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Effects of physical exercise over the redox brain state

Aderbal S. Aguiar Jr." and Ricardo A. Pinho'

ABSTRACT

Physical activity is known for promoting health and well-being.
Exercise is also responsible for increasing the production of Oxy-
gen Reactive Species (ORS) by increasing mitochondrial oxygen
consumption causing tissue oxidative stress. The imbalance be-
tween ORS production and tissue antioxidant defenses can cause
oxidative damage to proteins, lipids and DNA. Brain oxidative dam-
age is a common etiopathology mechanism of apoptosis and neu-
rodegeneration. The brain-derived neurotrophic factor plays an
important role in this context. In this review, we showed the re-
sults of different models and configurations of physical exercise in
oxidative and neurotrophic metabolism of the Central Nervous Sys-
tem (CNS). We also reviewed studies that utilized antioxidant sup-
plementation to prevent exercise-induced oxidative damage to CNS.
The commonest physical exercise models were running wheels,
swimming and treadmill with very different configurations of phys-
ical training such as duration and intensity. The results of physical
training on brain tissues are very controversial, but generally show
improvement in synaptic plasticity and cognition function with low
and moderate intensity exercises.

INTRODUCTION

Neurosciences have introduced a variety of new neurological
concepts as well as scientific methods of investigation of the ner-
vous system associating the discussion of factors of physical and
environmental stress, such as physical exercise'". Despite the ev-
idence of general health benefits caused by regular physical exer-
cise to healthy individuals and to the ones with diabetes mellitus,
asthma, obesity, hypertension, arthrosis and arthritis>¥; the effects
of the exercise on the brain still present controversial results.

It is believed that moderate exercises increase cognition; more-
over, it has been demonstrated that the brain is responsive to phys-
ical activity®®. It means that physical activity presents potential in
the prevention and treatment of cerebral traumatic damage® as
well as in neurodegenerative diseases such as Parkinson disease%
" and Alzheimer'’s disease!'#'3, Studies support that many of these
alterations occur in specific areas of important brain functions such
as long-run memory!'+'% and prevention of cognitive decline dur-
ing the aging process!'®. Some studies also demonstrate evidence
on neurogenesis and brain plasticity"”'® specifically induced by
families of neurothrophic molecules'?2"; however, the mechanisms
of these alterations are still unknown.

The maijority of the research with the aim to study the neurolog-
ical adaptation mechanisms to exercise develops research with
animal models due to the possibility to evaluate the nervous tissue
in vivo?#29_Studies involving humans indirectly evaluate the brain
function mainly by nuclear magnetic resonance?®2?, electrophysi-
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ology?®, neuroendocrinology®® and brain function scales®?. The
aim of this investigation is to review and discuss some of the brain
mechanisms under physical exercise influence, as well as the ad-
aptations of the brain tissue and the consequences in the neuro-
logical functions.

PHYSICAL EXERCISE MODEL FOR STUDY OF THE CNS

Rodents are the main study animal models for the physical exer-
cise paradigms in the brain functions and their mechanisms, where
the two main physical activity models are: (1) voluntary activities
such as activities in running wheels®'-4 and enriched environ-
ments®>%8) and (2) forced exercises such as swimming®®®4? and
treadmill“®47 These models usually aim to stimulate the respons-
es to training with predominance of aerobic metabolism, once this
kind of exercise is associated with general health benefits.

Enriched environment is a reference to the standardized kind of
cage, where a set of different stimuli are given to the animals,
namely: access to running wheels, group interaction, and complex
environments containing toys, tunnels and frequent changes in the
food placement, which is usually followed by gains in the brain
function, especially the ones associated with learning and memo-
ry“®. The running wheel is a circadian intermittent®, voluntary and
of free access physical activity!" which allows running at a self-
determined velocity. The velocity spontaneously chosen corre-
sponds to the level of optimum bioenergetic efficiency leveling
the oxidative metabolism level“9.

