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Catch-per-unit-effort: which estimator is best?
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Abstract

In this paper we examine the accuracy and precision of three indices of catch-per-unit-effort (CPUE). We carried out 
simulations, generating catch data according to six probability distributions (normal, Poisson, lognormal, gamma, 
delta and negative binomial), three variance structures (constant, proportional to effort and proportional to the squared 
effort) and their magnitudes (tail weight). The Jackknife approach of the index is recommended, whenever catch is 
proportional to effort or even under small deviations from proportionality assumption, when a ratio estimator is to be 
applied and little is known about the underlying behaviour of variables, as is the case for most fishery studies.

Keywords: CPUE, probability distributions, accuracy, Jackknife, Monte Carlo.

Captura por unidade de esforço: qual estimador é melhor?

Resumo

Neste trabalho, examinamos a acurácia e precisão de três índices de captura por unidade de esforço (CPUE). Foram 
feitas simulações, nas quais foram gerados dados de captura de acordo com seis distribuições de probabilidade (nor-
mal, Poisson, lognormal, gama, delta e binomial negativa), três estruturas de variância (constante, proporcional ao es-
forço e proporcional ao quadrado do esforço), e magnitudes (tail weight). É recomendado o uso do método Jackknife 
para os índices, sempre que a captura for proporcional ao esforço ou até em casos de pequenos desvios do pressuposto 
de proporcionalidade, quando se deseja utilizar um estimador de razão e pouco é conhecido sobre o real comporta-
mento das variáveis, como é o caso da maioria dos estudos de pesca. 

Palavras-chave: CPUE, distribuições de probabilidade, acurácia, Jackknife, Monte Carlo.

1. Introduction

In many instances catch-per-unit-effort (cpue) is 
taken as an estimate of stock size. The cpue is especially 
useful if the relationship between catch and effort is lin-
ear through the origin (strict proportionality) (Gulland. 
1954; 1964; Garrod, 1964; Ricker, 1975; Lima  et  al., 
2000). Richards and Schnute (1986) examined the ques-
tion, both experimentally and theoretically conclud-
ing that strict proportionality is best for single-species 
data collected over uniform weather conditions and that 
cpue has less value as an index of abundance when data 
are combined irrespective of species and fishing condi-
tions, as is the case of commercial fisheries. In these last 
cases, it is worth mentioning that the cpue may also be 
affected by differences in catchability among samples 
from different fishing vessels, gear and methods, which 
might confound indexes of abundance. Even so, when 
one needs to report catch data it is usual to express cpue 
totalled by fishing site (quadrats in the sea) and/or sea-

son. This procedure, besides reducing the huge amount 
of data, as is usual in fisheries, decreases the noise result-
ant from environmental stochasticity (Petrere, 1986). In 
practice, there are instances in which these assumptions 
do not hold, and one of them is that it is possible that 
non-independence of sampling units generates distinct 
error structures other than the normal one.

Traditionally there are two ways to define cpue 
(Equations 1 and 2):

 = =   

∑ i
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where C
i
 is ith catch (usually expressed in weight), f

i
 is 

its respective fishing effort. They are both ratio estima-
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tors (Thompson, 1992). Griffiths (1960) named cpue
1 

as weighted index of density and cpue
2
 as unweighted 

index of density reasoning that the ratio cpue
2
/cpue

1
, 

which he called index of concentration would exceed 
unity in areas of higher-than-average density. If fishing 
is at random the index of concentration shall be 1, and 
if fishing effort is applied in those areas with less than 
density average, the ratio should be less than 1 (Griffiths, 
1960; Calkins, 1961). Another ratio estimator, that does 
not have much intuitive appeal to fish biologists, is pre-
sented by Snedecor and Cochran (1967) (Equation 3):

ii
3 2 2

i

C .f C.f
cpue

ff
= =∑

∑
	 (3)

Whenever C be proportional to f, the regression line 
between them statistically goes through the origin, and 
can be fitted by the simple model C

i 
= βf

i
 + ε

i. 
All the 

three equations are unbiased estimates of the population 
ratio β in normally distributed populations. The choice 
among the three is a matter of precision: the most precise 
among the three is Equation 3, 2 and 1 if the variance 
of ε is constant, proportional to f or to f2, respectively. 
If the variance of ε increases moderately with f, cpue

