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Abstract   

There have been major efforts to improve the

application of statistical methods in medical research,

although some errors and misconceptions persist. In

this paper I will review some of the topics which most

often cause problems: a) comparison of two methods

of clinical measurement; b) comparison of baseline

values between arms of a randomized trial; c)

absence of evidence as opposed to evidence of

absence; and d) regression to the mean. I will also

revisit a statistical error in one of my own publica-

tions. I review some causes of the continuing misuse

of statistics, and make some suggestions for modi-

fying the education of statistical and non-statistical

medical researchers in order to alleviate this.

Key words   Statistics, Biostatistics

Resumo 

Tem havido grandes esforços na aplicação de

métodos estatísticos na pesquisa médica, embora

algumas concepções equivocadas ainda persistam.

No presente artigo faz-se uma revisão de alguns

tópicos que frequentemente causam problemas: a)

comparação de dois métodos de medidas clínicas; b)

comparação de valores de base entre os braços de um

ensaio randomizado; c) ausência de evidência em

oposição a evidência de ausência; e d) regressão à

média. Uma revisita aos erros estatísticos em uma de

minhas próprias publicações também é feita. Foi feita

a revisão de algumas causas do uso inadequado da

estatística, assim como algumas sugestões são dadas

para modificar a formação de pesquisadores médicos

estatísticos e não estatísticos.

Palavras-chave   Estatística, Bioestatística



is small, the conclusion may be reached that the two

methods have 'significant agreement'.6-8

Why a correlation coefficient does not measure

agreement

We can start by asking ourselves what is the meaning

of the p value (<0.0001) calculated for Figure 1a. In

general, a small p value means that the test statistic

is larger than would be expected by chance. The

exact meaning of 'by chance' is defined by the null

hypothesis of the statistical test being done. In the

current example, the null hypothesis is that the two

methods of measurement are unrelated. Since the

two methods are designed to measure the same quan-

tity (systolic blood pressure) it would be remarkable

if they were completely unrelated. However, some

kind of relation between them does not mean they

are interchangeable. For example, if a nutritionist

can guess a person's weight to within, say, 5 kg, then

their estimates will be correlated with the measure-

ments of a set of scales, but this does not mean that

the scales can be dispensed with. Rather, we would

need to know the number of kilograms, or mmHg in

the blood pressure example, within which the two

methods agree. This cannot be inferred from the

correlation coefficient or p value alone.

One specific problem with the correlation coeffi-

cient is that its magnitude depends on the range of

the data. Suppose that agreement between two

methods is constant over the data range, in the sense

that the average difference between them is constant.

Suppose we split the data into two halves according

to whether they are above or below the median

value, and then calculate a correlation coefficient for

each half. Each of these two correlation coefficients

will be smaller than the correlation coefficient for

the complete data set, even though the degree of

agreement is (by assumption) the same throughout

the data range. This shows that the correlation coef-

ficient does not measure the degree of agreement.

Another way to think of this is to imagine a new data

point, consistent with the original data but at a much

lower or much higher value. Inclusion of this data

point will make the correlation coefficient increase

in magnitude, and the p value decrease, even though

the additional data point is reflecting the same rela-

tionship as the original data.

In passing, we may note another problem with

the approach shown in Figure 1a. A regression line is

often included, even though this breaks the

symmetry between the two variables. This is because

the results of the regression depend on which vari-

able is chosen as the outcome, and which as the

Introduction

The quality of statistics in medical research has

received much attention over the past twenty years.

