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1. Introduction

Neuroprotective agents inhibit brain injury during 
or after exposure to ischemia in cellular, biochemical 
and metabolic processes (Ovbiagele et al., 2003), which 
could prevent neural cell death in conditions such as 

Parkinson’s, traumatic brain injury, and ischemic stroke 
(Goenka et al., 2019). Neuroprotective agents can be derived 
from natural materials with multi-mechanisms. Several 
activities of natural substances known as neuroprotectors 
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Resumo
Piper cubeba contém vários tipos de lignanas. Descobriu-se que esses compostos possuem atividades farmacológicas 
potenciais, sendo uma delas um neuroprotetor por meio de um mecanismo antioxidante, principalmente no 
cérebro. Este estudo examinou a atividade antioxidante da fração rica em lignana de P. cubeba (LF) em cérebros 
de ratos. Os ratos receberam LF (200 e 400 mg/kg), Vitamina C (200 mg/kg) e um transportador como grupo de 
controle por uma semana p.o. No dia seguinte, os cérebros de ratos foram coletados para testes antioxidantes, 
incluindo o exame da inibição do peróxido lipídico, a atividade da superóxido dismutase e catalase e determinação 
da concentração de óxido nítrico. Os compostos fitoquímicos foram analisados ​​por cromatografia em camada 
delgada (TLC), cromatografia líquida de ultra-alta eficiência-espectrometria de massas em tandem (UPLC-MS) e 
cromatografia gasosa-espectrometria de massas (GC-MS). Os resultados dos testes mostram que o LF de ambas 
as doses de 200 e 400 mg/kg pode aumentar significativamente a atividade antioxidante no cérebro, inibindo a 
peroxidação lipídica. O LF também pode aumentar a catalase, apesar da diminuição da atividade da superóxido 
dismutase. A redução do óxido nítrico ocorreu apenas no grupo LF-200, enquanto o LF-400 apresentou resultados 
insignificantes em relação ao grupo controle. Em conclusão, LF mostrou potencial como antioxidante no cérebro 
e pode ser benéfico para o tratamento de doenças neurológicas.
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with 80% methanol (1:10) under sonification for one 
hour. The extract was then evaporated, and the remaining 
liquid extract was fractionated using a separating funnel 
with dichloromethane (CH2Cl2) in a 1:1 ratio. Finally, the 
dichloromethane layer was separated and evaporated into 
a thick extract (Elfahmi et al., 2007).

2.2. Total phenolic determination

The LF solution (1000 ppm in methanol) and gallic acid 
solution (as standard) were added with 10% Folin-Ciocalteu 
reagent (1:10). Then, 4 mL of 1 M sodium carbonate was 
added and incubated for 15 minutes at room temperature. 
The samples were read at 765 nm.

2.3. Total flavonoid examinations

First, 0.5 mL of 1000 ppm LF and quercetin solution (as 
standard) in methanol was added to 1.5 mL of methanol. 
Then, 2.8 mL of distilled water was added, followed by 
0.1 mL of 10% aluminum chloride (AlCl3). Finally, 0.1 mL of 
1 M sodium acetate was added to the mixtures, incubated 
for 30 minutes at room temperature, and measured at 
415 nm.

2.4. TLC analysis

TLC analysis was performed using silica gel 60 F254 as 
the stationary phase and toluene: acetone (7:3) as the 
mobile phase. First, the chamber was saturated with mobile 
phase, and then the LF was spotted in the silica gel and 
developed. The plate was then sprayed with 10% sulfuric 
acid and heated to develop colors. Cubebin (ChemFaces, 
Wuhan) was used as a comparator.

2.5. UPLC-MS conditions

The system consists of an autosampler and a binary 
pump (Waters, Milford, MA) equipped with a 10 µL 
loop. The compounds were separated on an Acquity BEH 
C18 (2.1 mm × 50 mm, 1.7 µm. Waters, Milford, MA) 
analytical column at 40 °C. A gradient elution was achieved 
using two solvents: 0.1% (v/v) formic acid water (A) and 
0.1% (v/v) formic acid acetonitrile (B) at a flow rate of 
0.3 mL/min. The gradient program consisted of 10% to 20% 
B over 2 min, 40% B over 5 min, and then linear from 40% 
to 60% B over 2 min, followed by an increase of 100% B 
over 6 min, maintained for 2 min, then return to the initial 
condition over 5 min with a sample injection volume of 
5 µL. The UPLC system was the operating conditions for 
the electrospray ionization source interface (ESI) coupled 
with continuous switching polarity between positive and 
negative modes. For full scan ESI–MS analysis, the spectra 
covered the range from m/z 150 to 600. Analyst software 
package (MassLynx) used for instrument control and 
data acquisition.

2.6. GC-MS analysis

The instrument used was Agilent Technologies 7890 Gas 
Chromatograph with autosampler, 5975 mass selective 
detector, and chemstation data system. The experiment 
used the HP INNOWAX column. The initial temperature was 
60 °C for 0 minutes, then 2 °C/min to 150 °C for 1 minute, 

are through suppression of oxidative stress, suppressing 
neuroinflammation, modulating microglia polarization, 
regulating metabolism, and maintaining the integrity of the 
blood-brain barrier (Tao et al., 2020). Among the natural 
compounds, lignan is one of the components responsible for 
neuroprotective activity. Lignans are secondary metabolites 
of the oxidative dimerization of phenylpropanoids and have 
been studied for their various biological activities (Barker, 
2019). Many studies have confirmed the neuroprotective 
effects of lignan or lignan rich-extract, such as lignans 
from Eucommia ulmoides (Han et al., 2022), lignans from 
Crataegus piatifida (Xin et al., 2022), and lignans form Pteris 
laeta (Zhang et al., 2022). In addition, lignans have been 
clinically proven as a potential antioxidant. For example, 
sesamin, honokiol, and schisandrin have been studied 
as antioxidants with various mechanisms, including 
suppressing the expression of SIRT3 (Sirtuin-3), decreasing 
reactive oxygen species (ROS) generation, inhibiting lipid 
peroxidase, and increasing the amount of glutathione 
(GSH) (Soleymani et al., 2020).