2 
is 

still expected to perform well. Smith (1980) examined 
these three estimators, using real data sets assuming that 
C

i 
= βf

i
 + ε

i. 
is the right model. When it is not the case, as 

frequently happens with real data set, he claims that the 
best strategy is to jackknife cpue

2
. In case of inadequate 

choice of cpue, mainly if there is no strict proportionality 
between C and f, the three indices above are biased esti-
mates of abundance due to lack-of-fit components intro-
duced when ignoring the intercept. This certainly would 
lead to biased stock size and poor management.

Even considering the importance of Smith’s conclu-
sions, it would be helpful to further investigate how these 
estimators behave in a wider range of situations, mainly 
when the error term ε

i
 does not conform to a normal prob-

ability distribution, and also how robust they are under a 
wide variety of intercept values. Computably intensive 
Monte Carlo simulations, with a sort of heuristically cho-
sen error structure, seem to be good candidates for this 
purpose. So, the main objective of this paper is to com-
pare the accuracy, precision and robustness of five dis-
tinct cpue indices (three MLE and two Jackknife estima-
tors) under six distinct error distributions, three variance 
structures, three variance magnitudes, and five intercept 
values with simulated and real data.

2. Materials and Methods

All simulations reported here are based on simple 
assumptions. We generated effort data from a uniform 
distribution from 1 to 10 units. Catch data were simu-
lated in a two-step procedure: (i) we assumed that catch 
is linearly related to the effort with slope 2 and a given 
intercept value (0, 0.25, 0.50, 0.75 or 1). It would be in-
terpreted that the expected catch-per-unit-effort must be 
2 (unit of biomass or abundance)/(unit of fishing effort). 

(ii) We added a random error component to the previ-
ous catch and effort data. We examined six random error 
structures, namely: normal, Poisson, lognormal, delta 
(Syrjala, 2000), gamma (Ávila-da-Silva, 2002) and neg-
ative binomial (Andrade and Teixeira, 2002). So, these 
common errors structures were chosen just on a heuris-
tic basis and from examples from the literature. Some 
functions are parameterised according to Mood et  al. 
(1974). In order to produce comparable error structures 
among the simulations, we chose convenient parameters 
for these distributions to generate random numbers with 
mean zero and variances that could or not change with 
effort, according to Equation 4:

b
b

a
V f

3
 = ⋅  

	 (4)

where V is the variance of the error term for a given val-
ue of effort (f), “a” is a constant and “b” is an exponent 
dictating how the variance of the error term is related to 
effort. When b is zero, the variance is constant, irrespec-
tive of f values. When b is 1, the variance is proportional 
to f, and when it is 2, the variance is proportional to the 
square of f. The term 3b was just used to scale the vari-
ances so that at f = 3 they attain the same value (= a), 
whatever the value of b. Consequently, for f < 3 the vari-
ances generated by “b” = 1 or 2 attain values lower than 
those with b = 0, increasing to higher values when f > 3. 
The constant “a” scales the general magnitude of the var-
iances. Here we used three values for “a”: 1, 2 and 4. For 
a given “b”, doubling “a” means doubling the variance 
of the error term over the entire effort range. So, we have 
a total of 54 different situations, which are combinations 
of 6 error structures, 3 values of “b” and 3 values of “a”. 
For each combination, we simulated 1000 data sets, each 
representing 30 landings (30 catch-effort coordinates, 
from which the cpue estimates were calculated).

