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Abstract
It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because 
they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part 
of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, 
we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in 
southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different 
between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in 
tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 
emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle 
indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates 
the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.
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Amostragem diurna demonstra variação significativa na  
emissão de CO2 em um lago tropical produtivo

Resumo
É amplamente aceito na literatura que lagos são em geral heterotróficos e supersaturados com CO2 já que recebem 
carbono alóctone. Porém, autotrofia e insaturação de CO2 podem ocorrer em pelo menos parte do tempo, especialmente 
em lagos produtivos. Como a escala diurna é particularmente importante para a dinâmica de lagos tropicais, variações 
diurnas na pCO2 e no fluxo de CO2 através da interface ar-água foram avaliadas num lago tropical produtivo do sudeste 
do Brasil (Lagoa Carioca) durante dois dias consecutivos. Tanto a pCO2 quanto o fluxo de CO2 foram significativamente 
diferentes entre o dia (9:00 às 17:00) e a noite (21:00 às 5:00), confirmando a influência desta escala na dinâmica do 
CO2 na Lagoa Carioca. Foram registradas heterotrofia e emissão de CO2 pela lagoa apenas durante a noite, enquanto 
durante o dia não houve emissão significativa. Variações na concentração de oxigênio dissolvido e na temperatura 
ao longo do dia indicaram a dependência da dinâmica do CO2 no metabolismo (respiração e fotossíntese) deste lago. 
Este estudo indica a importância de se considerar a escala diurna na avaliação da emissão de CO2 por lagos tropicais.

Palavras-chave: pCO2, fluxo de CO2, variações diurnas, lago tropical produtivo.

1. Introduction

It is widely accepted that lakes are typically supersaturated 
with CO2 relative to the overlying atmosphere (Kling et al., 
1991; Cole et al., 1994; Duarte and Prairie, 2005). This 
net heterotrophic condition is believed to predominate 
as ecosystem respiration frequently exceeds ecosystem 
primary production in lakes due to the input of allochthonous 
organic matter from their catchments (Del Giorgio et al., 
1999; Pace et al., 2004). However, recent studies have 
shown that although heterotrophy is frequent it is not 
a general rule. CO2 undersaturation and/or autotrophy 

have been recorded in lakes, especially on those with 
high production rates (e.g. Xing et al., 2005; Gu et al., 
2011; Laas et al., 2012). Productive lakes support lower 
respiration rates than the unproductive ones and then tend 
to be net CO2 sinks (Duarte and Agusti, 1998). Besides 
lake productivity, other factors are thought to influence 
the metabolism and partial pressure of CO2 (pCO2) in the 
surface waters of lakes, such as temperature, dissolved 
organic carbon concentration, and dissolved inorganic 
carbon inputs from the watershed (e.g. Hanson et al., 
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2003; Johnson et al., 2008; Kosten et al., 2010). Lake’s 
pCO2 is then the result of the interaction of many factors 
and the extent to which each factor controls CO2 likely 
varies among systems and across time scales.

Many studies in boreal and temperate regions have 
tested the prevalence of CO2 supersaturation in lakes (e.g. 
Riera et al., 1999; Tank et al., 2009; Huotari et al., 2009); 
however, much less is known about CO2 emissions from 
tropical lakes (e.g. Richey et al., 2002; Marotta et al., 
2009; Kosten et al., 2010; Belger et al., 2011). Knowing 
precisely how much carbon is delivered to the atmosphere 
by tropical inland waters and understanding the regulation 
of this process are crucial steps for better assessment of 
regional and global carbon budgets.

Diurnal changes in temperature and irradiance may 
be very large in tropical lakes (e.g. Barbosa and Tundisi, 
1989a). Compared to boreal and temperate regions, seasonal 
variations on temperature and photoperiod are small in the 
tropics (e.g. Barbosa, 1997) while temperature variations 
within a day can be just as large or even exceed temperature 
differences between seasons. In tropical lakes, diurnal 
changes in temperature can be large enough to cause water 
mixing at night, a pattern described by Lewis (1973) in 
Lake Lanao as atelomixis and more recently re-described 
in two Brazilian lakes by Barbosa and Padisák (2002). 
Metabolic processes may also vary widely over the course 
of the day, as demonstrated for phytoplankton (Barbosa 
and Tundisi, 1989b) and bacterioplankton production 
(Petrucio and Barbosa, 2004). Since diurnal changes are 
large in the tropics and productive lakes are more likely 
to be autotrophic (Duarte and Agusti, 1998), it is possible 
that tropical productive lakes show significant metabolism 
and CO2 variations over the course of the day, including 
diurnal changes between heterotrophy and autotrophy.