Many books and journal articles have tried to

improve statistical understanding and practice, and

journal editors have placed greater emphasis on

these aspects. An illustrative episode was the

enhancement of statistical review at The Lancet

following the controversy, and tragic fallout, of a

report it had published of poor survival in patients

attending the Bristol Cancer Help Centre.1,2

In recent years, usage of statistical methods

seems to have improved, although errors persist.3 In

this paper I will review some of the more common

of these. For each of them I will attempt to explain

the nature of the error, and suggest a valid alterna-

tive. However, continued improvement in published

statistical analyses will require more than continued

explication of correct methods. I will suggest that

one of the obstacles to improving practice is the poor

rapport which often pertains between statistical and

non-statistical researchers. Accordingly, I want to

present more than a list of errors. So I will include a

description of a method which is sometimes said to

be erroneous but in fact is valid (although subop-

timal). And I will also present an error I made in one

of my own publications.

Quantifying agreement between two methods

of clinical measurement

As medical technology develops, there is often a

need to compare two methods of measuring the same

quantity. We may also need to evaluate the agree-

ment between replicates made by the same observer

(repeatability) or in different laboratories (repro-

ducibility).4

Example: blood pressure measured by arm cuff

and finger monitor

As an example of the comparison of two methods of

measurement, we will consider a dataset of two

methods of measuring blood pressure. Two hundred

people had their systolic blood pressure measured

once using a standard arm cuff, and once using a

finger monitor.5 Figure 1a shows a common, but

incorrect, approach to the analysis of such data. One

set of measurements is plotted against the other, and

a correlation coefficient is calculated. The corres-

ponding p value is often also calculated and, if this
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measure of whether there is a systematic difference

between the methods. In Figure 1b, the mean

difference is -4.3 mmHg, ie the arm cuff reads, on

average, 4.3 mmHg lower than the finger monitor.

This is shown as the central of the three dashed

horizontal lines. The variation in agreement can be

measured by the standard deviation of the

differences. In our example this is 14.6 mmHg. If the

differences have an approximately Gaussian

('normal') distribution, then 95% of them will lie in

the range between the mean and plus or minus 1.96

times the standard deviation.  In our data this range

is from -32.9 mmHg to +24.3 mmHg. In other

words, we can expect that, on 95% of occasions, the

arm cuff measure between 32.9 mmHg less, and 24.3

mmHg more, than the finger monitor. The ends of

this range are called the limits of agreement. Note

that they are in the units of the original measurement

(mmHg), which allows the degree of agreement to

be judged clinically.

The simple technique described above was

predictor. But there is no reason to prefer one vari-

able over the other for either of those roles. Unlike

correlation, regression is not symmetric in terms of

its two input variables.

Correct approach: Bland and Altman method

A meaningful assessment of agreement will be

expressed in terms of the measurement units (mmHg

in our example), rather than a correlation coefficient

or p value. This is shown in Figure 1b, in which the

vertical axis is the difference between the two

measurements, and the horizontal axis is their

average. This shows whether the size of the between-

method difference changes with the magnitude of the

quantity being measured. In our example, there is no

sign that this is the case: the scatter on the vertical

axis does not seem to increase or decrease depending

on the value of the horizontal axis.

We can calculate the mean difference as a
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Finger monitor results plotted against those from arm cuff. This is the basis of the incorrect

technique for measuring agreement: calculating a correlation coefficient and p value (in this

example 0.83 and <0.0001, respectively).

Figure 1a

Assessing agreement of arm cuff and finger monitor in measurement of systolic blood pressure.

systolic blood pressure (mm Hg) measured by arm cuff
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However, if the data are counts, eg of parasites or

CD4 cells, then a square root transformation may be

effective.12

Hypothesis tests of baseline variables

It is common to use statistical hypothesis tests to

compare baseline variables between the arms of a

trial, and use the results to assess how 'successful'

was the randomization. For example, Bassuk et al.13

carried out a trial of antioxidants for prevention of

cardiovascular events in 8171 female health

professionals. The authors tested each of 28 baseline

variables three times, comparing each intervention

(vitamin E, vitamin C and beta-carotene) to its

respective placebo. Of the 84 hypothesis tests done,

8 p values were less than 5%. The authors say this

number was 'low, and no greater than what would be

expected by chance'. They concluded "The randomi-

zation was successful, as evidenced by similar

proposed by Bland and Altman,10 whose papers have

become two of the most cited in the medical

literature.9-11

The choice of axes in Figure 1b ensures a lack

of correlation between them. It may be tempting to

plot the difference against a single one of the

methods, especially if one of them is an accepted

standard, but doing so will introduce a spurious

correlation.5 It can be shown mathematically that, if

we denote the two methods x1 and x2, then x1-x2 is

uncorrelated with x1+x2 but is intrinsically corre-

lated with either x1 or x2.

