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Abstract

The tambaqui, Colossoma macropomum, is one of the most commercially valuable Amazonian fish species, and in 
the floodplains of the region, they are caught in both rivers and lakes. Most growth studies on this species to date have 
adjusted only one growth model, the von Bertalanffy, without considering its possible uncertainties. In this study, four 
different models (von Bertalanffy, Logistic, Gompertz and the general model of Schnüte-Richards) were adjusted 
to a data set of fish caught within lakes from the middle Solimões River. These models were adjusted by non-linear 
equations, using the sample size of each age class as its weight. The adjustment evaluation of each model was based 
on the Akaike Information Criterion (AIC), the variation of AIC between the models (Δi) and the evidence weights 
(wi). Both the Logistic (Δi = 0.0) and Gompertz (Δi = 1.12) models were supported by the data, but neither of them 
was clearly superior (wi, respectively 52.44 and 29.95%). Thus, we propose the use of an averaged-model to estimate 
the asymptotic length (L∞). The averaged-model, based on Logistic and Gompertz models, resulted in an estimate of 
L∞=90.36, indicating that the tambaqui would take approximately 25 years to reach average size.

Keywords: Amazon, Colossoma macropomum, fish growth, model selection, multimodel inference.

Modelagem do crescimento do tambaqui (Colossoma macropomum Cuvier, 1816):  
seleção de modelos e inferência multimodelos

Resumo

O tambaqui, Colossoma macropomum, é uma das espécies de peixes amazônicos de maior valor comercial, sendo 
capturado em rios e lagos da planície alagável da região. Até o presente, a maioria dos estudos sobre essa espécie tem 
ajustado um único modelo de crescimento, o de von Bertalanffy, sem considerer as possíveis incertezas associadas 
ao uso do modelo. Neste estudo, quatro modelos diferentes (von Bertalanffy, Logístico, Gompertz e o modelo geral 
de Schnüte-Richards) foram ajustados a um conjunto de dados de peixes capturados no interior de lagos situados no 
médio Solimões. Esses modelos foram ajustados por equações não lineares e o número de tambaquis em cada classe de 
tamanho foi usado como peso no ajuste. A avaliação do ajuste de cada modelo foi baseada no Critério de Informação 
de Akaike (AIC), na diferença do AIC entre os modelos (Δi) e nos pesos de evidência (wi). Tanto o modelo Logístico 
(Δi = 0,0) como o de Gompertz (Δi = 1,12) foram suportados pelos dados, mas nenhum deles foi claramente superior 
(wi, respectivamente, de 52,44 e 29,95%). Assim, é proposto o uso de um modelo médio para estimar o comprimento 
assintótico (L∞). O modelo médio, baseado nos modelos Logístico e de Gompertz, resultou em uma estimativa de 
L∞ = 90,36 e indicou que o tambaqui levaria aproximadamente 25 anos para atingir esse tamanho.

Palavras-chave: Amazônia, Colossoma macropomum, crescimento de peixes, seleção de modelos, inferência multimodelos.
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1. Introduction

The tambaqui, Colossoma macropomun (Cuvier 1816, 
Characidae), is the largest characin of the Neotropical region. 
It migrates hundreds of kilometers in the rivers along the 
lowland Amazon basin. Juveniles feed on zooplankton in 
the floodplain lakes, and adults feed on fruits and seeds 
in the flooded forests (Araújo-Lima and Goulding, 1997; 
Costa et al., 1999; Goulding and Carvalho, 1982). There 
is one panmictic population in this region (Santos et al., 
2007), with an estimated potential yield of 15,000 tons 
(Barthem and Goulding, 2007). Tambaquis respond 
strongly to fluctuations in water level, and the tambaqui 
fishery is influenced by these fluctuations. In the central 
Amazon, the tambaqui fishery exploits stocks of adult 
tambaquis when in dispersion or reproductive movements, 
and juvenile tambaquis are mostly captured in floodplain 
lakes during the dry season (Araújo-Lima and Goulding, 
1997; Costa et al., 2001; Goulding and Carvalho, 1982). A 
decline in large adult tambaqui catch in the last few years 
has forced the commercial fleet, responsible for supplying 
Amazon markets, to exploit the floodplain lakes more 
intensively. This has resulted in an increase in juvenile 
and young adult catch and consequently in a diminution 
in the mean size of landed tambaquis (Araújo-Lima and 
Goulding, 1997; Costa et al., 2001; Isaac and Ruffino, 
1996). Excessive tambaqui fishing has transformed this 
resource from underexploited in the 1970s (Petrere, 1983) to 
a “growth-overfishing” condition in the 1990s (Costa et al., 
1999; Isaac and Ruffino, 1996).

