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ABSTRACT 

 

A preliminary study on xylitol production by Candida guilliermondii in sorghum straw hemicellulosic 

hydrolysate was performed. Hydrolysate had high xylose content and inhibitors concentrations did not 

exceed the commonly found values in other hemicellulosic hydrolysates. The highest xylitol yield (0.44 g/g) 

and productivity (0.19 g/Lh) were verified after 72 hours. 
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Xylitol is a sweetener with important properties such as 

anticariogenicity and metabolism not insulin-dependent [7]. 

Xylitol is commercially produced from chemical catalysis of 

xylose, obtained from xylan-rich lignocellulosic materials [9]. 

Several xylose-xylitol fermenting microorganisms were 

identified, among which several species of yeasts were 

recognized as good xylitol producers, especially members of 

the genus Candida because of the high efficiencies obtained 

during the conversion of pure xylose and hemicellulosic 

hydrolysates [3]. The species Candida guilliermondii has been 

continuously evaluated for the xylitol production in 

hemicellulosic hydrolysates from different lignocellulosic 

materials [10, 16, 25]. 

Dilute acid hydrolysis is a method commonly used for 

solubilization of sugars present in hemicellulose. Studies have 

demonstrated that the biotechnological production of xylitol 

from lignocellulosic residues is influenced by the type of 

hemicellulosic hydrolysate, due mainly to the presence of 

different concentrations of toxic compounds released during 

the hydrolytic process: acetic acid, released by hemicellulose 

structure; two most common furaldehydes, HMF (5-

hydroxymethyl-2-furaldehyde) and furfural (2-furaldehyde), 

formed at severe hydrolysis conditions from hexoses and 

pentoses, respectively, and phenolic compounds, formed 

during partial lignin breakdown [3]. These compounds inhibit 

microbial metabolism due to their concentrations in the 

medium [4,17]. 

Sorghum straw is a renewable and cheap resource, 

commonly used as livestock feed.  However, it has scarcely 

been studied as raw material for biological processes. Major 

studies on biotechnological utilization of sorghum straw deals 

with furfural production [24], cellulase-free xylanase 

production in solid-state fermentation – SSF [22], ethanol 

production by simultaneous saccharification with commercial 

cellulase and fermentation (SFS) [1], ethanol production by 

SSF of untreated and treated (delignified) sorghum stover [13] 
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and xylitol production by Candida parapsilosis [19]. Studies 

on the hydrolysis of hemicelullosic fraction of sorghum straw 

[6,23] show a possible alternative source of xylose to several 

biotechnological processes. 
As the lignocellulosic materials are rather heterogeneous 

in terms of chemical composition, the objective of this study 

was to investigate the viability of using forage sorghum straw 

hemicellulosic hydrolysate for xylitol production by the yeast 

C. guilliermondii. 

For inoculum preparation, the yeast Candida 

guilliermondii FTI 20037 was grown in 125 mL-Erlenmeyers 

flasks, containing 50 mL of medium formulated with xylose 

(30 g/L), rice bran extract (20 g/L), (NH4)2SO4 (2 g/L) and 

CaCl2.2H2O (0.1 g/L) at pH 5.5 and incubated in a rotary 

shaker (200 rpm) at 30°C for 24 hours. Then cells were 

separated by centrifugation at 2,900 g for 20 minutes, rinsed 

twice with sterile distilled water and resuspended in an 

adequate volume of distilled water. The initial cell 

concentration for the experiment was 1.0 g/L.  

Forage sorghum straw was hydrolyzed in a 350 L AISI 

316 stainless steel reactor at 121oC during 10 minutes with 100 

mg H2SO4/g sorghum straw (dry weight) in a solid:liquid ratio 

of 1:10. Thereafter, the hydrolysate was filtered and 

concentrated under vacuum at 70 + 5oC to increase xylose 

concentration threefold. In order to reduce the concentrations 

of toxic compounds, the hydrolysate was then treated by 

increasing the initial pH from 1.27 to 7.0 with CaO following 

its reduction to pH 2.5 with H3PO4 and subsequent treatment 

with active charcoal adsorption (1 % w/v) in Erlenmeyer flasks 

on a rotary shaker at 200 rpm, 60°C, for 30 minutes. The 

resultant precipitates from all stages of the treatment were 

removed by vacuum filtration using qualitative filter paper [8]. 

Fermentation was carried out in triplicate, in 125 mL-

Erlermeyer flasks containing 50 mL of hydrolysate, previously 

detoxified and autoclaved at 115oC for 15 minutes, 

supplemented with the same nutrients used for inoculum 

preparation except for xylose, and pH adjusted by the addition 

of NaOH solution to pH 5.5. The flasks were left under 

agitation (200 rpm) at 30oC for 72 hours.  