It is often the case that the absolute difference

between methods is larger for higher values of the

actual measurements. In such cases the plot will

show a greater scatter to the right of the horizontal

axis, and the limits of agreement will not be

applicable over the whole data range. Repeating the

Bland and Altman technique on the logarithms of

the values may resolve the problem. This yields

results in terms of ratios rather than differences.

Figure 1b

Bland and Altman plot of the difference between the two methods (arm cuff minus finger moni-

tor), versus their average.

The central horizontal dashed line is the mean difference (-4.3 mmHg). The other horizontal

dashed lines are the limits of agreement: 24.3 mmHg and-32.9 mmHg. These limits are equal to

the mean difference plus and minus 1.96 times the standard deviation of the differences. The

difference between the two methods will lie between these limits on 95% of occasions.

average of arm cuff and finger monitor (mm Hg)
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distributions of baseline demographic, health, and

behavioral characteristics across treatment groups."

However, the use of hypothesis tests to try to

measure the success of a randomization is illogical,

and may distract attention from a real problem. To

see why it is illogical, we should again ask

ourselves: what is the null hypothesis? Here, the null

hypothesis is that the observed between-arm

difference in the baseline variable was due to

chance. However, because the trial was randomized,

we know that a difference in a baseline variable was

due to chance. In other words, the randomization

ensures that the null hypothesis is true. The only

reason to use a hypothesis test to do a between-arm

comparison of a baseline variable is if one doubts

that the randomization was done correctly.14,15 The

investigators should not have reason to doubt this!

Some authors use this kind of hypothesis test to

identify variables to adjust for in later analysis. For

example, Ellis et al.16 did a randomized trial of the

effect of an educational booklet on women's

willingness to participate in a trial of treatment for

breast cancer. They did hypothesis tests of 16 baseline

variables. Two variables, anxiety and depression, had

p values less than 5%, and these were included in

subsequent multivariable analysis. However, as

Assmann et al.17 point out: 'A significant imbalance

will not matter if a factor does not predict outcome,

whereas a non-significant imbalance can benefit from

covariate adjustment if the factor is a strong predic-

tor'. In other words, hypothesis tests are not a suitable

basis to decide the variables for which to adjust.

This does not mean that baseline values should

not be reported, only that hypothesis tests of them are

'philosophically unsound, of no practical value and

potentially misleading'.15 The importance of baseline

imbalance should be assessed according to the size of

difference, and degree of association of the variable

with the outcome. Baseline imbalance is unlikely to

be a problem except in small trials. However, if there

are any variables considered to be strong predictors

of the outcome, they can be adjusted for, and this

should be specified in advance in the analysis plan.18

It is not advisable to adjust for many variables in the

primary analysis, because that may decrease the

precision of the between-arm comparison.19 In fact,

there may be no strong reason for adjusting for any

of the baseline variables. In that case, it is often

advisable for the primary analysis to be unadjusted.18

Absence of evidence is not evidence of absence

If a study fails to find a statistically significant effect

(p >0.05), it is tempting to conclude that the

intervention does not work. However, this is not

necessarily a valid conclusion. A result which is not

statistically significant is, in itself, an absence of

evidence: this is not the same as evidence of

absence.20 As we saw in previous sections of the

current paper, we should think not only about the p

value but also the magnitude of effect. For example,

a study with a very small sample size would be able

to detect only a very large effect. In other words, a p

value larger than 0.05 may be due to insufficient

sample size, rather than a small effect. The easiest

way to think about the effect size is via confidence

intervals (usually 95% confidence intervals). A 95%

confidence interval for a parameter means a range

which we are 95% confidence contains the true

parameter value.

