
249Rev Bras Med Esporte – Vol. 27, No 3 – July/Aug/Sept, 2021

APPLICATION OF BACK PROPAGATION NEURAL 
NETWORK IN SPORTS FATIGUE INDICATORS
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ABSTRACT
Introduction: High-intensity rehabilitation training will produce exercise fatigue. Objective: A backpropa-

gation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography 
(EMG) signal images. Methods: The principal component analysis algorithm is used to reduce the dimension 
of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine 
algorithm and the BP neural network algorithm. Results: The RMSE value of the regularized over-limit 
learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ 
value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. 
Conclusions: The model training time of the regularized over-limit learning machine algorithm has been 
greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of 
treatment results.
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RESUMO
Introdução: O treinamento de reabilitação de alta intensidade produzirá fadiga ao exercício. Objetivo: Um al-

goritmo neural de backpropagation network (BP) é proposto para prever a fadiga esportiva com base em imagens 
de sinais de eletromiografia (EMG). Métodos: O algoritmo de análise de componente principal é usado para reduzir 
a dimensão das características do sinal EMG. O ângulo da articulação do joelho é estimado usando o algoritmo de 
aprendizado de máquina de limite regularizado acima e o algoritmo de rede neural BP. Resultados: o valor RMSE do 
algoritmo de aprendizado de máquina acima do limite regularizado é menor que o do algoritmo de rede neural BP. 
Ao mesmo tempo, o valor de ρ do algoritmo de aprendizado de máquina acima do limite regularizado está próximo 
de 1, indicando sua maior precisão. Conclusões: O tempo de treinamento do modelo de algoritmo de aprendizado 
de máquina acima do limite regularizado foi bastante reduzido, o que melhora a eficiência. Nível de evidência II; 
Estudos terapêuticos: investigação dos resultados do tratamento.

Descritores: Exercício, alta intensidade; Fadiga; Articulação do Joelho.

RESUMEN
Introducción: El entrenamiento de rehabilitación de alta intensidad producirá fatiga por ejercicio. Objetivo: Se 

propone un algoritmo neuronal de red de retropropagación (BP) para predecir la fatiga deportiva basándose en 
imágenes de señales de electromiografía (EMG). Métodos: El algoritmo de análisis de componentes principales se 
utiliza para reducir la dimensión de las características de la señal EMG. El ángulo de la articulación de la rodilla se 
estima mediante el algoritmo de la máquina de aprendizaje por encima del límite regularizado y el algoritmo de 
red neuronal BP. Resultados: el valor de RMSE del algoritmo de la máquina de aprendizaje por encima del límite 
regularizado es menor que el del algoritmo de red neuronal de BP. Al mismo tiempo, el valor ρ del algoritmo de la 
máquina de aprendizaje por encima del límite regularizado está más cerca de 1, lo que indica su mayor precisión. 
Conclusiones: El tiempo de entrenamiento del modelo del algoritmo de la máquina de aprendizaje por encima del 
límite regularizado se ha reducido en gran medida, lo que mejora la eficiencia. Nivel de evidencia II; Estudios 
terapéuticos: investigación de los resultados del tratamiento.

Descriptores: Ejercicio, alta intensidad; Fatiga; Articulación de la Rodilla.
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INTRODUCTION
Statistics show that every year, more than 10 million people world-

wide suffer from central or peripheral nerve damages due to cardio-
cerebral vascular diseases and trauma, manifesting as motor dysfunctions 
of limbs1. Patients with limb motor dysfunction need not only medical 
treatment but also exercise rehabilitation training. Their sports limbs 

are prone to fatigue. Moderate fatigue is beneficial to the human body; 
however, excessive fatigue is likely to cause secondary damages and affect 
the rehabilitation effects. To make a timely and effective judgment and 
estimation of the fatigue status of patients during rehabilitation train-
ing, effectual detection methods are needed. However, it has not been 
solved yet. At present, the detection of sports fatigue mainly depends 
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on biochemical indicators, behavior indicators, and physiological indicators. 
Among them, the biochemical indicators are complex and unstable, mak-
ing it difficult to accurately detect sports fatigue with a certain indicator. 
Meanwhile, although the behavior indicators are easy to be realized, the 
detection effect is not ideal, and the recognized standard with effective 
persuasion is unavailable. The signals of physiological indicators are ac-
curate, which can directly reflect the physiological changes in the human 
body. Especially, electromyography (EMG) signals have the advantages 
of convenient operation, non-invasiveness, and non-immersion in signal 
measurement; therefore, they have been widely applied in fatigue-related 
researches2. Zhou et al. (2018) used an over-limit learning machine algorithm 
to classify unknown electroencephalography (EEG) signals. The results 
showed that the algorithm was better than the support vector machine 
in terms of average training time and test accuracy, which had excellent 
generalization performances3. The over-limit learning machine algorithm 
has the advantages of fast training speed and good generalization per-
formance. Studies have applied it to the classification of EEG signals, but 
few studies have applied it to fatigue detection of EMG signal images.