The concentrations of D-xylose, D-glucose, L-arabinose, 

xylitol, ethanol and acetic acid were determined by high-

performance liquid chromatography (Shimadzu LC-10AD) 

using a refractive index detector and a Bio-Rad Aminex HPX-

87H column (300 x 7.8 mm) at 45 oC, 0.01 N H2SO4 as an 

eluent at a 0.6mL/min-flow rate and an injection volume of 20 

µL [15]. Furfural and 5-hydroxymethylfurfural were 

determined with a UV detector (SPD-10A UV-VIS) and a 

Hewllet-Packard RP18 column at 25oC, acetonitrile/H2O (1:8) 

plus 1% acetic acid as eluent, injection volume of 20 µL [15]. 

Phenolic compounds were estimated by UV-VIS spectrometry 

by the Folin-Ciocalteau method [21]. Cell concentrations were 

monitored by following absorbance readings (600 nm) of 3 mL 

samples which were correlated with dry cell mass (g/L) using a 

standard curve. 

The partial characterization of sorghum straw 

hemicellulosic hydrolysate, obtained after diluted acid 

hydrolysis with H2SO4, showed a high xylose content (17.69 

g/L) regarding other sugars (glucose 2.1 g/L and arabinose 1.81 

g/L), and a low glucose:xylose ratio (1:8). Although repression 

of xylose utilization by glucose is well known in yeasts, similar 

glucose:xylose ratios improved xylitol production in 

C. guilliermondii [20]. 

Concerning the presence of toxic compounds released 

during the acid hydrolysis of sorghum straw, it can be observed 

that acetic acid (1.87 g/L) and phenols (2.12 g/L) are the main 

inhibitors, but their content as well as furfural (0.04 g/L), 5-

HMF (1.56 g/L) and metal concentrations (Ni 0.009 g/L, Cr 

0.017 g/L, Zn 0.007 g/L, Fe 0.022 g/L and Ca 0.2 g/L) do not 

exceed the range found in other hemicellulosic hydrolysates [2, 

8, 11, 25] as well as in sorghum straw hydrolysates [6, 19, 23] 

obtained under different conditions. 

Detoxified threefold concentrated hydrolysate presented 

the following composition (g/L): glucose 4.30 g/L; xylose 

43.78 g/L; arabinose 4.32 g/L; acetic acid 3.13 g/L; furfural 
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0.05 g/L; 5-HMF 1.52 g/L and total phenols 1.36 g/L. When 

compared to the untreated hydrolysate (data not shown), 

moderate removals of phenolic compounds (67 %) and acetic 

acid (31 %) were obtained with the detoxification process 

employed, i.e., overliming combined with activated charcoal. 

Previous reports have shown that overliming and activated 

charcoal treatment did not largely affect acetic acid 

concentration [12,25], whereas activated charcoal was efficient 

for the reduction of furan derivatives in different types of 

hemicellulosic hydrolysates [8,25]. However, the results of 

several researches have shown that treatment with active 

charcoal was dependent on variables as temperature, contact 

time, hydrolysate:charcoal ratio and pH with a significant 

effect on detoxification of sugarcane bagasse hydrolysate [8], 

rice straw hydrolysate [10] and in sorghum straw hydrolysate 

[19]. Phenolic compounds are shown to be the major inhibitors 

in lignocellulosic hydrolysates [12] and can be more easily 

removed with anion-exchange resin treatments [2,25], although 

these are onerous processes. Overliming and activated charcoal 

adsorption are the most economical treatments for 

hydrolysates. Moreover, the precipitates containing calcium 

ions formed during overliming may be used to correct soil 

acidity without environmental damage. 

The experimental results of batch fermentation of 

sorghum straw hemicellulosic hydrolystate by 

C. guilliermondii are shown in Figures 1A and B. According to 

Figure 1A, glucose was not detected in the medium after 6 

hours. Repression of xylose utilization by glucose was not 

observed and probably occurred before this period. Xylose was 

consumed at a rate of 19-26% up to 48 hours (calculated as 

instantaneous, i.e., in 12-hour intervals), which increased to 36-

37% afterwards. The biomass concentration profile shows a 

faster growth up to 6 hours, which coincided with glucose 

depletion. After this period, specific growth rate (µX) decreased 

from 0.119 h-1 to 0.013 h-1. Although xylose consumption was 

observed after 6 hours, xylitol formation initialized only after 

24 hours, which indicates that xylose utilization during the first 

24 hours was directed to growth. These results are in 

agreement with previous studies which support that xylitol 

production is not-growth-related, but a consequence of redox 

inbalance [5]. 