As an example, we can consider the trial of a)

behaviour change interventions; b) syndromic

management as methods of reducing HIV

transmission, done in rural Uganda by Kamali et

al.21 The two interventions had incidence rate ratios

of HIV (relative to control) of 0.94 and 1.00

respectively, with p values of 0.72 and 0.98. The

authors concluded that "The interventions we used

were insufficient to reduce HIV-1 incidence".

However, the confidence intervals for these rate

ratios show that the study cannot rule out a useful

benefit of either intervention.22 The 95% confidence

interval for the rate ratio for behaviour change

interventions was 0.60-1.45, and for syndromic

management it was 0.63-1.58. So, for example, the

behaviour change interventions may be capable of

reducing HIV incidence by as much as 40%. They

may also increase the incidence by as much as 45%:

either way, we cannot tell from this study.

This and other scenarios are shown in Figure 2.

Our conclusion from a particular study should

depend not only on the p value but also on whether

the confidence interval includes clinically important

effect sizes. We can say that a reduction of HIV

incidence by 40% would be clinically important. So,

based on its confidence interval, we can place the

Kamali et al.21 trial in the leftmost category of

Figure 2: 'can neither confirm nor exclude an

important effect'.

Regression to the mean and change from

baseline

Regression to the mean is a phenomenon which was

studied in the early days of medical statistics.

Francis Galton analysed the heights of parents and
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children, and found that unusually tall parents tended

to have children who were also tall, but not quite as

tall as their parents. Similarly, short parents tended

to have children who were not quite as short as they

were: in other words, closer to the average. This

phenomenon was called regression to the mean.23

The word "regression" came to be applied not only

to this phenomenon, but the statistical technique for

quantifying it, which soon proved to be applicable to

other problems as well. The two senses of the word

can still cause confusion.

One can think of regression to the mean as

resulting from of a kind of selection bias. Everitt24

describes it as 'the phenomenon that a variable that

is extreme on its first measurement will tend to be

closer to the centre of the distribution for a later

measurement'. Problems can arise when one forgets

that a criterion for being in the dataset was an initial

extreme measurement. A sporting example may be

helpful. In British football, there are awards for the

best manager (coach) of the month. Some journalists

talk about the 'curse of manager of the month'. This

means that a coach who receives the award one

month tends to do badly the next month. However,

one should bear in mind that, by definition, a winner

of the award has done exceptionally well, and a

performance level which is difficult to attain is even

more difficult to maintain. Analysis of points per

game shows that coaches whose teams win in one

month usually fall back slightly in the subsequent

month, but still do very well.25

In medical research, failure to account for

regression to the mean can lead to several types of

problem.26,27 For example, when planning studies, it

is common to seek populations in which the levels of

the condition are high. If this varies over time then it

is likely that an extremely high level will be followed

by ones which are not quite as high. This may mean

that power calculations were optimistic. Another

example is change from baseline. If patients in a trial

are selected on the basis of extreme values of a vari-

able, then that variable is likely to show regression to

the mean, compared to their baseline levels. This may

lead the researchers to think that a benefit is due to

Alexander N.

Figure 2

Using the confidence interval of an intervention effect to reach a conclusion on its clinical importance.

The vertical axis shows the magnitude of effect, with larger benefits towards the top, and larger detriments towards

the bottom. The vertical lines show confidence intervals from hypothetical studies. Along the bottom of the figure

are conclusions which can be drawn from each group of confidence intervals.
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the intervention offered to the patient.