One of the main sources of variation in stock biomass is 
the growth of individuals that are already in the population. 
Thus, studies on the growth of species of commercial 
value, such as Colossoma macropomum, are very important 
to fishery management strategies. To date, published 
studies on tambaqui growth have been conducted based 
on the arbitrary choice of a single model (usually the von 
Bertalanffy equation), and the parameter estimation and 
inference of growth are based on this unique model adjusted 
to the data set (Isaac and Ruffino, 1996; Penna et al., 2005; 
Petrere, 1983). This procedure does not account for the 
likely uncertainty related to the structure of the model and 
implicitly assumes the existence of one “true” model. This 
assumption is unrealistic and is not justified by philosophy 
or mathematics (Buckland et al., 1997; Burnham and 
Anderson, 2002; Chatfield, 1995).

Computer-intensive methods allow a large number of 
models to be considered, and data-dependent specification 
searches have become common procedure in biology 
(Manly, 2007; Roff, 2006). Akaike´s information criterion 
(AIC) for model selection is relatively recent and uses a 
Kullback-Leibler inform (or K-L distance) as a fundamental, 
conceptual measure of the relative distance of a given 
model from full reality (Burnham and Anderson, 2002). 
Although the use of AIC for model selection would be 
a better approach than arbitrarily picking a model, data 
often supports more than one model, reinforcing that 
uncertainty in model selection cannot be ignored (Burnham 

and Anderson, 2002; Katsanevakis, 2006). In practice, if 
model selection uncertainty is ignored, precision is often 
overestimated, and predictions are less accurate than 
expected (Burnham and Anderson, 2002). Thus, rather 
than making inferences from a unique model estimated 
to be best from a set of models, robust inferences can be 
made from several models or on the entire model set via 
model averaging (Burnham and Anderson, 2002).

The tambaqui is one of the key species among Amazonian 
fish of commercial value. However, some aspects of the 
biology of growth of wild animals in its natural environment 
are not fully understood. In this study, statistics of model 
selection and multimodel inference (MMI), based on 
information theory approach, are applied for length-age data, 
aiming to obtain a more robust estimation of the parameters 
of growth of juveniles and young adults in tambaqui 
stocks living in floodplain lakes. Growth parameters and 
inferences will help to better understand the effect of the 
fishery fleet, acting specifically on floodplain lakes, and the 
present diminution of the mean size of landed tambaquis.

2. Material and Methods

Fish were sampled from floodplain lakes at the Reserva 
de Desenvolvimento Sustentável Mamirauá (RDSM), 
located in the confluence of the Solimões and Japurá 
Rivers in Amazonas state, Brazil (see Figure 1), during 
low water seasons from 1993 to 1995. Fish are confined 
to lakes during the dry season and are thus isolated from 
the main river channel and other surrounding water bodies. 
Each lake was sampled once a year with an encircling 
gillnet that was 120 m long, 9 m high and 0.14 m between 
opposite knots.

Length was measured as snout to the extremity of the 
mesial ray of the caudal fin (fork length) and a sample of 
scales was taken from the region below the pectoral fin 
from each fish caught, before its liberation in the original 
lake. Age was determined by ring counting, as described 
in Costa et al. (1999). From the total sample of captured 
fish, a stratified subsample of five tambaquis for each 
2-cm length class was taken for the readings of growth 
rings. The age validation method employed was based 
on a mark-recapture experiment of wild fish. Scales were 
removed at the time of tagging and release of wild fish. 
The removed scale was used to estimate the age at tagging, 
and the time at liberty added to estimate the absolute age 
of the recaptured fishes (unpublished data). The data of 
mean length estimated for each age class were used to 
model the growth of C. macropomum. This approach was 
used in all previous studies on the growth of this species 
(Petrere, 1983; Isaac and Ruffino, 1986; Penna et al., 2005) 
and was adopted here to ensure comparability of results.

