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Abstract

Recent studies have revealed that the prevalence of Wolbachia in 
arthropods is attributable not only to its vertical transmission, 
but also to its horizontal transfer. In order to assess the horizontal 
transmission of Wolbachia between predator and prey, arthropods 
belonging to 11 spider families and six insect families were collected 
in the same ϐield of rice. The distribution of Wolbachia in these 
arthropods was detected by diagnostic PCR ampliϐication of the 
wsp (Wolbachia outer surface protein gene) and 16S rDNA genes. 
Nurscia albofasciata Strand (Araneae: Titanoecidae), Propylea 
japonica Thunberg (Coleoptera: Coccinellidae), Paederus fuscipes 
Curtis (Coleoptera: Staphylinidae), and Nilaparvata lugens Stal 
(Homoptera: Delphacidae) were infected with Wolbachia. This is the 
ϐirst report of infection of N. albofasciata and P. fuscipes by Wolbachia. 
No direct evidence indicated the existence of horizontal transmission 
of Wolbachia between predator and prey.

Introducti on

Wolbachia are alpha-proteobacteria that infect a wide 
range of arthropods (O’Neill et al 1992, Rousset et al 
1992, Werren & O’Neill 1997) and nematodes (Bandi et al 
1998) throughout the world. The effects of these bacteria 
on the reproduction of their hosts (Werren 1997) include 
cytoplasmic incompatibility, parthenogenesis, male 
killing, and feminization. Cytoplasmic incompatibility 
has been reported in insects, mites, and isopods (Yen 
& Barr 1971, Hoffmann et al 1986, Breeuwer & Werren 
1990, O’Neill & Karr 1990). Thelytokous parthenogenesis 
has been found in haplodiploid wasps (Stouthamer et 
al 1990), male killing in insects (Hurst et al 1999), and 
feminization of genetic males in isopods and insects 
(Rousset et al 1992, Hiroki et al 2002, Negri et al 2008). 

Recently, because of the prevalence of Wolbachia 
in arthropods, an increasing number of studies have 

examined the modes of transmission of Wolbachia 
among their arthropod hosts (West et al 1998, Vavre et al 
1999, Huigens et al 2000, 2004, Sintupachee et al 2006, 
Vaishampayan et al 2007). Vertical transfer of Wolbachia 
is not the only transmission mode, and other modes of 
transmission, including the horizontal transmission, are 
known to occur in different hosts of Wolbachia (West 
et al 1998, Huigens et al 2004, Kittayapong et al 2003, 
Sintupachee et al 2006, Raychoudhury et al 2009). 
Although many of these studies proposed that horizontal 
transmission of Wolbachia occurs between different 
hosts, most of these inferences are based on molecular 
phylogenetic methods, and additional ecological proofs 
for Wolbachia horizontal transmission are needed. 

In order to assess the possibility of horizontal 
transfer of Wolbachia between predator and prey, we 
evaluated the possible acquisition of Wolbachia by spiders 
(belonging to 11 spider families) from their possible prey 
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insects (belonging to six insect families) In a ϐield of rice. 
Wolbachia infection in the individuals collected in this 
community was detected by PCR ampliϐication of wsp and 
16S rDNA fragments. Because Wolbachia transfers from 
prey to predator have not yet been veriϐied, in this study, 
the results of molecular phylogenetic and the potential 
ecological relationship of predation between spiders 
and insects were expected to provide valuable proof of 
whether Wolbachia is able to transfer horizontally from 
prey to predator.

Material and Methods

Arthropod collec  on and DNA extrac  on
A total of 317 individuals of arthropods belonging to ϐive 
orders, 17 families, and 25 species were collected from 

Table 1 Wolbachia infection in a riceϐield arthropod community.