 Therefore, in this study, the EMG signal images are used as physio-
logical indicators. By continuously estimating the motion of the lower 
limb joints with the regularized over-limit learning machine algorithm 
and the back propagation (BP) neural network algorithm, an effective 
method for sports fatigue detection is provided.

METHODS
The over-limit learning machine algorithm included an input layer, a 

hidden layer, and an output layer. Each neuron in the same layer was not con-
nected, but each neuron between two adjacent layers was connected. The 
input signal was represented by an input matrix, as shown in Equation (1).
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Where 11x  to nx  represented the input signal, Q represented the 
length of the input data, and n represented the dimension of the input data.

The output signal was represented by an output matrix, as shown 
in Equation (2).
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Where 11y  to ny  represented the output signal, Q represented the len-
gth of the output data, and m represented the dimension of the output data.

The weight of the input layer to the hidden layer was shown in 
Equation (3).

11 12 1

21 22 2

1 l2

n

n

ji

l ln l n

w

ω ω ω
ω ω ω

ω
ω ω ω

×

 
 
 =
 
 
 





  



                                 (3)

Where jiω  represented the weight from the input layer to the 
hidden layer.

The connection weight between the hidden layer and the output 
layer was obtained by the least square solution of Equation (4).

min 'TH Y
β

β −                                                            (4)

Where Y’ represented the transpose of Y, and β represented the 
connection weight from the hidden layer to the output layer. Therefore: 
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Where Y’ represented the transpose of Y, and HT represented the 
generalized inverse matrix of the output matrix H.

Traditional over-limit learning machine algorithms were prone to 
overfitting, which affected the generalization performance. Therefore, 
this study introduced regularization coefficients in the solution, and 
improved the stability and generalization performance of the results 
through the regularization of over-limit learning machine algorithms. 
As shown in Equation(6):
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Where C represented the regularization coefficient.
First, the EMG features and knee joint angles were normalized. The 

regularized over-limit learning machine model was used for training. 
The 3 times cross method was used for verification. The number of 
hidden layers was set to 100, and the sigmoid function was used as the 
activation function of the hidden layers.

The BP neural network algorithm consisted of an input layer, a hidden 
layer, and an output layer. The input layer and the output layer were both 
fixed layers, and the hidden layer could be set as one to multiple layers. 
Neurons were not connected, but each neuron between two adjacent 
layers was connected. The error between the calculated value and the 
expected value of the network was shown in Equation (7):
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Where g () represented the transfer function of the output layer, 2
kjω  

represented the weight between the hidden layer and the output layer, f 
() represented the transfer function of the hidden layer, 1

ijω  represented 
the weight between the input layer and the hidden layer. 1θ  represen-
ted the hidden layer neuron threshold, and 2θ  represented the output 
layer neuron threshold.

The equation for calculating the weight between the input layer 
and the hidden layer was shown in Equation (8).
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Where 
1η  represented the learning step size of the hidden layer.

The equation for calculating the weight between the hidden layer 
and the output layer was shown in Equation (9).
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Where 
2η  indicated the learning step size of the output layer.

In general, a three-layered neural network could simulate various 
non-linear mappings. Therefore, this study used the BP neural network 
algorithm with one hidden layer.  The unipolar sigmoid function was 
used as the activation function of the hidden layer The experimental 
data of 30 s were divided into 3 groups, and each group was 10 s. Next, 
two groups were selected in turn as training data, and the remaining 
group was calculated as test data.

Differences between features and methods were compared by 
calculating the Root Mean Square Error (RMSE) and Pearson correlation 
coefficient (denoted as ρ) as indicators.4

RESULTS
EMG signal image

The EMG signal image is shown in Figure 1. Due to the influence 
of sensors and the environment, the original EMG signal is mixed with 
noises. Thus, the original EMG signal is denoised and averaged by using 

a high-pass filter. Afterward, the output results are processed with a 
low-pass filter, and are then normalized. As shown in the processed 
EMG signal image, the influence of noise on the signal is reduced, and 
the signal-to-noise ratio of the surface EMG signal image is improved.

Optimal EMG feature selection results
The single feature comparison and combined feature comparison of 

time-domain features are performed. The RMSE and ρ results are shown 
in Figure 2. As shown in the figure, when the single feature comparison 
of time-domain features is performed, the RMSE values are sorted in 
increasing order as follows: MAV, Log, WL, Var, and ZC. The ρ values are 
sorted in decreasing order as follows: MAV, Log, Var, WL, and ZC. Then, 
the first 4 single features with better effects are mutually combined 
(MAV, Log, WL, Var) as follows: MAV+Log, MAV+WL, MAV+Var, Log+WL, 
Log+Var, and WL+Var. These combinations are used as features to train 
the model. When combined feature comparison of time-domain fea-
tures is performed, the RMSE values are sorted in increasing order as 
follows: MAV+Log, MAV+WL, MAV+Var, Log+WL, Log+Var, WL+Var. The 
ρ values are sorted in decreasing order as follows: MAV+Log, MAV+WL, 
MAV+Var, Log+WL, Log+Var, WL+Var. Therefore, the optimal EMG feature 
should be MAV+Log.