Forced activities make the animals perform physical exercise at
higher intensities, that is, higher energetic demands. Forced swim-
ming allows selecting exercise overloads through the variation from
3% to 6% of body mass of the animal’s body and imposes lower
mechanical stress due to the water thrust, recruiting different
muscle groups and reducing the gravity effects®.

Running on treadmill activates the stress neuroendocrin respons-
es and makes the animal run at a steady velocity, according to the
experiment’s configurations of the physical training: time, duration,
velocity® and inclination®'%2. Running on treadmill is usually se-
lected due to aerobic metabolism responses higher than swim-
ming®¥, since it is characterized by relative inactivity of the hinder
legs®¥. Treadmill training with controlled intensity induces to some
of the highest and most consistent effects of physical training®%,

PHYSICAL EXERCISE AND NEUROTHROPHINS

Neurothrophins are a family of essential cytokines for the differ-
entiation, growth and survival of the CNS dopaminergic, cholin-
ergic and noradrenergic hormones and of sympathetic and senso-
ry hormones of the Peripheral Nervous System (PNS) during
adulthood®”%9, Up to the present time, they are represented by
five proteins of related structure which constitute the neuro-
throphins family, including the nerve growth factor (NGF), and the
Brain Derived Neurothrophic Factor (BDNF), and the neurothrophins
3, 4/5and 6 (NT 3, NT 4/5 and NT 6 — Neurothrophic Factor)®06",
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Evidence has shown the BDNF role as critical modulator in the
synaptic plasticity in the hypofield®2. The deletion or inhibition of
the BDNF gene'®® produces a deficiency in the long-run memory
(LTP). This deficiency in the synaptic function may be corrected by
exogenous applications® or over-expression® of the BDNF. Many
genes associated to the BDNF action in the synapses increase
their expression as an exercise result and may support the synap-
tic function or neuroplasticity©®.

The exercise increases the expression of many genes associat-
ed with the synaptic function®®. Additionally to the synapsin |, ex-
ercise increases the mRNA levels for syntaxin and synaptogamin.
Synapsin | is predominantly increased at short periods of exercise
(3 and 7 days), being hence consistent to its role in the release of
synaptic vesicles®”. Synaptogamin progressively increases after
long periods of exercise, being consistent to its role of synaptic
vesicles®®. The deletion of the BDNF gene in mice results in re-
duction of the synaptic proteins as well as their vesicles resulting
in damage in the neurotransmissors release®. The BDNF promotes
the phosphorylation of the synapsin | via activation of the TrkB
receptors in the pre-synaptic terminal, resulting in release of neu-
rotransmissors’?. The exercise increases the mRNA levels and
TrkB protein and synapsin | in the synapses via BDNF7'74_ It is
possible that high levels of induced-exercise BDNF facilitate the
formation and mobilization of synaptic vesicles, and the extension
of these events may be translated in long alterations in the synap-
tic plasticity©®.

These increases in the gene concentration and expression of
the neurothrophins as well as their receptors present a distinct
behavior to the different physical training studied. After two weeks
of free access to the running wheel, the rats developed higher
concentrations of BDNF in the hypofield, persisting up to a week
after the exercise interruption”. The hypofield BDNF, TrkB, NT-3
mRNA levels returned to the normal concentrations with the total
interruption of the exercise, meaning that these increases are de-
pendent on the continuity of the exercise and reversible”. The
higher the exercise volume, both swimming and running, the high-
er the BDNF levels were in the brains of the mice”®7”. There is
strong evidence that the exercise develops neurological alterations
via BDNF, since the increase in the neurothrophins levels and their
gene expression in running wheels was cancelled in the CA3 area
and dented spin in the hypofield of rats, when blockers of the neu-
ronal receptors of neurothrophins such as the K252a are adminis-
tered, which inhibits the Trx receptor of the BDNF"8, Similar ef-
fects have been found with the use of the KN-62 antagonists, an
inhibitor of the nicotinodiamide (NMDA) or PD98059 channels which
inhibits the MAPK78),