2.1. Set of candidate models

Four models commonly used for estimating parameters 
of fish growth were evaluated (Equations 1-4):

Logistic (Ricker, 1975): ( )( )0
1k t t

tl L 1 e
−− −

∞= + 	 (1);
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Gompertz (1825): ( )( )0k t t
tl L exp e− −

∞= − 	 (2);

Von Bertalanffy (1938): ( )( )0k t t
tl L 1 e− −

∞= − 	 (3);

Schnute-Richards (1990): ( )1
1

bkt
tl L 1  e−

∞= + α 	 (4).

These four candidate models, respectively g
I
: g1-g4, were 

adjusted to the length-age data obtained via scale readings 
of tambaquis captured in the floodplain lakes. Equation 4 
is a special case of the general Schnute-Richards model of 
fish growth, and it is equivalent to the generalised Schnute 
growth model with four parameters (Haddon, 2001; Quinn 
II and Deriso, 1999; Schnute and Richards, 1990). This 
last parameterisation corresponds to the logistic, von 
Bertalanffy, and Gompertz models when the parameter 
b is respectively: –1, 1 and ≈ 0.01. Equation 4 was used 
as a substitute of the original model of Schnute (1981) 
because it gives a direct estimation of asymptotic length 
and because the data set does not support the adjustment 
of a more parameterised equation.

2.2.  Modelling the growth of tambaqui

All the models g
I
 (i = 1,..., R) were adjusted to the data 

by non-linear weighted regressions using the sample size 
of each length class as weight. This strategy makes an 
efficient use of small data sets and yields better estimates 

of parameters and respective confidence intervals. Iterations 
were conducted using the algorithm Levenberg-Marquardt, 
available in the SPSS software, v.15.0 (SPSS 2006), 
assuming an additive error structure. The best model 
among the candidate models was selected using Akaike´s 
Information Criterion adjusted for small sample sizes or 
AICc (Burnham and Anderson, 2002; Hurvich and Tsai, 
1989; Shono, 2000). The AICc is based on information 
theory and has been computed from least squares regression 
statistic as (Burnham and Anderson, 2002) (Equation 5):

( ) ( )2
c

2k k 1ˆAIC n log 2k
n k 1

+
= s + +

− − 	 (5)

where s =2ˆ RSS/ n, RSS is the residual sum of squares for 
a particular candidate model, n is the sample size and k is the 
total number of estimated regression parameters including 
s2 (number of parameters in the model equation plus one). 
Normally distributed deviations with constant variance were 
assumed. The models were ranked and compared using 
∆AICc and Akaike weights (Burnham and Anderson, 2002). 

The ∆AICc for each model i was calculated as (Equation 6):

i i minc c cAIC AIC AICΔ = − 	 (6)

The values of ∆AICc help to compare the relative distance 
between the most parsimonious model, which represents the 
best compromise between accuracy and precision (

mincAIC ), 
and each other candidate model ( icAIC ). The fit of candidate 

Figure 1. Study region and sampled lakes (black circles).
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models is considered essentially equivalent when ΔAIC 
is smaller than two (Burnham and Anderson, 2002). The 
Akaike weight (w

I
) is used to quantify the plausibility of 

each model i, given the set of a priori candidate models 
and the data. The most plausible candidate model has the 
greatest w

I
. The w

I derived from the differences between 
AICc values was computed as (Burnham and Anderson, 
2002) (Equation 7):

i

i R

r
r 1

1exp
2w

1exp
2=

 − Δ  =
 − Δ  

∑
	

(7)

where ∆
I 
is the ∆AICc, and R is the number of candidate 

models used in the analysis. The Akaike weights given for 
each model are interpreted as a measure of evidence of the 
‘‘best’’ one within the set of candidate models (Akaike, 
1983; Buckland et al., 1997; Burnham and Anderson 2002). 
However, if no single model is clearly superior (w