To generate random numbers with normal distribu-
tion, we simply used the parameters µ = 0 and σ2 = V 
(which depends on the specific effort value). For lognor-
mal, we set µ = 1 and used the equation for the variance 
(V) of this distribution (Mood et al., 1974) to solve for 
the parameter σ (the parameters µ and σ are those related 
to the normal distribution from which the correspondent 
lognormal is originated). Each combination of parame-
ters leads to different expected means which, in the case 
of lognormal distribution, are necessarily higher than 
zero. We used the equation from the Appendix, Table 2, 
page 540 in Mood et al., (1974) to calculate these means 
and subtracted them from the original random numbers, 
ensuring that the final means of errors be zero. The same 
procedure used for lognormal was applied also to gam-
ma, Poisson and negative binomial. For the first two, the 
mean and variance were equal to V, and from the gener-
ated numbers we subtracted this same value. The nega-
tive binomial was simulated using r = 81, and p varying 
according to the equation for the variance of this distri-
bution (using again V as the variance for a given effort 
and conditions set by Equation 4). The delta distribution 



Catch-per-unit-effort: which estimator is best?

485Braz. J. Biol., 2010, vol. 70, no. 3, p. 483-491

is currently used in fisheries to analyse catch data, as in 
the case of trawl surveys, where zero catches are fairly 
common (Syrjala, 2000). It is characterised by having 
a positive probability of zero values, and a lognormal 
probability distribution for positive values (Smith, 1988). 
So, it has three parameters: µ and σ, from the constitu-
ent lognormal distribution, and the parameter delta (δ), 
which is the probability of zero occurrences. To gener-
ate random numbers with delta distribution, we first em-
ployed uniformly distributed pseudo random numbers, 
together with lognormal distributed numbers. Every log-
normal number associated with a uniform number less 
than the parameter δ was then turned to be zero. In this 
way, on average, a proportion equal to δ became zero 
and a proportion equal to 1- δ remained positive lognor-
mally distributed. In the simulations, the value of δ was 
fixed as 0.1. The parameters of lognormal distribution 
were chosen in such a way to give the desired means and 
variances for the overall delta distribution (the variances 
obeying Equation 4, depending on the case). We just re-
arranged the equations for the mean and variance of delta 
distribution, presented in Smith (1988), to find the cor-
respondent µ and σ. As µ and σ must be positive values, 
there are some forbidden combinations for the mean (K) 
and variance (V) values. For the cases in which the vari-
ance of errors was constant (b = 0), we used K = 1.5 and 
V = a = 1, 2 or 4. Later on, we subtracted 1.5 from the 
generated delta numbers, ensuring that the errors have 
mean zero. For the cases in which the variances were 
proportional to f or f2, we also had to change the K values 
according to f. This procedure was necessary to make 
the parameters conform within the constraints. So, when 
the variances were proportional to f, we made K increas-
ing linearly from 1 (for f = 1, the minimum value) to 3 
(for f = 10, the maximum value), and V varying accord-
ing to Equation 4. Differently, when the variances were 
proportional to f2, K increased linearly from 2 to 3. In 
all cases, the calculated means were subtracted from the 
generated numbers, always resulting in errors with final 
mean equals to zero.

For each data set consisting of 30 catch-effort co-
ordinates, we calculated a 95% confidence interval (CI) 
for cpue based on t-distribution. The variances for each 
estimator were calculated as in Snedecor and Cochran 
(1967). In addition, we applied the Jackknife procedure 
for cpue

2
 and cpue

3
, considering each of 30 simulated 

landings as a replicate according to the current literature 
in the subject (Efron, 1982; Manly, 1991). Because cpue

1
 

is a mean of ratios, the Jackknife was not used for this 
estimator (a Jackknifed mean is exactly the mean, so 
nothing has to be gained). Here the performance of the 
estimators was analysed by means of three indicators: i) 
Confidence Interval (CI) coverage (%) and ii) Relative 
deviation (%) from the real value, both being measures 
of accuracy and iii) Coefficient of Variation (%) of simu-
lated estimates, this last being a measure of precision. 
The CI coverage is calculated as the percent of cases 
(comprising 1000 simulations) in which the actual cpue 

(2) is located within the estimated confidence interval. 
In all simulations, the CI were based on the t-distribu-
tion, irrespective of the actual probability distribution. 
Although not strictly correct, this was done for practi-
cal purposes. We think that if someone is interested in 
calculating a confidence interval for a real data set will 
do this using the t-distribution, as in most situations little 
is known about the actual probability distribution which 
characterises the observed catch variability. The relative 
deviation is calculated as the module of the difference 
between the estimate and the real value, divided by this 
last and multiplied by 100, giving the difference as a per-
centage, which is easier to interpret and to compare. To 
test for robustness against violations of strict proportion-
ality assumption, we simulated data with different inter-
cept values: 0, 0.25, 0.50, 0.75 and 1.00. For each in-
tercept, we repeated all procedures described above. We 
used only positive values for intercepts, as it is expect 
that negative intercepts would only promote deviations 
with symmetric effects when compared to positive ones.

