleta (354 e 258 nm), indicando a destruição dos núcleos benzênicos da RdB. Em relação à remoção de matéria orgânica, estimada pela DQO, observou que este parâmetro foi reduzido de $39.6 \pm 4.9 \text{ mg/L}$ para $15.3 \pm 4.2 \text{ mg/L}$, ou seja, uma redução de 61.3 %, indicando que a RdB foi parcialmente mineralizada.

3.4. Reutilização das BCB-NPsFe em novos ciclos de descoloração

A reutilização da BCB-NPsFe em novos ciclos de descoloração foi avaliada. Para isso, a BCB-NPsFe foi coletada após o final de cada ciclo, lavada com água destilada em abundância e seca a 80 °C por 24 h antes de iniciar um novo ciclo. Os resultados apresentados na Figura 10 demonstraram que as taxas de descoloração da RdB não sofreram alterações estatisticamente significativas (p = 0,2625) mesmo após cinco ciclos sequenciais. Esse resultado é importante do ponto de vista de aplicação prática uma vez que a BCB-NPsFe poderá ser reutilizada no processo de descoloração.

3.5. Descoloração de outros corantes

A descoloração de outros corantes de classes diferentes da RdB também foi avaliada em experimentos contendo 20 mg/L do corante, 200 mM de H₂O₂, 1,0 g/L de BCB-NPsFe, pH 4 e 45 °C (Figura 11). As taxas de descoloração foram 97,1 e 87,0% para os corantes da classe dos trifenilmetanos verde Malaquita e violeta cristal, respectivamente, e 91,2 e 89,1% para os corantes da classe azo preto reativo B e vermelho reativo 239, respectivamente, após um período de reação de 240 minutos. Para fins de comparação, nas mesmas condições 94,3% da RdB foram descoloridos. Do ponto de vista de aplicabilidade, estes resultados demostraram o potencial catalítico da BCB-NPsFe em degradar uma variedade de corantes, proporcionando uma possível alternativa para sua utilização em efluentes industriais reais.

4. CONCLUSÕES

Neste estudo, nanopartículas de ferro suportadas em biomassa da casca de Castanha-do-Brasil foram eficientemente utilizadas para a descoloração e mineralização do corante RdB via reação Fenton. A avaliação da influência de diferentes parâmetros apontou a descoloração máxima de 94,3% deste corante para uma solução de 20 mg/L de RdB, pH 4,0, 1,0 g/L de BCB-NPsFe, 200 mM de H₂O₂ e temperatura de 45 °C. Os dados de descoloração se ajustaram ao modelo cinético de pseudo-primeira ordem e a energia de ativação da descoloração foi estimada em 36,25 kJ/mol. Também foram demonstrados a potencialidade da reutilização da BCB-NPsFe em novos ciclos de descoloração e a sua capacidade de descolorir corantes de outras classes (verde Malaquita, violeta cristal, preto reativo B e vermelho reativo 239). Assim, a BCB-NPsFe pode ser uma alternativa eficiente e sustentável para o tratamento de águas residuárias contendo corantes. Sugere-se a realização de estudos ecotoxicológicos para a avaliação de possíveis efeitos adversos da solução descolorida.

5. **BIBLIOGRAFIA**

- [1] Dantas, Filho A.N.D., Aroucha, E.M.M., Leite, R.H.L., *et al.*, "Evaluation of adsortive potential of coconut mesocarp in the removal of reactive red dye 195 in aqueous effluents", *Matéria (Rio J.)*, v. 25, n. 4, pp. 19, 2020. https://doi.org/10.1590/S1517-707620200004.1152
- [2] Novotný, Č., Dias, N., Kapanen, A., et al., "Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes", *Chemosphere*, v. 63, n. 9, pp. 1436–1442, 2006. https:// doi.org/10.1016/j.chemosphere.2005.10.002
- [3] Silva, M., Baltrus, J., Williams, C., et al., "Mesoporous Fe-doped MgO nanoparticles as a heterogeneous photo-Fenton-like catalyst for degradation of salicylic acid in wastewater", *J Environ Chem Eng*, v. 9, n. 4, 105589, 2021. https://doi.org/10.1016/j.jece.2021.105589
- [4] Bhuiyan, M.A.R., Rahman, M.M., Shaid, A., et al., "Decolorization of textile wastewater by gamma irradiation and its reuse in dyeing process", *Desalin Water Treat*, v. 54, n. 10, pp. 2848–2855, 2015. https:// doi.org/10.1080/19443994.2014.905977
- [5] Castro, K.C., Cossolin, A.S., Cristina, H., "Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery", *Brazilian Archives of Biology and Technology*, v. 60, pp. 1–13, 2017.
- [6] Adeogun, A.I., Balakrishnan, R.B., "Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes", *Appl Water Sci*, v. 7, pp. 1711–1723, 2017. https://doi.org/10.1007/s13201-015-0337-4
- [7] Xavier, C.S.F., Crispiniano, F.F., Nascimento, K.K.R., *et al.*, "Secagem e avaliação do bagaço de cana de açúcar como adsorvente de corantes têxteis presentes em soluções aquosas", *Matéria (Rio J.)*, v. 26, n. 1, e12937, 2021. https://doi.org/10.1590/s1517-707620210001.1237
- [8] Maroneze, M.M., Zepka, L.Q., Vieira, J.G., et al., "A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais", *Rev Ambient e Agua*, v. 9, n. 3, pp. 445–458, 2014. https://doi. org/10.4136/1980-993X
- [9] Silva, R.P.T., Bottrel, S.E.C., Santos, A.S.P., *et al.*, "Evaluation of the fenton process using a residue as alternative iron source to degradation of methylene blue dye", *Matéria (Rio J.)*, v. 26, n. 1, e13014, 2021. https://doi.org/10.1590/S1517-707620210003.13014
- [10] Gouessé, B., Briton, H., Duclaux, L., *et al.*, "Effectiveness of the dispersion of iron nanoparticles within micropores and mesopores of activated carbon for Rhodamine B removal in wastewater by the heterogeneous Fenton process", *Appl Water Sci*, v. 9, v. 166, pp. 1–14, 2019. https://doi.org/10.1007/s13201-019-1047-0
- [11] Guo, B., Xu, T., Zhang, L., et al., "A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A: Performance, kinetics and transformation mechanism", J Environ Manage, v. 272, 111047, 2020. https://doi.org/10.1016/j.jenvman.2020.111047
- [12] Oruç, Z., Ergüt, M., Uzunoğlu, D., *et al.*, "Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2", *J Environ Chem Eng*, v. 7, n. 4, 103231, 2019. https://doi.org/10.1016/j.jece.2019.103231