I 
< 0.9) 

to the others in the set, then model-averaged parameter 
estimates using Akaike weights is recommended (Burnham 
and Anderson, 2002). The model-average was computed 
by averaging the predicted response variable L(t) across 
models, using the corresponding w

I
´s as weights (Burnham 

and Anderson, 2002; Katsanevakis, 2006). The model-
averaged asymptotic length was calculated as (Burnham 
and Anderson, 2002; Katsanevakis, 2006; Katsanevakis 
and Maravelias, 2008) (Equation 8):

R

i i
i 1

ˆL w L ,∞ ∞
=

= ∑
	

(8)

where ∞iL̂  denotes estimated asymptotic length for each 
model g

I 
, i = 1,.., R, and asymptotic 95% CI estimated as 

( )∞ ∞±i d.f .,0,975 i
ˆ ˆL t S.E L . The unconditional standard error of 

∞L  was estimated as following (Burnham and Anderson, 

2002) (Equation 9):

R
2

i i i i
i 1

ˆ ˆS.E. (L ) w var(L | g ) (L L )∞ ∞ ∞ ∞
=

= + −∑
	

(9)

where ∞i i
ˆvar(L | g )  is the variance of the estimated asymptotic 

length, conditional on the model g
I
 (Buckland et al., 1997; 

Burnham and Anderson, 2002). The asymptotic L∞ was the 
only parameter chosen to represent the averaged-model in 
this study, because the other parameters, k e to, do not have 
the same meaning across models evaluated (Katsanevakis, 
2006; Quinn II and Deriso, 1999; Ricker 1975; Schnute 
and Richards, 1990).

3.  Results

3.1.  Key mean length-age

A total of 3,524 tambaquis were caught within the ten 
lakes of the RDSM. All fish had a fork length smaller than 
63 cm, and only 3% or captured fish had length equal or 
larger than the minimum size allowed by Brazilian legislation 

(55 cm). The subsample taken to scale readings included 
526 individuals, and data analyses indicated that tambaquis 
in the study region stay confined within floodplain lakes 
for approximately 5-6 years (as shown in Table 1).

3.2. Comparing growth models

Based on values for ∆
I
 it is possible to conclude that 

both the logistic (∆
I
 = 0.00) and Gompertz (∆

I
 = 1.12) 

models are equally well supported by the dataset available 
for C. macropomum (as shown in Table 2). However, 
according to Akaike weights, the Logistic model is 1.80 
times better supported than the Gompertz model. The von 
Bertalanffy model was also supported by the data, with a 
weight of evidence of 17.60%. However, the estimation of 
the asymptotic length L∞ and the corresponding asymptotic 
95% confidence interval are evidence that the von Bertalanffy 
model underestimates the precision for the available dataset. 
The Schnute-Richards model had essentially no support 
in the data, and overestimated precision (see Table 2).

The logistic model was not a “clear winner” (w
I
 < 90%). 

Thus, it is too risky to make inferences based uniquely on 
this model. However, estimating the average model using 
the set of candidate models could lead to an underestimation 
of the precision of model-averaged asymptotic length (see 
Table 2). The most robust estimate of L∞ was obtained 
by excluding the von Bertalanffy and Schnute-Richards 
models, which had little or no support from the data from 
the final average estimate (as shown in Table 3).

The projection of the growth curve of Colossoma 
macropomum, according to the average model prediction, 
suggests that this species in nature would take approximately 
25 years to reach a mean L∞ of approximately 90 cm of 
fork length (see Figure 2).

4. Discussion

The use of the Akaike Information Criterion (AIC) for 
selection of the best fit model revealed a high degree of 
uncertainty that cannot be ignored. This uncertainty could 
have serious implications for parameter estimation and 
comparison of parameters among different populations and 
consequently for delineation of specific management strategies 
(Katsanevakis, 2006; Katsanevakis and Maravelias, 2008). 

Table 1. Mean length by age for tambaquis caught within 
floodplain lakes at the MSDR, between 1993 and 1995 
(n = 526).