2.1. Real data analysis

Real data are from the pink-shrimp “camarão rosa” 
Farfantepenaeus brasiliensis (Latreille, 1817) and 
Farfantepenaeus paulensis (Pérez-Farfante, 1967) land-
ed at Santos/Guarujá (SP) in May 1997. The sample size 
is 34 landings and the effort is the number of hauls. We 
adapted the collector curve (Pielou, 1977), in order to de-
termine the effect of increasing sample size upon the five 
estimators. We generated sets of samples of increasing 
sizes, 3, 4..., until the maximum of 34 of a sole sample. 
For each sample size, we took just 50 random combina-
tions (each one sampled without replacement from the 
original data points), except for the last. For each random 
combination, we calculated the values for each of the five 
cpue estimators. We based the analysis only on the rela-
tive deviations of them (the absolute differences from the 
value estimated for the total sample size, divided by this 
same value). This last was calculated assuming that, for 
each cpue estimator, the real value was that given by the 
maximum sample size (or, in other words, the estimate 
from the original data set).

3. Results

The ordering among estimator performance was most 
affected by the variance structure (whether constant, pro-
portional to effort or to squared effort). Considering the 
CI coverage (Figure 1), there is no clear pattern emerging 
from the graphs. The ordering shows frequent reversals, 
being affected also by the probability distribution. Cpue

2
 

had higher coverage in all cases for constant variances, 
although not necessarily closer to 95%, and reasonable 
coverage for other cases depending on the error distribu-
tion. The coverage for cpue

1
 were generally better when 

the variances were proportional to the squared effort, and 
also for some cases when variances were proportional to 
effort. MLE cpue

3
 had the worst coverage in almost all 
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Figure 1. Confidence Interval coverage (ordinate) for the five estimators and six error structures (abscissa). The columns rep-
resent different ways in which the error variances changed with effort (f). The lines represent different variance magnitudes, 
given by the coefficient “a” (Equation 4). Each point gives the proportion of cases (comprising 1000 simulations) in which 
the true cpue (2) was contained inside the estimated confidence interval. 

cases. Jackknifing improved cpue
2
 and cpue

3
 coverage 

when V ~ f2 for the first, and when V ~ f or V ~ f2 for 
the second.

The most discrepant probability distribution was 
delta, followed by lognormal. These two distributions 
depart from the others by producing narrower confidence 
intervals, but having lower coverage (Figure 1), what is 
due to their higher asymmetry. These differences were 
larger the larger the variances. Moreover, this was the 
only substantial effect of changing the variance magni-
tudes (the values of the coefficient “a”, in Equation 4).

The relative deviations and the coefficients of varia-
tion give more clear and similar patterns (Figure 2 and 3). 
The ordering depended substantially on the variance 
structure: cpue

3
 have the best performances when vari-

ance is constant; cpue
2
 and Jackknifed cpue

3
, when the 

variance is proportional to effort; cpue
1
 and Jackknifed 

cpue
2
, when variance is proportional to squared effort. 

Among them, cpue
2
 and Jackknifed cpue

3
 were those 

which present more regularity, being the least affected 
by variance structure, and presenting an overall better 
performance. The probability distribution exerted little 
or no influence.