Order, family Species screened 
Number screened 

(♀/♂) 
Wolbachia 

infec on (+, -)* 

Araneae, Agelenidae Agelena labyrinthica (Clerck) 10 (9/1) - 

Araneae, Araneidae  Araneus cornutus (Clerck) 15 (12/3) - 

Araneae, Araneidae Araneus ventricosus (L. Koch) 2 (2/0) - 

Araneae, Araneidae Argiope bruennichii (Scopoli) 15 (12/3) - 

Araneae, Araneidae Larinia argiopiformis (Boes. et Str.) 1 (1/0) - 

Araneae, Araneidae Neoscona doenitzi (Boes. et Str.) 11 (11/0) - 

Araneae, Clubionidae Clubiona hummedi (Schenkel) 2 (2/0) - 

Araneae, Linyphiidae Eigone prominens (Westring) 2 (2/0) - 

Araneae, Linyphiidae Ummeliata insec ceps (Boes. et Str.) 20 (12/8) - 

Araneae, Lycosidae Pardosa laura (Karsch) 23 (18/5) - 

Araneae, Lycosidae Pardosa pseudoannulata (Boes. et Str.) 1 (1/0) - 

Araneae, Lycosidae Priata tenuisetaceus (Chai) 2 (2/0) - 

Araneae, Oxyopidae Oxyopes sertalus (L. Koch) 4 (4/0) - 

Araneae, Sal cidae Marpissa magister (Karsch) 10 (10/0) - 

Araneae, Tetragnathidae Tetragnatha vermiformis (Emerton) 20 (11/9) - 

Araneae, Theridiidae Coleosoma octomaculatum ( Boes. et Str.) 25 (20/5) - 

Araneae, Thomisidae Misumenops tricuspidatus (Fabricius) 41 (25/16) - 

Araneae, Titanoecidae Nurscia albofasciata (Strand) 8 (8/0) +A (2) 

Coleoptera, Coccinellidae Harmonia axyridis (Pallas) 22 - 

Coleoptera, Coccinellidae Propylea japonica (Thunberg) 44 +B (1) 

Coleoptera, Lariidae Bruchus rufimanus (Boheman) 6 - 

Coleoptera, Staphylinidae Paederus fuscipes (Cur s) 7 +B (1) 

Hemiptera, Pentatomidae Nezara viridula (L.)  8 - 

Homoptera, Delphacidae Nilaparvata lugens (Stal) 10 +B (1) 

Neuropteran, Chrysopidae Chrysopa sinica (Tieder) 8 - 

a 50 × 10 m plots from a ϐield of rice at the Huazhong 
Agricultural University, Wuhan, Hubei Province, China, 
from November 2007 to October 2008. All individuals were 
identiϐied using speciϐic morphological keys (Table 1).

All spiders were placed in labeled vials, taken alive 
to the laboratory, and kept under controlled conditions 
(25°C, 70% RH) without any food for three months in 
order to avoid false positive results of Wolbachia from 
prey present in the spider’s digestive system, before DNA 
extraction. 

The insects were placed in 100% ethanol and 
stored in -20°C. DNA was extracted from the head 
tissues of carnivorous species and from the abdomen 
of phytophagous species. Genomic DNA was obtained 
by standard phenol-chloroform extraction (Kocher et 
al 1989). In order to avoid cross-contamination, each 
individual spider or insect was ϐirst dipped in 75% 

*“A” means Wolbachia supergroup A, and “B” means Wolbachia supergroup B. The number of infected individuals is in parentheses.
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ethanol for 2 min and then washed with distilled water.

PCR amplifi ca  on and sequencing
Wolbachia infection was tested by carrying out PCR 
with two primer sets separately: 1) for the outer surface 
protein (wsp)- wsp81F (5’-TGG TCC AAT AAG TGA TGA 
AGA AAC-3’) and wsp691R (5’-AAA AAT TAA ACG CTA 
CTC CA-3’) (Braig et al 1998); 2) for the 16S rDNA of 
Wolbachia- 16wol F (5’-TTG TAG CCT GCT ATG GTA TAA 
CT-3’) and 16wol R (5’-GAA TAG GTA TGA TTT TCA TGT-3’) 
(O’Neill et al 1992). PCR reactions using wsp136F (5’-TG 
AAA TTT TAC CTC TTT TC-3’) and wsp691R , or wsp81F 
and wsp522R (5’-ACC AGC TTT TGC TTG ATA-3’) were also 
used to check if Wolbachia belonged to supergroup A or 
B, respectively (Zhou et al 1998). PCR was conducted in 
30 μl reaction mixtures consisting of 1 μl DNA template, 
1.5u Taq, 3.0 μl of 10 × PCR buffer, 1μM of each primer, 
0.2 mM dNTPs, and with a ϐinal MgCl2 concentration of 
1.5 mM. The thermal cycling proϐile consisted of 94°C for 
4 min, 35 cycles (30 s at 94°C, 30 s at 55°C, 30 s at 72°C), 
72°C for 10 min, and then held at 4°C, and PCR product 
ampliϐication was veriϐied by gel electrophoresis on a 
1.0% agarose gel.