Comparison results between regularized over-limit learning 
machine algorithm and BP neural network algorithm

The comparison results between the regularized over-limit learning 
machine algorithm and the BP neural network algorithm are shown 
in Figure 3. 

The comparison results of the two algorithms are shown in Table 1. As 
shown in the table, under both the knee flexion and extension mode and 
the deep squat mode, compared with the BP neural network algorithm, 
the RMSE value of the regularized over-limit learning machine algorithm 
is lower. Also, its ρ value is closer to 1, which indicates that the prediction 
accuracy of the regularized over-limit learning machine algorithm is 
higher. Meanwhile, its model training time has been greatly reduced.

DISCUSSION
Research on EMG signals has gradually become a focus in the fields 

of rehabilitation medicine and biomechanics. Du et al. (2018) used 
fuzzy approximate entropy and complexity algorithms to calculate the 
corresponding muscle fatigue indicators, and utilized the least-squares 
method to calculate the relative determination coefficient of the linear 
regression of the muscle fatigue scale. The results showed that fuzzy 
approximate entropy could be used as a better evaluation algorithm to 
evaluate neck muscle fatigue.5 This study collects the data of the EMG 
signal image, preprocesses the EMG signal image, selects 5 time-domain 

Figure 1. EMG signal image (A shows the original EMG signal image; B shows the 
processed EMG signal image).

Figure 2. Comparison results of single feature and combined feature of time-domain features (A shows the comparison of single feature; B shows the comparison of 
combined feature).
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features of MAV, ZC, Var, WL, and Log, and finds the best EMG feature 
by comparing the single feature and the combined feature. The results 
show that the optimal EMG feature combination is MAV+Log. Zhang et al. 
(2017) used principal component analysis and independent component 
analysis to decompose the EMG signals, and utilized the artificial neural 
network algorithm to estimate the angle of the upper limb joints. The 
results showed that using independent component analysis combined 
with an artificial neural network algorithm was feasible and effective 
for joint kinematics estimation.6 In this study, the principal component 
analysis algorithm is used to reduce the feature dimension of EMG 
signals. The knee joint angle is estimated by the regularized over-limit 
learning machine algorithm and the BP neural network algorithm. The 
results show that under both the knee flexion and extension mode and 
the deep squat mode, compared with the BP neural network algorithm, 
the estimated value of the regularized over-limit learning machine 
algorithm is closer to the true value, and the model is more stable. The 
RMSE value of the regularized over-limiting learning machine algorithm 
is lower than that of the BP neural network algorithm. Meanwhile, the ρ 

value of the regularized over-limit learning machine algorithm is closer 
to 1, which indicates that the regularization of the over-limiting learning 
machine algorithm has higher prediction accuracy. Compared with the 
BP neural network algorithm, the model training time of the regularized 
over-limit learning machine algorithm has been greatly reduced, which 
improves the efficiency.

CONCLUSION
This study collects the data of the EMG signal, preprocesses the EMG 

signal image, selects the time-domain feature to find the optimal EMG 
feature, and uses the principal component analysis algorithm to reduce the 
feature dimension of the EMG signal. The regularized over-limit learning 
machine algorithm and BP neural network algorithm are used to estimate 
the knee joint angles. The results show that compared with the BP neural 
network algorithm, the regularized over-limit learning machine algorithm 
has higher model stability and prediction accuracy. Meanwhile, its model 
training time has been greatly reduced, which improves its efficiency. 
Therefore, the regularized over-limit learning machine algorithm has 
advantages in accuracy and real-time prediction, which has application 
values in improving sports fatigue indicators. This study provides guidance 
for sports fatigue estimation and has certain theoretical and practical 
significance. However, the research on the prediction model of sports 
fatigue in this study is still in the initial stage of the trial. There are also some 
deficiencies in the research process. For example, the selected subjects 
are only healthy volunteers. In the later research process, all groups will be 
included, including the trials in patients who have difficulties in exercising. 
Therefore, the obtained results will be more valuable.

All authors declare no potential conflict of interest related to this article

Figure 3. Comparison results of regularized over-limit learning machine algorithm and BP neural network algorithm (A shows the result of the indicator prediction model 
under the knee flexion and extension mode; B shows the result of the indicator prediction model under the squat mode).

Table 1. Comparison results of the two algorithms.

Motion modes
Prediction 

results

Regularized over-
limit learning 

machine algorithm

BP neural network 
algorithm

Knee flexion and 
extension mode

RMSE 8.542 9.320
ρ 0.966 0.941

Model training 
time

0.024 2.673

Deep squat mode

RMSE 5.116 5.695
ρ 0.978 0.969

Model training 
time

0.028 2.714
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