The exercise increases the gene expression of many comple-
ments of the MAP-K cascade such as the MAP-KI and MAP-KII.
The MAP-K way is the largest signaling cascade of the Trk recep-
tors”9. The MAP-K is involved in the synaptic plasticity, memory
formation and integration of multiple extra cellular signals®>-8", |t
seems that the MAP-K ways coordinate many synaptic events in
conjunction with the CaM-K ways. For instance, the synapsin | is
phosphorylated by the MAP-K and CaM-KII systems'®?. The CaM-
KIl affects the Ca*? post-synaptic important for the synaptic func-
tion®, and is involved in the formation of hypofield-dependent
memory®. The PKC-d expression increased after 7 days of exer-
cise®. PKC-d is necessary for the activation of the MAP-K cas-
cade and for nerves growth®. Members of the CaM-K family in-
creased their activity after short periods of exercise while members
of the MAP-K way increased their activity according to the exer-
cise tie, especially after 7 days©®,

Exercising increases the expression of the CREB transcription
factor®. The CREB may regulate the BDNF gene transcription in
the calcium-dependent mechanism®©887, Thus, through the MAP-K
cascade, the BDNF causes the CREB phosphorylation resulting in
its activation and gene transcription®. CREB is necessary for many
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kinds of memory®% and seem to play an important role in the
neuronal resistance to insults®". The hypofield of mice with CREB
low levels presented harm in the maintenance of LTP®%. The high-
est increases in the mRNA levels of the CREB were observed af-
ter 7 days of consistent exercise, with induction of the MAP-K
members©o.

Plenty of evidence has shown increase of the neurothrophic pro-
teins concentrations and their transcription associated with regu-
lar physical activity practice®®>%. Treadmill running and running
wheels increased the protein levels and mRNA of BDNF(4%) as
well as NT-377 in the hypofield of rats, in cortex and cerebellum®,
The same fact was observed in swimming as well®. Additionally,
exercising protects the neurons from many kinds of insults®®®, since
the BDNF promotes neurogenesis in adults® and increases the
synaptic efficiency®?. Twelve weeks of running on treadmill de-
creased the brain ischemic volume induced by occlusion of the
medium brain artery of rats, being followed by increase of the mRNA
concentration of NGF and its p75 GAPDH receptor, that is, the
induced exercise increased the gene expression of neurothrophins
causing neuroprotection to neuronal ischemia®”.,

There are studies showing that exercising increases memory
and spatial learning. Increase of the LTP occurs with increase of
the neurothrophic factors endogenous to exercise!'. The LTP can
also be moderated by alterations in endogenous cytokines such as
TNF-o. (necrosis o transcription factor) and the IL-1B (Interleukin
1PB)©899 as a straight consequence from exercise!%).

EXERCISE AND OXIDATIVE STRESS

The molecular oxygen in its diatomic state ((Xg-O,) is a highly
oxidant species essential to the energy production during the oxi-
dative mitochondrial phosphorylation®”. The extra reactive oxy-
gen has a strong oxidative potential: according to the exclusion
principle by Pauli, the O, oxidizes the other molecule by accepting
an electronic pair, only if both electrons from the pair have a pair of
spins anti parallel to their own non-paired electrons'®". Due to this
criterion rarely found, the O, slowly reacts in the lack of catalyzers
and tends to accept a single electron during its redox chemistry!10%
103)

In vivo, enzymes usually use an electron in the period in which
they perform O, multi electronic reductions. If a single electron is
accepted, it must enter an orbital and produce O,*104,

0,+e— 02~ (Equation 1)

The reduction of the two electrons of the O, plus the addition of
2 protons (H*) generates H,0,.

0O, +2e + 2H* - H,0, (Equation 2)

Many oxidases use this mechanism to reduce O, directly to H,0,,.
The O2* spontaneous or catalyzed dismutation by the peroxide
dismutase also produces H,0,"%%.

0,+ 0, +2H*—=H,0, + O, (Equation 3)

Peroxide is a non-radical intermediary which oxidizes a wide range
of biological media, despite being a non-reactive species.