The quality of genomic DNA was tested by PCR 
ampliϐication of 28s rDNA (Werren et al 1995, West et al 
1998). Only DNA samples yielding ampliϐication products 
were used for further analysis. PCR products of 16S 
rDNA and wsp were puriϐied using a DNA Puriϐication Kit 
(Promega) before direct sequencing. If direct sequencing 
failed three times, each PCR product was inserted into 
the vector pMD18-T according to the manufacturer’s 
protocol (Takara), and transferred into competent cells 
of Escherichia coli. Positive insert-containing colonies 
were selected, and at least three clones per individual 
were sequenced.

Sequence assemblage and phylogene  c analyses
The sequences obtained were aligned with homologous 
sequences that were deposited at the GenBank by using 
the CluxtalX 1.83 algorithm (Thompson et al 1997). 
DNAsp4 (Rozas et al 2003), MEGA3.1 (Kumar et al 
2004) and PAUP 4.0b10 (Swofford 1999) were used to 
analyze all data and to construct the phylogenetic trees. 
Phylogenies were constructed using both maximum 
likelihood (ML) and Bayesian inference (BI) approaches. 
MrModeltest version 2 (Nylander 2002) was used to 
construct the appropriate models.

The selected models via the standard AIC using 
MrModeltest 2 were as follows: HKY+I+G for the 876 bp 
fragment of 16S rDNA, and GTR+G for the 606 bp fragment 
of wsp genes. ML trees were constructed using PAUP 
4.0b10 with 100 replicates of random stepwise addition 
sequences and tree-bisection-reconnection branch 
swapping. For the Bayesian analyses, the analysis for each 

gene consisted of 3,000,000 generations and four chains 
using MrBayes version 3.0 (Ronquist & Huelsenbeck 
2003). Trees were sampled every 100 generations, 
resulting in 30,000 total trees. The ϐirst 3,000 trees 
(10%) were discarded as “burnin”. Bayesian posterior 
probabilities were calculated using a 50% majority rule 
consensus. Three independent runs were performed for 
each dataset.

Results

Infec  on of Wolbachia

One species of spider, Nurscia albofasciata Strand 
(Araneae: Titanoecidae), and three species of insects from 
three families, Propylea japonica Thunberg (Coleoptera: 
Coccinellidae), Paederus fuscipes Curtis (Coleoptera: 
Staphylinidae), and Nilaparvata lugens Stal (Homoptera: 
Delphacidae) were infected with Wolbachia. This is the 
ϐirst report of infection of P. fuscipes and N. albofasciata 
with Wolbachia. Two individuals of N. albofasciata 
were infected with supergroup A of Wolbachia, and one 
individual each of P. japonica, N. lugens, and P. fuscipes 
were infected with supergroup B (Table 1).

Wolbachia phylogenies
According to the phylogenetic analyses of Wolbachia 
16S rDNA and wsp genes (Figs 1, 2), Wolbachia infecting 
N. lugens, P. fuscipes, and P. japonica all belonged to 
supergroup B; while Wolbachia infecting N. albofasciata 
belonged to supergroup A. Wolbachia 16S rDNA sequences 
from N. lugens showed high nucleotide sequence 
similarity to those from P. fuscipes (99.7% homology) 
and P. japonica (98.8% homology). For the wsp sequences 
from Wolbachia, the homology was 92.2% between 
N. lugens and P. fuscipes. Furthermore, the Wolbachia 
wsp sequences in P. fuscipes indicated high nucleotide 
sequence similarity (99.7% homology) to that from 
Tetranychus urticae (Acari: Tetranychidae) deposited in 
GenBank (accession number: AY763428). 

Discussion

Wolbachia was not found in any spiders except N. 
albofasciata, and Wolbachia from this species proved to 
be distantly related to insect endosymbionts, involving 
Wolbachia of P. japonica, P. fuscipes, and N. lugens. 
Thus, our study provided no phylogenetic evidence of 
horizontal transmission of Wolbachia between spiders 
and insects.