In this context, the goal of this study was to check for 
significant variations within a day in surface water CO2 
partial pressure (pCO2) and CO2 fluxes between lake and 
atmosphere in a tropical productive lake (Lake Carioca).

2. Material and Methods
2.1. Site description

Lake Carioca (19°45’26.0”S; 42°37’06.2”W) is located 
in the Rio Doce State Park (Parque Estadual do Rio Doce, 
PERD; Figure 1) in an Atlantic Forest remnant in Minas 
Gerais, Brazil. The park is part of the middle Rio Doce 
Lacustrine System, which consists of more than two hundred 
lakes and ponds of varying size, morphometry and trophic 
state. Roughly 51 lakes are inside PERD, including Lake 
Carioca, and thus protected from direct human impacts. 
However, PERD is surrounded by agriculture, pasturelands, 
and large areas of Eucalyptus spp plantations that have 
considerable impacts on the lacustrine system and the 
forest of the park. Carioca is a small (0.14 km2) shallow 
lake (max. depth = 11.8 m, Bezerra-Neto et al., 2010) 
and exhibits high production rates (annual average of 
497 mgC.m–2.d–1, PELD Technical Report, unpublished 
data). It mixes vertically once a year during the dry season 
(between May and August), when primary production is 
boosted by nutrients from the hypolimnium of the lake.

2.2. Sampling and calculations
Samples were collected at the end of the dry season 

(August, 2011) just after the water mixing and at the 
beginning of thermal stratification. Basic limnological 
data including water temperature, pH, conductivity and 
dissolved oxygen (D.O.) were taken at the deepest point 
of the lake with a Hydrolab DS 5 (Hydromet Inc.) probe 
at depth intervals of 0.5 m. Water samples for analysis of 
nutrients and chlorophyll-a determination were collected 
at 4 depths corresponding to 100%, 10% and 1% of surface 
irradiance, as well as the aphotic zone (defined with a 
1400 series International Light Technologies radiometer). 
These data are not discussed in detail herein and are 
provided as background information only.

Surface water CO2 partial pressure (pCO2) and CO2 flux 
across the air-water interface were measured every 4 hours 
at the deepest point of Lake Carioca over two diurnal cycles. 
Direct measurements of pCO2 were taken by headspace 
equilibration according to Cole and Caraco (1998) with 
modification. Three 30 mL glass bottles (triplicates) were 
filled with 20 mL of lake surface water (0.5 m depth) and 
immediately capped and sealed with rubber and metal 
caps. Ten mL of ambient air was introduced to each bottle 
with a syringe and needle through the rubber cap. The 
bottles were then shaken vigorously for 60 seconds to 
allow for equilibration of the air and water phases for CO2. 
Headspace air was collected with a syringe and injected 
in an infrared gas analyser (IRGA) (environmental gas 
monitor EDSEGM4; PP-Systems, Hitchin, Hertfordshire) for 
pCO2 measurement. pCO2 of ambient air (pCO2air) was also 
measured by the IRGA. Surface water CO2 concentration 
(Csur) and the saturation concentration of CO2 (Csat) were 
calculated from measured pCO2s and Henry’s constant 
at ambient temperature (KH) according to Henry’s law 
(Weiss, 1974) (Equation 1 and 2):

Csur = pCO2water KH	 (1)

Csat = pCO2air KH	 (2)

CO2 fluxes across air-water were estimated using the 
following equation according to Cole and Caraco (1998) 
(Equation 3):

Flux = α k (Csur – Csat)	 (3)

where α is the factor for chemical enhancement of diffusion 
(Wanninkhof and Knox, 1996) and k is the coefficient 
of gas exchange for CO2 at a given temperature. k was 
calculated from k600 for low wind speeds (Equation 4) 
(Cole and Caraco, 1998) and from Schmidt numbers ratio 
(Equation 5) (Jähne et al., 1987):

k600 = 2.07 + 0.215 U10
1.7	 (4)

k = k600 (Sc / 600)-0.67	 (5)

U10 is wind speed at 10 m and was estimated with the 
Smith (1985) equation using measured wind speed at 1 
m by an anemometer at the centre of the lake. Sc is the in 
situ Schmidt number for CO2 (Jähne et al., 1987).
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Continuous measurements of dissolved oxygen 
concentration were taken by an automated sensor (D-Opto 
Logger, Zebra-Tech Ltd.) deployed in the centre of the 
lake at 0.5 m depth.

2.3. Statistical analysis
T-tests were used to check for differences in surface 

water pCO2 between day and night and to check for 
differences between surface water pCO2 and pCO2 in 

the overlying atmosphere. All tests were performed in 
Statistica 7.0 software.