In the Haber-Weiss reaction (also known as Fenton superoxide-
guided chemistry), chelatings of transition free or of low molecular
weight metals, such as the Fe3* are reduced by the O,” to Fe?.
The metallic reduced ion which reacts with the H,0, generates
the extremely reactive HO*10",

Fe?* + H,0, » HO* + HO  + Fe®*  (Equation 4)

This species has been widely postulated as being the most im-
portant cause of damage to proteins, lipids, carbohydrates and DNA;
however, there is slight straight evidence that the HO* is generat-
ed in biological systems%4. The biggest unsolved issue concern-
ing the biological relevance of the Haber-Weiss reaction is the need
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of free Fe®* or Cu?* due to the great variety of metal-transporter
and metal-ligant proteins keeping the concentration of free active-
redox metallic ions at low levels in the normal tissues. Neverthe-
less, this destruction may release active-redox metallic ions(101:109),

Massive attention has been directed to the production of oxida-
tive species by the O,”. However, it is important highlighting that
0, is a strong reducing agent. Its properties are added to its easy
ability to rapidly react with the metallic ions (Mn+)104,

0, + Mn* = 0, + M (Equation 5)

This reaction has been proposed to generate the reduced met-
als needed for the HO® production by the Haber-Weiss reaction
(equation 4)1°4. Recent studies suggest that proteins containing
transition metals, such as the aconitase, an enzyme of the tricar-
boxilic acid cycle, are vulnerable to reduction by O,* damage, which
can be a contributing factor to muscular fatigue during exer-
cise!101,108)

The oxidative phosphorylation generates the greatest part of the
cellular ATP, and mitochondrial dysfunctions do harm to the ener-
getic metabolism, where 1% of the mitochondrial electronic flow
generates superoxide anions (O,’), the first mitochondrial oxygen
reactive species (ORS), demonstrating the importance of an effi-
cient antioxidant system for preservation of the transporter chain
of mitochondrial electrons'%. Thus, there is a critical balance be-
tween the blood continuous supply of nutrients and oxidative en-
ergetic metabolism of the cerebral mitochondrial’®”, also regulat-
ed by additional mechanisms such as the mitochondrial calcium,
membrane potential, and coupling-membrane proteins1%). A dys-
function in the mitochondrial chain of electrons transport may be
the highest source of toxic oxidants, including mitochondrial DNA,
proteins and lipids oxidation, and opening of mitochondrial perme-
ability pores, an event associated with neurodegeneration and
death(101,107)_

The brain represents approximately 2% of the body mass, but
its O, (CMRO,: 5 ml/min/100g) and glucose (CMRglu: 31 pMol/
min/100g) consumption represents respectively 20 and 25% of the
total consumption of the body at rest. The cerebral blood debt is
consequently high: 14-20% of the rest blood debt. This energetic
metabolism is well-evidenced by the continuous activity of neu-
ronal intercellular communication'%®, kept by the high glycemic
metabolism through small supplies of high energy carbohydrates
and phosphates, with no oxygen supplies%”.

The CNS is more susceptible to oxidative damage, since it rep-
resents great oxygen-dependant mitochondrial activity, associated
with high free iron and polyunsaturated lipids and low levels of
antioxidant enzymes'%). The brain has 3% of the peroxides glu-
tathione and 1% of the liver catalase. The glutathione is precursor
of the antioxidant enzyme glutathione peroxidase!'®. The basis
glands have high iron concentration and altered iron metabolism
has high oxidant potential by the Haber-\Weiss reaction.

When polynsaturated fatty acids in the biomembranes are at-
tacked by free radicals in the presence of molecular oxygen, a chain
of peroxidation reactions occurs, occasionally leading to formation
of hydrocarbon gases (e.g. methane, ethane and pentane) and al-
deids (e.g. malonaldehyde, MDA). Bioproducts of the lipid peroxi-
dation are the most studies markers of oxidative tissue injury dur-
ing exercise, as well as the oxidative alterations caused to the
proteins (including enzymes) and nucleic acids!101:109),

Young and old rats have improved learning and memory after
swimming training'"'% as well as decreased proteins carbonilyza-
tion®111112 and lypoperoxidation in the cerebellum®¥, hypofield and
cerebral cortex®9. These adaptations have persisted even after the
same period of lack of exercise®. These swimming outcomes were
well-evidenced with a high intensity exercise!"".