To avoid confusion, due to the large amount of data, 
the results from simulations with different intercepts 
were grouped and presented on a single graph for each 
performance indicator (Figure 4). Those graphs contain 
the means values, maxima and minima, along all kinds 
of variance structure, magnitude and probability dis-
tribution tested. For example, all points present in the 
graph of Figure  1 (54 values of CI coverage for each 
cpue estimator) are condensed on a single sequence of 
mean, maxima and minima for the five estimators in the 
top graph of Figure 4 (in the region of intercept = 0.00). 
The same were done for the other intercept values, and 
repeated for relative deviations and coefficients of vari-
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Figure 2. Means of relative deviations (absolute differences of the estimates from the real value, divided by this value) (ordi-
nate) for the five estimators and six error structures (abscissa). The columns represent different ways in which the error vari-
ances changed with effort (f). The lines represent different variance magnitudes, given by the coefficient “a” (Equation 4). 
Each point gives a mean calculated from 1000 simulations. 

ation (middle and bottom graph, respectively). This pro-
cedure has the disadvantage of ignoring variations due to 
factors like variance structure or probability distribution, 
but has the great advantage of showing a clear picture of 
broader patterns, when they exist.

For intercept = 0, we see that cpue
1
 and cpue

2
 have 

slightly better CI coverage (Figure 4), regarding the en-
tire variety of situations shown in Figure 1. Cpue

2
 and 

Jackknifed cpue
3
 have better performances when con-

sidering relative deviations and coefficients of variation. 
Nevertheless, the differences among estimators for this 
single situation are rather subtle. When the analysis is 
extended to a wider range of intercept values, the very 
subtleness and the context dependence of the estima-
tor differences vanish. Considering the CI coverage, 
the Jackknifed estimators present an overwhelmingly 
better performance, mainly for intermediate intercept 
values (Figure 4). Jackknifing is able to correct almost 

completely a bias of up to 0.25 in the value of inter-
cept. Obviously, this capacity decreases as the amount 
of bias increases, and it is expected that CI coverage 
would eventually reaches zero. Along intercept values, 
Jackknifed cpue

3
 is the one that performs better, even 

when compared with Jackknifed cpue
2
.

The relative deviations reinforce Jackknifed cpue
3
 as 

the best estimator, followed by MLE cpue
3
 for this per-

formance index (Figure 4). Contrary to CI coverage, the 
differences among estimators increase monotonically as 
intercept values increase. Another still different picture 
arises from the coefficients of variation (Figure  4). In 
this case, the intercept does not seem to affect the es-
timates, which show little variability. MLE cpue

2
, fol-

lowed by Jackknifed cpue
2
, appears as the most precise, 

although its differences to MLE and Jackknifed cpue
3
 

are negligible.
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Figure 3. Coefficient of variation (ordinate) of estimates for the five estimators and six error structures (abscissa). The 
columns represent different ways in which the error variances changed with effort (f). The lines represent different variance 
magnitudes, given by the coefficient “a” (Equation 4). Each point gives the CV calculated from 1000 simulations.

In the real data of Figure  5 there is a statisti-
cally significant relationship between catch and ef-
fort (C  =  15.898f  +  62.764; r2 = 0.573; F

1, 32
 = 42.985; 

p < 0.001). As the intercept is not significantly different 
from zero (t

32
 = 0.872; p = 0.390), we could assume that 

the regression pass by the origin, and doing this, we recal-
culated the relationship (C = 17.8.f; r2 = 0.563; F

1, 33 
= 337, 

p < 0.001).
The cpue estimates (kg/haul) calculated from 

the shrimp data are: cpue
1
 = 19.12; cpue

2
 = 18.21; 

cpue
3
  = 17.84; Jackknifed cpue

2
 = 18.19; Jackknifed 

cpue
3
  =  17.83. A quick inspection of Figure  6 reveals 

that the best estimators for the shrimp data seems to be 
the Jackknifed and MLE of cpue

3
, as their relative devia-

tions are lower for almost the entire sample size spec-
trum (nevertheless, cpue

2
 is better for the smallest sam-

ple size). As expected, the pattern for all estimators is 
of decreasing relative deviations with increasing sample 
sizes (as the estimates approach the true values).