3. Results

Limnological conditions of Lake Carioca in August 
(2011) are summarised in Table 1. Water temperature 
ranged from 21.4 °C at the bottom to 23.6 °C at the surface, 
showing the beginning of thermal stratification. The lake 

Figure1. Rio Doce State Park in southeast Brazil. The circle shows Lake Carioca. Source: Adapted from IBGE/Brasil 
topographical map by Philippe Maillard – Institute of GeoSciences-IGC, Federal University of Minas Gerais.
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exhibited a well-developed oxycline at approximately 
4 m and an anoxic hypolimnium. The water was alkaline 
(pH c. 8) down to 4.5 m but pH decreased to c. 6 at the 
lower layers. The dissolved oxygen and pH profiles 
indicated high respiration rates and CO2 concentrations 
at the bottom of the lake.

Surface water pCO2 (pCO2water) ranged considerably 
(from 389.7 to 643.3 matm) in Lake Carioca during the 
sampling period and had a mean value of 488.8 ± 78.6 µatm. 
Mean night pCO2water (565 matm ± 55.3 (± SD) from 21:00 
to 5:00) was significantly higher than mean day pCO2water 
(436.1 matm ± 25.5 (± SD) from 9:00 to 17:00) (t = –8.14; 
d.f. = 15; p < 0.001, Figure 2), showing significant changes 
in the CO2 dynamics of this lake within a day. A strong 
metabolic control of lake’s CO2 was evidenced by the 
similar but opposite trends of dissolved CO2 and O2 
over the diurnal cycle (Figure 3A). As expected, during 
daytime photosynthesis lowered water pCO2 and raised 
dissolved oxygen (D.O.) concentration. At night, when just 
respiration occurs, pCO2 increased considerably and the 
concentration of D.O. in the water reduced (Figure 3A). 
Diurnal variations in water temperature also showed 
opposite trend to CO2 with increases during the day and 
decreases at night (Figure 3B). These mirror-like trends 
indicate that respiration and photosynthesis are major 
regulators of CO2 dynamics in Lake Carioca. However, 
small differences between CO2 and O2 variations suggest 
that other factors may also have some influence on the 
lake’s CO2 concentration.

Mean pCO2water was significantly higher than mean pCO2 
in the overlying atmosphere (pCO2air) during nighttime 
(from 21:00 to 5:00; t = 4.34, g.l. = 30; p = 0.0001) but 
were not significantly different during daytime (from 
9:00 to 17:00; t = 1.68, g.l. = 29.8; p = 0.10) (Figure 4). 
This means that Lake Carioca alternated between CO2 
supersaturation and atmospheric equilibrium within 
24 hours and therefore, the lake was not always a source 
of CO2 but only during nighttime (Figure 5). Even at night, 

Table 1. Limnological data at selected depths in Lake Carioca during the dry season (August, 2011).
Depth (m) Variables 0 1.5 4.5 8

Water temperature(°C) 23.6 22.8 21.8 21.4
pH 8.03 8.06 6.32 6.14
Conductivity (μS.cm–1) 28 28 29 41
D.O. (mg. L–1) 12.7 12.8 4.4 0.1
Alk. (meqCO2.L

–1) 0.26 0.24 0.32 0.35
Chl-a (μg.L–1) 49.2 58.8 105.3 57.7
Primary Productivity (mgC.m–3.h–1) 10.1 12.0 5.7 0
PO4

–3 (μg.L–1) 2.0 1.5 1.1 0.7
P total (μg.L–1) 14.6 23.4 16.8 18.4
NH4

+ (μg.L–1) 11.5 9.1 87.4 347.2
NO2

– (μg.L–1) 0.5 0.6 0.3 0.4
NO3

– (μg.L–1) 5.2 4.3 3.2 0.3
N total (μg.L–1) 873.7 837.6 931.0 724.9
SiO2 (mg.L–1) 0.4 0.6 0.3 0.4

Figure 2. Mean (±SD, n=16) pCO2 (μatm) in Lake Carioca 
surface water during day and night. p < 0.001 indicating 
significant difference (t-test).

CO2 emission from Lake Carioca was low, showing a 
maximum of 2.4 mmolCO2.m

–2.d–1 at 1:00 of the first day 
(Figure 5). Mean CO2 flux throughout the studied period 
was only 0.9 mmolCO2.m

–2.d–1 ± 0.8 (± SD). Low values 
of CO2 efflux from Lake Carioca are consequences of 
the relatively low pCO2 in its water and almost null wind 
speeds registered during the sampling period.

4. Discussion

Our results bring to light significant diurnal changes in 
pCO2water and CO2 emissions from a productive tropical lake. 
The use of the diurnal approach demonstrated that despite 
the belief that lakes are generally net heterotrophic and 
supersaturated with CO2, Lake Carioca was not a constant 
source of CO2 and was heterotrophic only during the night.