Relative age 
(year)

Mean length 
(cm)

Number of 
individuals

0 26.75 2
1 32.42 40
2 39.47 157
3 46.59 152
4 54.16 115
5 60.15 58
6 62.60 2
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For the present data set, the information theory method 
reinforced the importance of multimodel inference, which 
allowed estimating a growth parameter by model-averaging, 
yet the dataset has supported more than one model between 
the applied candidate models. In this situation, using only 
one model in the set could result in estimating growth 
parameters with low precision or accuracy.

The a priori use of the von Bertalanffy equation has 
been questioned by many authors (Knight, 1968; Roff,1980; 
Schnute, 1981). (Katsanevakis and Maravelias, 2008) applied 
the AIC to select from four different models adjusted to 
133 length-age datasets for 82 fish species and concluded 
that the von Bertalanffy equation was not the best model 
for 65.4% of them. The von Bertalanffy equation tends to 

Table 2. Summary of the modelling of tambaqui (Colossoma macropomum) growth by using data of length-age obtained by 
reading growth rings in scales of fish captured within floodplain lakes.

Models k AICc ∆
i

w
i
(%)

L∞ (cm)

Estimate SE LCI (95%) UCI (95%) 
g1: Logistic 4 33.37 0.00 52.44 83.51 4.97 69.70 97.32
g2: Gompertz 4 34.49 1.12 29.95 102.98 13.56 65.34 140.62
g3: von Bertalanffy 4 35.55 2.18 17.61 244.27 206.70 - 818.15
g4: Schnute-Richards 5 71.77 38.40 0.00 66.29 2.65 57.84 74.73

Model-averaged 117.46 66.71 - 302.91
where k is the number of estimated parameters in the model; AICc , is the second order Akaike information criterion; ∆i, is 
the difference between the AICc of each model and the model with the lowest AICc value; wi, is the Akaike weigth for the 
model; L∞, is the asymptotic length; SE, estimated standard error; - negative value; LCI, lower confidence interval; UCI, 
upper confidence interval.

Table  3. Result of modelling growth for tambaqui (Colossoma macropomum) after excluding the Von Bertalanffy and 
Schnute-Richard models

Models k AICc ∆
i

w
i
(%)

L∞ (cm)

Estimate S.E LCI (95%) UCI (95%) 
g1: Logistic 4 33.37 0.00 63.64 83.51 4.97 69.70 97.32
g2: Gompertz 4 34.49 1.12 36.36 102.98 13.56 65.34 140.62

Model-averaged 90.36 11.87 57.36 123.36
where k is the number of estimated parameters in the model; AICc , is the second order Akaike information criterion; ∆i, is 
the difference between the AICc of each model and the model with the lowest AICc value; wi, is the Akaike weigth for the 
model; L∞, is the asymptotic length; SE, estimated standard error; - negative value; LCI, lower confidence interval; UCI, 
upper confidence interval.

Figure 2. Growth curves for the tambaqui, including the Logistic, Gompertz and the averaged-model.
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be better suited to describe the growth of a species when 
adjusted to a dataset composed by many older animals, 
which exhibit a maximum asymptotic length (Haddon, 
2001; Roff, 1980). For tambaquis proceeding from the 
Solimões-Amazonas rivers and its tributaries, the von 
Bertalanffy adjustment to age-length of adult individuals 
(length > 55 cm) has revealed an asymptotic pattern of 
growth (Petrere, 1983).

It is important to emphasize that the aim of information 
theory is not to simply model the data, but to recover the 
information contained (Buckland et al., 1997; Burnham 
and Anderson, 2002). In this sense, model selection is 
not only dependent on the pattern of growth of each 
species, but also on the quality and characteristics of the 
dataset and the quantity of information that it contains 
(Katsanevakis, 2006; Katsanevakis and Maravelias, 
2008). Therefore, if a species presents an asymptotic 
growth but adult individuals are absent from the dataset, 
the von Bertalanffy model would not be well supported 
because the von Bertalanffy equation has the assumption 
of asymptotic growth. This can partially explain the poor 
performance of the von Bertalanffy model in this study, 
where the dataset was composed primarily by young 
tambaquis and presented a reduced number of adults. This 
characteristic forced the von Bertalanffy model to obtain 
the L∞ parameter through extrapolation, and the result was 
considered largely overestimated (L∞ ≈ 244 cm) because 
is above all estimates of this parameter obtained in the 
literature and considered biologically plausible for this 
species (see Table 4).