An example is shown in Figure 3, which contains

data from the placebo arm of a trial of asthma

therapies.28 Those patients with low forced expira-

tory volume in one second (FEV1) at baseline tended

to have increased at the two week follow-up, while

those with high baseline FEV1 had decreased. Re-

member, this is the placebo arm. Imagine that we

had done a non-controlled study with change from

baseline as an endpoint, and included only those

with the lowest values of FEV1. In such a study, we

would have observed an average increase, even if the

intervention was as ineffective as placebo. Of

course, we know that control arms are to help protect

against this kind of pitfall. In the following section

we will look in more detail about how to take into

account baseline values in a controlled trial.

Comparing change from baseline between

arms in a randomized trial

I was once advised by a statistical colleague against

using the change from baseline ('change score') as an

endpoint in a controlled trial, because of regression

to the mean. Nevertheless, it is not invalid to do so.

Analysis of change score is unbiased in the sense

that, if repeated over multiple trials of the same

design, on average it gives the correct answer.19

However, there is a more powerful alternative, called

analysis of covariance or ANCOVA. (Although

ANCOVA is just a type of regression analysis, here I

will persist in calling it ANCOVA to avoid possible

confusion with regression to the mean.) ANCOVA

uses the data to assess the degree of correlation

between the baseline and final values, and does the

adjustment on that basis. By contrast, analysis of

change score effectively assumes a correlation of 1,

although in practice it is less. This means that, in any

particular dataset, regression to the mean will over-

adjust for the baseline value. The over-adjustments

may be positive or negative, and hence, thanks to

randomisation, they cancel each other out if

averaged over trials of the same design. However,

they make the standard error of the change score

analysis higher than that of ANCOVA. So comparing

change scores between arms is not invalid but is not

the most powerful option.

Figure 3

Example of regression to the mean.

FEV1 = forced expiratory volume in one second, at baseline, and two weeks after receiving

placebo, in a trial of trial of asthma therapies.28 Those with the smallest values at baseline tend

to have increased at two weeks, while those with the largest values tend to have decreased.
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A simple unadjusted analysis will have smaller

standard error than the change score (but not smaller

than ANCOVA) if the correlation between baseline

and follow-up measurements of the outcome

variable have a correlation less than 0.5. For

example, Hsieh et al.29 did a randomised trial of

acupressure versus physical therapy for low back

pain. They analysed each of nine outcomes by

ANCOVA and by change from baseline, at two

different follow-up times (Table 3 of their paper).

For every one of these 18 analyses, ANCOVA has

the narrower confidence interval.

As we saw for hypothesis tests of baseline

variables, the variables on which to adjust, if any,

should be defined in the analysis plan. If we do

choose to adjust for baseline measurement of the

outcome variable, then the most powerful option is

to use ANCOVA (regression analysis), although

analysing change from baseline is not invalid.

A mistake I made: weights in meta-regression

Some statistical analyses require some data points to

be given more weight than others. For example, a

sample survey may be carried out to estimate the

prevalence of a certain condition, such as the

prevalence of ever having had an HIV test in the

United Kingdom.30 This survey had a greater

sampling frequency in Greater London because

'prevalence of risk behaviours was expected to be

higher'. This means that, when estimating the

national prevalence, the Greater London data must

be given less weight, to prevent them contributing

overly to the results. In general, the weight of any

data point should be proportional to the reciprocal of

(1 divided by) its sampling variance.

Another kind of analysis which requires

weighting is example is meta-analysis, i.e. the

attempt to summarize the results of separate studies

in a single analysis. Here, larger studies are given

more weight. In 1991 I performed the statistical part

of a meta-analysis of the role of maximum

cytoreductive surgery for ovarian cancer.31 I gave

each study a weight proportional to its number of

patients. This was done on a heuristic basis, linked

to the idea that the standard error of a mean or

proportion is proportional to the reciprocal of the

square root of the sample size (1/√n). Since the

sampling variance is the square of the standard error,

choosing the weights to be proportional to n ensures,

for a mean or proportion, that they are inversely

proportional to the sampling variance.