4. Discussion

The cpue is a result of several assumptions which 
may be taken in different combinations: (i) the fish vul-
nerability to the fishing gear; (ii) stock spatial distribution 
which determines fishing effort distribution (Paloheimo 
and Dickie, 1964), viz if the stock is randomly spaced this 
will lead to fishing effort randomly distributed, otherwise 
we will have a non-random search by the fisher, who be-
haves like an optimal predator; (iii) independence of each 
fishing operation; if not, the fishing process would be a 
Markovian one, as the fisher tends to repeat his opera-
tion in those spots with higher abundance; (iv) the pro-
portionality between cpue and abundance N at time t is 
conventionally expressed as cpue

t
 = qN

t 
, where q is the 

catchability coefficient. Lately, a generalisation of this 
relationship has been examined, the simplest being the 
power curve cpue

t 
= qNtβ (Harley et al., 2001). Historically 

catch-per-unit-effort has been suspicious of not always 
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being proportional to abundance and recent studies have 
been set in order to examine it in depth (Punt et al., 2000; 
Bigelow et al., 2002; Walters, 2003). Harley et al. (2001) 
analized the proportionality between cpue and abundance 
and found real situations where cpue was most likely to 
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Figure  4. Confidence Interval coverage, Relative Devia-
tion means and Coefficient of Variation along five values 
of intercepts. The midpoints are the means, and the whisk-
ers represent maxima and minima. For each intercept, data 
were grouped irrespective of the variance pattern, variance 
magnitude or error structure, and the mean, maximum and 
minimum were drawn from 54 values (3 variance patterns X 
3 variance magnitudes X 6 probability distributions, as they 
appear in Figure 1, 2 or 3), for each estimator. 
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Figure 5. Relationship between the prawn “camarão rosa” 
Farfantepenaeus brasiliensis and F. paulensis catches (kg) 
and fishing effort (number of hauls), C = 17.835f (r2 = 0.954; 
p < 0.001), landed at Santos/Guarujá in May, 1997.
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Figure 6. Means of relative deviations for the data of “ca-
marão rosa” Farfantepenaeus brasiliensis and F. paulensis 
in May, 1997. In the five methods the mean is a result from 
50 randomisations with sample size increasing from 3 to 
34 landings (here are presented the data only for odd sample 
sizes). 

remain high while abundance declines (β < 1 in the power 
curve cpue

t
 = qNtβ, a situation named hyperstabilty). Their 

simulations also showed that estimates of β have an ap-
proximately 10% positive bias. It seems that hyper stabil-
ity is a common phenomenon in fisheries, a consequence 
of non-random search (Labelle et al., 1997). Anyway even 
if β = 1, it is not a guarantee that c/f is a good abundance 
index. We must be concerned also with the catchability 
coefficient q. In practice, for the cpue to be used properly 
as an index of abundance, the catchability must be reason-
ably constant among samples, not coming from very dif-
ferent fishing fleets and/or gears. This is a general assump-
tion, on which the conclusions from the present models 
and simulations also may depend.

When we do not have strict proportionality, a pos-
sible way out is try to use an analysis of covariance 
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(ANCOVA) strategy, with catch as the response variable, 
the fishing effort as the covariate together with eventual 
factors as vessel category, season, area, etc. (Allen and 
Punsly, 1984; Petrere, 1986). This analysis is not biased 
by the intercept, as it is included explicitly for model 
estimation. Nevertheless, traditionally people like to ex-
press units as ratios, like cpue. It has the appeal of being 
simpler, more intuitive and does not need the amount of 
data usually required to perform an ANCOVA. Beyond 
this, much of the already published work on fisheries and 
similar research present data as ratios between catch and 
effort. Any comparison among them and current work 
would have to adopt the same method.

In simulation experiments, as the ones performed 
here, we deal with a twin problem: (i) determine the ex-
pected behaviour of an estimator (a “population” prob-
lem) and (ii) evaluate its behaviour in each performance 
of the experiment (a “sample” problem). It is important 
to realise that from the point of view of the field scientist, 
the behaviour of each sample is more relevant than the 
expectation of the whole simulation data, which justifies 
the approach here adopted.