After 8 weeks of treadmill running, diabetic rats presented high-
er concentrations of cerebral lypoperoxidation!"'®. In normal rats,
the lypoperoxidation in the brain occurred with vitamin C supple-
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mentation"". The lipids oxidation in the CNS usually demonstrates
different concentrations at different regions of the brain, and it can
be attributed to regional differences in the O, consumption(s116),

An acute exercise bout may increase the activity of some anti-
oxidant enzymes with no new protein synthesis. This protection
activity is limited to individual enzymatic characteristics and the
involved tissue. As long-run strategy, the cells may increase the
protein synthesis of antioxidant proteins in order to control the
oxidative stress.

It has been demonstrated that intense exercise does not alter
the SOD and GPx enzymes activities in the hypofield, striated and
pre-frontal cortex 24 hours after the exercise®.

The acute effects of the exercise over the brain antioxidant en-
zymes did not show differences in the SOD activity in the spinal
cord and hypothalamus!"'”, cerebellum‘'® cerebral cortex and hy-
pofield either®. The increase in antioxidant enzymes activity in
the brain as response to regular physical exercise is more probable
linked to excess of free radicals formation!'8120,

The oxygen reactive species and associated damage are some
of the possible associated factors in the cerebral function regula-
tion"8121 The activity of the superoxide dismutase enzyme in-
creased in the cerebral and striated trunk of rats after treadmill
running training, followed by increase in the glutathione concen-
tration in the cerebral cortex and trunk!"".

The general health benefits as well as diseases prevention by
the exercise are widely known. However, chronic exercise also
represents a kind of oxidative stress for the organism and may
alter the balance between oxidants and anti-oxidants. The biologi-
cal antioxidants play an important role in the cellular protection of
the oxidative stress induced by exercising. Both a great production
of free radicals and the deficiency or depletion of many antioxidant
systems may reveal exacerbation of the oxidative cellular injury,
while the supplementation of many antioxidants generates diverse
outcomes!'01.108),

Vitamin E (o-tocopherol) is an important soluble lipid, screening
open-chain free radicals. Its unique location in the cellular mem-
brane decreases its efficiency in acting in the free radicals originat-
ed from the internal mitochondrial membrane and other biomem-
branes!01.1059  Moderate physical exercise increased the
mitochondrial oxidative damage in the brain of old rats!'??. Integra-
tion between physical training and vitamin E supplementation has
been demonstrated, which caused neuroprotection against the
decrease concerning age in the antioxidant enzymes and in the
increase of the lipid peroxidation in the brain(®0.123,

The antioxidant role of the vitamin C is well established; howev-
er, its importance in the protection against exercise-induced stress
is not clear. It is suggested that vitamin C plays its function recy-
cling vitamin E radical again to vitamin E"%. Vitamin C isolated
supplementation was not beneficial to the nervous tissue, once it
increased the oxidation of lipids of the brain of trained rats"'.

CONCLUSION

We presented massive evidence of the exercise effects in the
cognitive function and synaptic plasticity in the neurothrophic and
cerebral oxidative mechanisms. The brain responses follow the
model and configuration of the exercise, and may be influenced by
the administration of antioxidants. Another factor is the differenti-
ated responsitivity of the brain regions to acute and chronic exer-
cise. Since studies concerning exercise and brain are scant, they
widely vary from the model and exercise configuration, to the vari-
ables and adopted methodologies, a fact which decreases the ca-
pacity of results comparison. Thus, the effects and action mecha-
nisms of physical exercise in the central nervous system still need
further understanding.

All the authors declared there is not any potential conflict of inter-
ests regarding this article.
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