Diurnal dynamics of CO2 have been recorded in 
temperate lakes (e.g. Sellers et al., 1995; Cole and Caraco, 
1998; Hanson et al., 2006) but generally showed small 
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variation. Cole and Caraco (1998) for instance, recorded 
small CO2 changes within a day in midsummer and even 
smaller ones during the spring in Mirror Lake. Differently, 
the significant variation between day and night in CO2 
dynamics recorded for the tropical and productive Lake 
Carioca-southeast Brazil can be explained by large 
metabolic differences between periods of the day, which 
is not pronounced on higher latitude and/or unproductive 
lakes. As shown here, in productive and warm lakes, gross 
primary production can be high enough to equilibrate 
or eventually exceed respiration rates during daytime. 
Moreover, although this study was conducted only during 
the dry season, it is likely that diurnal variation in pCO2 in 
Lake Carioca is even larger during the rainy season. The 
higher mean temperature and greater input of nutrients 
and dissolved organic carbon from the watershed during 
the rainy season (summer) might favour both autotrophy 
and heterotrophy in the lake (Brown et al., 2004; Staehr 
and Sand-Jensen, 2007; Marotta et al., 2012) likely 
resulting in higher amplitude of diurnal CO2 variations 
(Marotta et al., 2010).

Surface water pCO2 registered in Lake Carioca is 
very low in comparison to the mean pCO2 for tropical 
lakes available in the published literature (1804 matm, 
Marotta et al., 2009). Also differently from what was 
found by other studies that covered tropical lakes (e.g. 
Cole et al., 1994; Marotta et al., 2009), Lake Carioca is 
a small source of atmospheric carbon in comparison to 
higher latitude lakes. While CO2 emissions from Lake 
Carioca averaged only 0.9 mmolCO2.m

–2.d–1, other studies 
have recorded CO2 effluxes of 20.9 mmolCO2.m

–2.d–1 from 
Arctic lakes (Kling et al., 1991), 55.6 mmolCO2.m

–2.d–1 
from a boreal humic lake (Huotari et al., 2009), and 1200 
and 90 mmolCO2.m

–2.d–1 from two clear-water temperate 
lakes (Riera et al., 1999). The registered low values of 
pCO2 and CO2 efflux from Lake Carioca are probably a 
consequence of its high autotrophic activity, particularly 
during the studied period when vertical mixing induces 
high production rates (640 mgC.m–2.d–1; PELD Report, 
2012) and scarce rainfall limits the input of allochthonous 
dissolved organic carbon to the lake likely reducing its 
respiration rates (Cole et al., 2000). Moreover, the lack 
of rainfall can also lead to lower values of pCO2 in Lake 
Carioca in the dry season than in the rainy season since 
rainfall can enhance CO2 inputs from groundwater to lakes 
(Marotta et al., 2010).

As shown in this study, diurnal changes in CO2 can be 
significant in tropical waters and ignoring this variation 
may render misevaluations and misconclusions of the 
role of tropical aquatic ecosystems in the global carbon 
cycle. Such conclusions bring new possibilities for further 
studies concerning the general acceptance of a predominant 
heterotrophy of lakes, and highlight potential temporal 
changes between net autotrophy and net heterotrophy in 
lakes, especially in the tropical and productive ones where 
temperature and nutrients maintain high autochthonous 
production rates.

Figure 3. A. Concentrations of dissolved CO2 and O2 in 
the surface water. B. Concentration of dissolved CO2 and 
surface water temperature. All variables were measured at 
4-hour intervals over a 48-hour cycle on Lake Carioca in 
August, 2011. Horizontal bars mean nighttime hours.

Figure 4. Mean (±SD) pCO2 in the water (pCO2water) and 
in the overlying atmosphere (pCO2air) measured at 4-hour 
intervals over a 48-hour cycle on Lake Carioca in August, 
2011. Horizontal bars mean nighttime hours.

Figure 5. Mean (±SD) CO2 flux across the air-water 
interface of Lake Carioca, measured at 4-hour intervals over 
a 48-hour cycle in August, 2011. Positive values indicate 
that CO2 flux was towards atmosphere and negative values 
indicate CO2 flux towards the water. Horizontal bars mean 
nighttime hours.
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Erratum

Due to a formatting error in the article “Diurnal sampling reveals significant variation in CO2 emission from a 
tropical productive lake” published in volume 74, issue 3 (suppl.), p. 113-119, in the page 116, first column, lines 8, 
10 and 12 and in the page 117, second column, line 24 where you read “matm”, you should read “µatm”.
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