However, the poor fit of the von Bertalanffy model 
to this species is not merely related to the profile of the 
present dataset. Even the dataset used by Petrere (1983), 
which was predominantly composed of adults, presented 
a low performance when the von Bertalanffy model was 
adjusted. Petrere (1983) presented a plausible L∞ because 
this author did not estimate this parameter by modelling, 
but has fixed it as 107.3 cm, based on the largest tambaqui 
found in nature. As his data matrices are available (Tables III 
e IV in Petrere, 1983), it was possible to use that dataset 
to adjust the von Bertalanffy model and to estimate the 
L∞ parameter and its respective confidence interval (as 

shown in Table 4). The results have shown high uncertainty 
associated to the von Bertalanffy model adjusted to that 
dataset: the 95% CI for L∞ obtained was wider than that 
obtained by the averaged-model estimated in this study.

All data analyses have the objective of making inferences 
that can be appropriately applied to the population (Anderson, 
2007; Burnham and Anderson, 2002). The upper limit 
obtained by the Schnute-Richards model for the L∞ was 
74.73 cm, which clearly does not reflect what is found in 
nature. Despite their absence from our dataset, tambaquis 
with lengths equal or larger than 80 cm are still commonly 
caught outside várzea lakes (Costa et al., 1999). Therefore, 
when data adjustment is maximised in the general Schnute-
Richards model, it is detrimental to the generalisation of 
parameter estimation. In this case, the AICc reflected the 
“penalty” applied to the Schnute-Richards model for being 
a more parameterised model, which was not supported by 
the present dataset.

For the middle Solimões River population of tambaquis, 
the averaged-model calculated by a weighted mean of the 
predicted response variable L(t) using the Logistic and 
Gompertz models resulted in a plausible estimate of the L∞ 

parameter. In the model selection context, when none of the 
models is clearly superior, the use of the averaged model is 
the best strategy (Buckland et al., 1997). Quantification of 
the uncertainty associated with L∞, obtained by calculating 
the confidence intervals around the estimated parameter 
has revealed that there are no significant differences 
between the prediction of L∞ obtained in this study by 
model-averaging and the predictions for this parameter 
found in the literature, yet all previous estimates for L∞ are 
within the 95% confidence interval (as shown in Table 4). 
In this study, the use of the AICc reinforced the importance 
of considering the uncertainty in model selection for the 
estimation of growth parameters for freshwater Amazonian 
fish. Moreover, more robust parameter estimation can be 
obtained when the model-averaging procedure is based 
on models with strong data support.

Management of tambaqui fisheries in the Central Amazon 
is a challenge because of heterogeneity in exploitation, 
with commercial and subsistence fishermen using multi 
gear equipment and fishing along the large extension of 

Table 4. L∞ estimates for Colossoma macropomum by using different data sets.

Author Data type L∞ (cm) SE LCI (95%) UCI (95%)

Petrere (1983) LF 107.3 (TL) - - -

Petrere (1983) LF 103.7 (TL)* 24.97 42.04 164.22

Isaac and Ruffino (1996) LF 121.20 (TL) - - -

Isaac and Ruffino (1996) LF 118.50 (TL) - - -
Costa et al. (1999) LF 107.40 (FL) - - -

Penna et al. (2005) RCS 100.39 (SL) - - -

Penna et al. (2005) RCS 85.125 (SL) - - -

This study RCS 90.36 (FL) 11.87 57.36 123.36
*Estimate obtained by a non-linear adjustment of Von Bertalanffy model on original data from Petrere (1983), by minimising 
RSS using a Gauss-Newton algorithm (LF = Length Frequency; RCS = Reading of Calcified Structures, TL = Total Length, 
FL = Furcal Length, SL = Standard Length, LCI = Lower Confidence Interval, UCI = Upper Confidence Interval).
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the main rivers and lakes. Profound knowledge of the life 
cycle of the exploited species is required for management 
of such resources. This study reinforces the importance of 
restricting the fisheries within floodplain lakes as the stock 
in these environments is mostly composed of juvenile and 
young adult individuals.
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