Assuming strict proportionality, our results give evi-
dence that the better choice among the five cpue estima-
tors depends much on the way the catch variance is re-
lated to effort and also on the measure of performance, 
whether the CI coverage, relative deviation, or coefficient 
of variation. Considering the overall picture for strict pro-
portionality, cpue

2
 seems to perform better, having rela-

tively high accuracy (high CI coverage and low relative 
deviations), and precision (low coefficient of variation). 
Although Calkins (1961) indicated that cpue

2
 fluctuates 

more than cpue
1
 with higher coefficient of variation for 

the same data set, when reanalysing his data in his origi-
nal Table 1, catch do not bear any relationship with effort 
(r2 = 0.094, n = 36, p = 0.068) and in his Table 7, the C × f 
is not of strict proportionality (C = 10541.58 + 3.328f, 
s

a
 = 3278.61, t

a 
= 4.309**, n = 36, r2 = 0.353, p < 0.001) 

making his statements suspicious. Moreover, his conclu-
sion is not supported by our simulations even for nonzero 
intercepts (Figure 4), but results analogous to his could 
arise if the variance of data is proportional to the squared 
effort (Figure 3). The prawn stock analysis showed a bet-
ter performance of cpue

3
 (MLE and Jackknifed). Probably 

this was due to the catch variance, which seems to be 
constant, or even decreasing with effort (Figure 5). This 
is consistent with simulation results, as can be seen in 
Figure 2.

Restricting the analysis only to cases when catch is pro-
portional to effort is, however, of little reaching and appli-
cation. A zero intercept is a particular case which, although 
desirable, does not correspond to every real situation in 
fisheries sampling (Punt et al., 2000; Bigelow et al., 2002). 
So the robustness of an estimator is of crucial importance. 
By considering the CI coverage, we see that Jackknifed 
cpue

3
 is the least affected by violations of proportionality 

assumption (Figure 4). This estimator is then the most rec-
ommended when one is interested in hypothesis testing, as 

it generally makes use of confidence intervals. Estimators 
that give CI coverage far from the expected value (95%) 
are prompt to reject true hypothesis or to accept false ones, 
thus being undesirable. On the other hand, when the esti-
mate itself is of greater importance, the relative deviation is 
a more adequate index (inverse) of estimator performance. 
Even in this case, the Jackknifed cpue

3
 remains as the most 

accurate estimator. It also has a reasonable precision, not 
differing much from the other estimators with respect to its 
coefficient of variation.

The simulations performed here included a wide va-
riety of situations, changing the variance structure, mag-
nitude, and error probability distributions along with the 
intercept values. By grouping indiscriminately the results 
from different values of the first three factors above, dur-
ing the analysis of estimator performance, we assumed 
that any combination of those factors’ values is of equal 
importance. It implies, for example, that using normal dis-
tribution, constant variance with low magnitude has the 
same weight for the present analysis as using delta distri-
bution, variance proportional to squared effort, high mag-
nitudes, and so on. It could be argued that some combina-
tions of those factors might be more probable to be found 
in nature. Nevertheless, there is still no comprehensive 
work that quantifies the frequency distributions of those 
factors for the overall fisheries data, which is the infor-
mation needed to ponder the calculation of mean values 
used to compare the estimators, as presented in Figure 4. 
Besides this, the only factor that seems to affect the results 
is the variance structure, what narrows the possibility of 
mistakes. By covering uniformly a given range of situa-
tions, our analysis presumes a practical situation charac-
terised by pure ignorance about underlying variables af-
fecting cpues. Of course, the more quantity and quality of 
data a researcher has, the greater is the chance of knowing 
the real behaviour of studied variables (catch, effort or any 
other). On the other hand, the greater would be the chance 
of the same researcher not using ratio estimators like cpue, 
as a lot of alternatives and more sophisticated analysis will 
become available to his/her data. In the case of less de-
tailed information about the true nature of variables, as 
occurs with the majority of studies, the cpue still remains 
popular, and sometimes is the only alternative left. If this 
is really the case, our conclusions apply adequately, point-
ing to Jackknifed cpue

3
 as the most robust and the best 

ratio estimator of catch-per-unit-effort.
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