There were two problems with this. Firstly, the

outcome variable was the log of the median survival

time, not a mean or proportion for which the weights

proportional to n would be justified. I did not attempt

to derive the sampling error of our outcome variable,

although it turns out I was lucky in this respect (see

below). 

The second problem, which is more general to

meta-analysis, is that sampling error, and the

predictor variables, are not necessarily the only

source of variation between studies. In regression,

scatter about the line may be greater than can be

explained by small studies having large sampling

error. In other words there may be real differences in

the underlying effects which are not captured by a

regression line and sampling error. Meta-analysis

uses a 'random effect' to represent this additional

variation. However, my original ovarian cancer

meta-analysis did not allow for this possibility.

I repeated the analysis using the 'meta-

regression' method described by Knapp and

Hartung,32 implemented in the 'metareg' command in

the STATA software. For this, it is necessary to

specify the standard error of the dependent variable

for each study, i.e. of the logarithm of the median

survival time. Following the reasoning in the

appendix, we can set this to be 1/√n. This corres-

ponds to the weights used in the original analysis,

used to represent random sampling error. But the

new method also allows us to estimate systematic

variation between studies.

Figure 4 shows the relation between the outcome

Alexander N.

“Standard error of logarithm of median survival for

meta-regression

If we assume a constant death rate λ in a single study,

then the survival times will be drawn from an exponen-

tial distribution, which has mean 1/λ and variance

1/λ2.39 To estimate the variance of the log of the sample

mean (x), we can use Taylor series (the 'delta method'):

var(y(x)) ≈ (dy/dx)2 var(x).40 We have y(x)=log(x), so

dy(x)/dx=1/x. So var(log(x)) ≈ (1/x)2

var(x)=(1/x)2(1/λ)2/n, which is evaluated at the expec-

ted value of x, i.e. 1/λ. So var(log(x)) ≈ 1/n . Finally, we

need the variance of the logarithm of the median, not the

mean. But, since the median is a constant (loge2) times

the mean, the variance of its logarithm is the same as the

variance of the logarithm of its mean.

Incidentally, we may note that the sampling variance

(1/n) does not depend on λ. This explains why the loga-

rithmic transformation stabilized the variance in the

original analysis (although I did not realise that at the

time).”
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variable, median survival time (log-transformed) and

the percentage of each study group which

experienced Maximal Cytoreductive Surgery

(MCS). Each study is represented by one circle, with

the area of each being proportional to the sample

size, and therefore to the weights of the original

analysis. The corresponding regression (with only

MCS as a predictor) estimates a 16.3% increase in

median survival time for each 10% increase in MCS.

Meta-regression indicates that there is indeed

variation other than sampling error. This is measured

by the parameter τ2, and the test of the null

hypothesis that τ2 = 0 has a p value less than 0.001.

In other words, there is strong evidence that the

between-study variation is not only due to sampling

error. Nevertheless, the estimate of the relation

between survival time and MCS is similar to the

original analysis: 14.6% (rather than 16.3%) increase

per 10% increase in MCS.

The main conclusion of the original paper was

that the relationship between MCS and survival time

is confounded by other variables, in particular: a) the

type of chemotherapy, as measured by dose intensity

and inclusion of platinum; and b) the case mix, as

measured by the percent with Stage IV disease. In

the original analysis, adjustment for these factors

reduced the effect of MCS considerably, from 16.3%

to 4.1%. Using the Knapp and Hartung32 meta-

regression method, the adjusted estimate is 7.3% per

10% increase in MCS. There is still evidence of

variation in excess of sampling variation (the p value

for τ2 is still less than 0.001). This adjusted estimate

for MCS is noticeably larger than the original

estimate, although still much less than the

unadjusted one.

Discussion

We can see some shared features of these problems

in medical statistics. Misconceptions often arise by

relying uncritically on p values, and may be

The horizontal axis is the percent of each study group for whom MCS was achieved. The area of

each circle is proportional to the number of patients in the study group. The lines represent the

regressions of the logarithm of median survival (vertical axis) on the percent MCS from a) the

original naively weighted analysis (solid line) and b) meta-regression32 (dashed line).