Ethanol formation was faster in the first 24 hours of 

fermentation (Figure 1B), probably due to the presence of 

glucose and the poor contribution of xylose and arabinose to its 

formation. After 24 hours, ethanol production was negligible 

and reached a maximum of 2.8 g/L. Ethanol, a byproduct of 

xylose-xylitol conversion, was also found during the growth of 

C. guilliermondii in semidefined medium [5] and sugarcane 

hemicellulosic hydrolysate [16] and its formation was 

dependent on the medium pH [14]. 

Figure 1B shows the acetic acid concentration throughout 

the fermentation. This acid was slowly and concurrently 

assimilated with xylose, resulting in a slight increase in pH 

values. Almost 28% of acetic acid was assimilated within up to 

72 hours. Despite toxicity of acetic acid to yeast metabolism, 

its consumption was previously observed in experiments with 

C. guilliermondii and the toxicity degree was related to several 

environmental factors, mainly its concentration in the culture 

medium. When present in low concentration (1 g/L) in the 

medium, acetic acid can increase xylitol production by C. 

guilliermondii [4] and the higher the degree of cell adaptation, 

the higher the capacity of C. guilliermondii cells to metabolize 

acetic acid [18], resulting in significant increases in 

fermentative parameters. 

Table 1 summarizes fermentative parameters of C. 

guilliermondii grown in sorghum straw hydrolysate. The 

highest xylitol yield (0.44 g/g), corresponding to 48% of the 

theoretical based on xylose, and the highest productivity (0.19 

g/Lh) were obtained after 72 hours of fermentation, although 

yields up to 75-97% have often been reported with this yeast in 

other hemicellulosic hydrolysates [10, 16, 18, 25]. In the 

present assay, 6.9 g/L of xylose still remained in the medium. 

If the cultivation time was prolonged, the final amount of 

xylitol estimated would be 16.6 g/L, considering the same 
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xylitol yield verified at 72 hours and still adequate nutritional 

conditions. 

The possibility of using detoxified sorghum straw 

hydrolysates for xylitol production was confirmed in 

fermentation with C. parapsilosis, in which a maximal xylitol 

concentration of 17 g/L, a product yield of 0.27 g/g and a 

productivity of 0.12 g/Lh were obtained. These values were 

higher than those obtained with that yeast in synthetic media 

[19]. In the present study, C. guilliermondii did not show 

appreciable fermentative performance when compared to 

previous results with such yeast in synthetic media and in other 

hemicellulosic hydrolysates. This is probably due to interactive 

effects of inhibitory compounds. It is worth noting that little is 

currently known regarding the effect of metals ions in the 

culture medium, the maximum allowed concentration for each 

one as well as the simultaneous presence of several other 

inhibitors on xylose metabolism. Further studies are necessary 

to establish an adequate acid hydrolysis and an adequate 

process of detoxification of sorghum straw hemicellulosic 

hydrolysate aiming at achieving an efficient conversion of 

xylose to xylitol with C. guilliermondii. Additionally, 

considering that hemicellulosic fraction is easily extracted from 

biomass and that pentoses can be co-fermented to ethanol by 

genetically engineered yeasts, the efforts of recovering xylose 

from sorghum straw as well as an economical hydrolysis of 

cellulose can offer a potential approach to ethanol production. 

 

 

        
Figure 1. Variation of A – concentration (g/L) of glucose (�), xylose (�), xylitol (�) and cells (�), B - concentration (g/L) of ethanol (x) 

and acetic acid (�) and pH (�) during the 72-hour fermentation of in sorghum straw hemicellulosic hydrolysate by C. guilliermondii. 
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Table 1. Experimental parameters attained during the 72-hour fermentation of sorghum straw hemicellulosic hydrolysate by C. 

guilliermondii. 

Time 

(h) 

QS  

(g/Lh) 

YX/S 

(g/g) 

QX 

(g/Lh) 

YP/S 

(g/g) 

QP 

(g/Lh) 

ηηηη 

(%) 

24 0.35 0.5 0.18 0.11 0.04 12 

48 0.43 0.3 0.13 0.24 0.1 26 

72 0.43 0.24 0.1 0.44 0.19 48 

Q s   Volumetric xylose uptake rate (g/Lh) 
Q x   Volumetric cell production rate (g/Lh)  
Q p   Volumetric xylitol production rate (g/Lh)  
Y x/s  Cell yield coefficient, g dry cell mass per g xylose consumed (g/g)  
Y p/s  Xylitol yield coefficient, g xylitol per g xylose consumed (g/g) 
ηxylitol   percentage of xylitol yield from the theoretical value (%) 
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