- [13] Anchan, S., Pai, S., Sridevi, H., *et al.*, "Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential", *Biocatal Agric Biotechnol*, v. 20, 101251, 2019. https://doi.org/10.1016/j.bcab.2019.101251
- [14] Lima, D.R., Hosseini-Bandegharaei, A., Thue, P.S., et al., "Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells", Colloids Surfaces A Physicochem Eng Asp, v. 583, 123966, 2019. https://doi.org/10.1016/j.colsurfa.2019.123966
- [15] Brito, S.M.O., Andrade, H.M.C., Soares, L.F., *et al.*, "Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions", *J Hazard Mater*, v. 174, n. 1-3, pp. 84–92, 2010. https://doi.org/10.1016/j.jhazmat.2009.020
- [16] Tan, D., Bai, B., Jiang, D., et al., "Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells", *Environmental Science and Pollution Research*, v. 21, n. 5., pp. 3363–3370, 2014. https://doi.org/10.1007/s11356-013-2282-9
- [17] AMERICAN PUBLIC HEALTH ASSOCIATION (APHA), AMERICAN WATER WORKS ASSOCIA-TION (AWWA), WATER POLLUTION CONTROL FEDERATION (WPCF). Standard methods for the examination of water and wastewater. 22 ed. Washington: APHA, 2012.
- [18] Nuithitikul, K., Phromrak, R., Saengngoen, W., "Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb (II) ions from aqueous solution", *Sci Rep*, v. 10, n. 1, 3343, 2020. https://doi.org/10.1038/s41598-020-60161-9
- [19] Rocker, C., Caetano, J., Celso, A., *et al.*, "Biossorção de íons Cr (III) de soluções aquosas sintéticas e efluente de curtume utilizando a macrófita aquática Pistia stratiotes", *Engenharia Sanitaria e Ambiental*, v. 24, n. 2, pp. 335–346, 2019. https://doi.org/10.1590/S1413-41522019159636
- [20] Su, H., Fang, Z., Tsang, P.E., et al., "Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles", J Hazard Mater, v. 318, pp. 533–540, 2016. https://doi. org/10.1016/j.jhazmat.2016.07.039
- [21] Truskewycz, A., Shukla, R., Ball, A.S., "Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures", *J Environ Chem Eng*, v. 4, n. 4, pp. 4409–4417, 2016. https://doi.org/10.1016/j.jece.2016.10.008
- [22] Wu, Y., Zeng, S., Wang, F., et al., "Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst", Sep Purif Technol, v. 154, pp. 161–167, 2015. https://doi.org/10.1016/j.seppur.2015.09.022
- [23] Kuang, Y., Wang, Q., Chen, Z., et al., "Journal of Colloid and Interface Science Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles", J Colloid Interface Sci, v. 410, pp. 67–73, 2013. https://doi.org/10.1016/j.jcis.2013.08.020
- [24] Yuan, M., Fu, X., Yu, J., et al., "Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes", Chemosphere, v. 261, 127618, 2020. https://doi.org/10.1016/j.chemosphere.2020.127618
- [25] Wang, N., Hu, Q., Du, X., et al., "Study on decolorization of Rhodamine B by raw coal fly ash catalyzed Fenton-like process under microwave irradiation", Adv Powder Technol, v. 30, n. 10, pp. 2369–2378, 2019. https://doi.org/10.1016/j.apt.2019.07.020
- [26] Zhu, X., Zhang, L., Zou, G., et al., "Carboxylcellulose hydrogel confined-Fe3O4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B", Int J Biol Macromol, v. 180, pp. 792–803, 2021. https://doi. org/10.1016/j.ijbiomac.2021.04.067
- [27] Nguyen, L.H., Van, H.T., Ngo, Q.N., et al., "Improving Fenton-like oxidation of Rhodamin B using a new catalyst based on magnetic/iron-containing waste slag composite", Environ Technol Innov, v. 23, 101582, 2021. https://doi.org/10.1016/j.eti.2021.101582
- [28] Gan, P.P., Li, S.F.Y., "Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process", *Chem Eng J*, v. 229, pp. 351–363, 2013. https://doi.org/10.1016/j.cej.2013.06.020
- [29] Paulino, T.R.S., Araújo, R.S., Salgado, B.C.B., "Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2)", *Eng Sanit e Ambient*, v. 20, n. 3, pp. 347–352, 2015. https://doi.org/10.1590/ S1413-41522015020000111627
- [30] Wang, C., Cao, Y., Wang, H., "Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH", *Chemosphere*, v. 230, pp. 278–285, 2019. https://doi.org/10.1016/j.chemosphere.2019.05.068