In this study, 212 individuals of spiders belonging to 
11 families were screened for Wolbachia, but only two 
individuals were positive. The possible causes for the low 



167

Yun et al

Neotrop Entomol 40(2): 164-169 © 2011 Sociedade Entomológica do Brasil

Wolbachia Screening in Spiders and Transmission between Predator and Prey

Brugia malayi AF051145 
Litomosoides sigmodon s AF069068 

Microcerotermes sp AJ292347
Rhinocyllus conicus M85267
Cimex lectularius AY316361 
Mansonella ozzardi AJ279034
Mansonella perstans AY278355 
Dirofilaria immi s AF487892 
Dirofilaria repens AJ276500
Onchocerca gibsoni AJ276499 
Onchocerca gu urosa AJ276498 
Gryllus rubens U83092
Trichogramma cordubensis L02883

Culex pipiens X61768 
Tribolium confusum X65674
Gryllus pennsylvanicus U83090
Propylea japonica clone1
Propylea japonica clone2
Paederus fuscipes clone1 
Paederus fuscipes clone2 
Nilaparvata lugens
Drosophila melanogaster Z28983
Aphy s diaspidis X87407 
Diabro ca cristata AY007550 
Drosophila simulans AY227742 
Afrocimex constrictus DQ399339
Nasonia vitripennis M84687
Muscidifurax uniraptor L02882
Folsomia candida AF179630 
Mesaphorura macrochaeta AJ422184

85/1.00

92/1.00

100/1.00

53/0.52

87/0.97

87/0.85

100/1.00

100/1.00

100/1.00

77/0.72

59/0.70

87/0.98

60/0.80
60/0.72

86/100

52/0.70

60/0.57

96/1.00

D

F

C

B

A

E

Fig 1 Unrooted phylogeny of 16S rDNA of Wolbachia reconstructed using the maximum likelihood (ML) method. The names of taxa are those 
of the hosts. Levels of conϐidence for each node are shown as bootstrap values. Trees inferred from Bayesian analyses were similar, and the 
posterior probabilities are shown following the bootstrap values from ML analyses. Sequences from this study are indicated in bold. Wolbachia 
supergroups (A-F) are indicated.

Fig 2 Unrooted phylogeny of wsp gene of Wolbachia reconstructed using the maximum likelihood (ML) method. The names of taxa are 
those of the hosts. Levels of conϐidence for each node are shown as bootstrap values. Trees inferred from Bayesian analyses were similar, 
and the posterior probabilities are shown following the bootstrap values from ML analysis. Sequences from this study are indicated in 
bold. Wolbachia supergroups (A-D) are indicated.
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infection rates of spiders by Wolbachia could be: 1) the 
sample was not large enough to show the natural infection 
rate; 2) it is unlikely that Wolbachia shifted from prey to 
spiders. In this study, samples including both spiders and 
insects were collected in the same habitat. 

Spiders can predate upon many insects. Only three of 
the seven insect species (belonging to six families) tested 
in this study were infected with Wolbachia. If Wolbachia 
can be transferred from infected insects to uninfected 
spiders by predation, then the incidence of Wolbachia 
among spiders should be much higher. Concerning 
Wolbachia horizontal transmission between spiders and 
insects, Cordaux et al (2001) detected Wolbachia infection 
in a woodlouse-eating spider Dysdera erythrina (Araneae: 
Dysderidae), and proposed that the predator-prey route 
cannot transfer Wolbachia because the symbionts seemed 
unlikely to survive in the predators’ digestive tract. Their 
suggestion is congruent with the results in this study. 

We also argue that the specialized food-intake 
mechanisms in spiders impede the transmission of 
Wolbachia. In spiders, digestion is initiated outside the 
body. After the prey is subdued, spiders regurgitate 
their digestive ϐluids from the intestinal tract into the 
victim, and then suck in a drop of the predigested liquid 
prey, repeating this process many times (Foelix 1996). 
Wolbachia is an endosymbiont that cannot live outside 
its host’s cells (Werren 1997). Therefore, the extra-oral 
digestion system of spiders may be able to destroy the 
cell structure of the victim. 

The phylogenetic analysis of the 16S rDNA and wsp 
gene fragments indicated a close similarity in nucleotide 
sequence between Wolbachia in N. lugens and P. fuscipes. 
Paederus fuscipes and N. lugens have a potential predator-
prey relationship. However, wsp or 16S rDNA sequences 
obtained from them were dissimilar. Previous studies 
indicated that high rates of recombination have occurred 
in the wsp gene (Baldo et al 2005, Roy & Harry 2007, Verne 
et al 2007), and therefore phylogenetic reconstruction 
according to wsp fragments is not completely reliable. 
Recently, Multilocus Sequence Typing (MLST) has been 
an effective means of detecting diversity among strains 
within a single host, as well as for identifying closely 
related strains found in different hosts (Baldo et al 2006, 
Baldo & Werren 2007, Baldo et al 2008). In addition to 
spiders, other natural enemies of insects are suitable 
subjects to test the possibility of horizontal transfer of 
Wolbachia through predation by means of the MLST 
method, in future studies. 
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