Figure 4

Meta-analysis of Maximum Cytoreductive Surgery (MCS) in ovarian cancer31
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dispelled by thinking about exactly what is meant by

the p value of a given analysis. Comprehension is

also aided by using confidence intervals to interpret

statistical analysis in clinical terms.33 More

generally, analyses whose parameters cannot be

related back to clinical reality should be viewed with

caution at best.

Unfortunately, however, pedagogical articles

such as this, and other education resources, cannot

by themselves raise the quality of statistics in

medical journals to an acceptable level: we must

consider factors which are more integral to the

process of doing medical research.

Although statistical analysis is sometimes a

necessary part of a research publication, it is not

always valued by researchers, and the publication

process itself can sometimes foster such an attitude.

Bland34 relates that several times he has told

colleagues that their data did not need any

hypothesis tests, since the results were completely

clear, only to be told that they needed p values to get

the work published. The path of least resistance to

publication may still be to run an analysis which can

be used to sprinkle the work with symbols intended

to impress the reader, such as χ2 and p values,

without necessarily being the correct choice, or even

without describing the method in the text.35,36

However, it would be insufficient to blame such

occurrences on laziness of investigators (although

that may sometimes play a part). We should also ask

ourselves what barriers exist to accessing correct

statistical advice. One may be that there is simply no

statistician available to consult. I believe that other

reasons include personality clashes, and lack of

common ground, between statistically and

biomedically trained personnel. This may be most

evident between statisticians and physicians.

Members of these two groups often find it difficult

to establish a rapport. Statisticians may often have 'a

certain shyness'37 but they, like physicians, can be

low in tact, and high in pride. Statisticians often have

extensive training in mathematics, the 'queen of the

sciences', with clinicians are often the most

prestigious cadre in research institutes. The fact that

their training paths have usually been separate since

secondary school, until a statistician joins a research

institute, accentuates the difficulty in establishing a

productive working relationship. 

Many biomedical researchers are not particularly

numerate. They may even have 'chosen biological

science in an attempt to avoid mathematics'.37 This

may help explain why some biomedical researchers

prefer to seek the advice of one of their colleagues

who has similar training to their own, but who has

more of an affinity for numbers. Hence the presence

in some departments and institutes of people who are

known as statistical troubleshooters even though

they do not formally have that responsibility. Such

'gurus' often go a good job, helped of course by their

knowledge of the biomedical field which has yielded

the data. However, there should not be a need for

them to exist parallel to, and separate from, more

formally trained statisticians.

Some of these problems could be alleviated by

making closer links between the training of

biological and statistical disciplines. Statistical

education of medical students is sometimes poor,

with the ambivalent attitude of students to numerical

information often worsened by an overly

mathematical way of teaching. In recent years, some

efforts have been made to improve this, and I believe

that this could beneficially be mirrored in the

education of biostatisticians. In particular, many of

the above problems could be eased if biostatistical

masters degrees were more often earned within

biomedical research institutes and included

experimental work, perhaps as part of a two year

course. Such work should also be part of continuing

education, as pioneered by Stephen Evans at the

London Hospital, where statisticians attended ward

rounds and became familiar with measurement

methods.37 Although there are arguments against it38

I also think that the normal career path for medical

statisticians should include gaining a doctoral degree

(in the UK this is not always the case). Being

responsible for a research project of such size

enhances the capacity for future work, and makes for

a career path parallel to that of other academics. This

and my other suggestions are intended to foster

mutual respect between statistical and non-statistical

colleagues. We should try to ensure that choosing a

valid statistical method is not a baffling ordeal, but a

task which can be done comfortably, even if

sometimes time-consuming: less like writing a grant

application budget, and more like deciding what to

have for dinner.
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