Studies show that P. cubeba fruits contain a variety 
of lignans, such as yatein, hinokinin, and cubebin 
(Elfahmi et al., 2007). Cubebin is one of the active lignans of 
P.cubeba that has been studied as neuroprotective in animal 
models of dementia (Sathaye et al., 2017). Cubebin has also 
been studied as an anti-inflammatory (Godoy de Lima et al., 
2018; Silva et al., 2005) and antibacterial (Rezende et al., 
2016). Other P.cubeba’s major lignan, hinokinin, also 
possesses potent antioxidant and anti-inflammatory 
activities (Lima et al., 2017). Several studies have shown 
the effect of P. cubeba fruits as an anti-inflammatory in 
various animal models (Choi and Hwang, 2003, 2005; 
Godoy de Lima et al., 2018; Perazzo et al., 2013; Souza et al., 
2004). The anti-inflammatory mechanism of this plant 
has been demonstrated in vitro through the inhibition of 
COX-1, COX-2, and 5-LOX. (Yam et al., 2008), also through 
inhibition of NF-κB, TNF-α and IL-1β (Deme et al., 2019; 
Qomaladewi et al., 2019). Empirically, people have also used 
P. cubeba seeds to relieve headaches (Abolhasanzadeh et al., 
2017). Other than anti-inflammation, P. cubeba also 
exhibits a strong antioxidant effect (Alminderej  et  al., 
2020; Andriana  et  al., 2019). Moreover, the ethanol 
extract from the fruits has also been studied to prevent 
lipofuscinogenesis, which plays a role in dementia and 
Alzheimer’s disease (Muchandi and Dhawale, 2018). 
Based on existing studies, P.cubeba showed potential as 
a neuroprotective agent due to the presence of lignans in 
this plant. However, the exploration of lignan-rich P.cubeba 
for this activity is limited. Therefore, this study examined 
the antioxidant potential of the lignan-rich fraction of P. 
cubeba in rat brains as a candidate for neurodegenerative 
disease therapy.

2. Material and Methods

2.1. Plant material and lignan-rich fraction preparation

P. cubeba fruits used were from Balai Penelitian 
Tanaman Rempah dan Obat (Balitro), Bogor, Indonesia. 
A kilogram of dry P. cubeba fruit powder was extracted 
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and finally 20 °C/min to 210 °C for 10 minutes. The injection 
temperature was 250 oC, the ion source temperature was 
230 °C, the interface temperature was 280 °C, and the 
quadrupole temperature was 140 °C. The carrier gas was 
Helium, with a column flow of 0.6 mL/min and an injection 
volume of 1 mL.

2.7. Animal groups and treatments

This study used 2-3 months old Wistar rats (175-200 g), 
and all animals were acclimatized in a cage at 23 ± 2 °C 
for one week. The protocol was approved by the Health 
Research Ethics Commission of Muhammadiyah University, 
Prof. DR HAMKA (KEPK-UHAMKA), Jakarta, No: 03 / 21.08 / 
02172. A total of 20 rats were divided into four groups: 
LF 200 and 400 mg/kg, Vitamin C (Vit-C) 200 mg/kg, and 
normal control (N; given carrier). The test substances were 
given orally for a week, and the brains were collected the 
following day. During the experiment, the animals were 
given standard feed and drink.

2.8. Brain homogenate preparation

The brain homogenate (10%) was prepared in a 
mixture of phosphate-buffered saline (PBS) at pH 
7.5 and phenylmethylsulphonyl fluoride (PMSF) 0,1 M 
(MedChemExpress, USA). The brain samples were then 
homogenized on an ice bath, centrifuged for 20 minutes at 
4 °C, 4000 x g, and stored at -20 °C. The protein content of 
the homogenate was determined using Bradford’s reagent 
and measured at 595 nm.

2.9. SOD activity test

A total of 20 µL of diluted samples were used to 
determine total SOD activity using the SOD assay kit 
(Elabscience, USA). The procedures were completed 
following the kit instructions, where 50% SOD inhibition 
is equivalent to 1 SOD activity unit (U).

2.10. CAT activity test

The procedure to determine CAT activity followed the 
method outlined by Hadwan (2018) with slight modifications. 
First, 100 µL of the sample was added with 200 µL of 
H2O2, homogenized, and incubated for 2 minutes at 37 °C. 
The mixture was then added with 1.2 mL working solution, 
consisting of 10 mL cobalt (II) solution (Pudak scientific, 
Indonesia), 10 mL sodium hexametaphosphate solution (Loba 
Chemie PVT.LTD, India), and 180 mL sodium bicarbonate 
solution (Pudak scientific, Indonesia). The mixture was then 
homogenized and left in the dark at room temperature for 
10 minutes. The absorbance was measured at 440 nm.

2.11. NO determination

NO is an unstable compound and difficult to determine 
directly. Therefore, the standard NaNO2 was used in 
this study because it can represent the actual NO levels 
(Termin et al., 1992). The procedure was carried out with 
a slight modification. First, 200 µL of the sample was 
added to 200 µL of 2N KMNO4. After 30 minutes, 800 µL 
of 5% (v/v) salicylic acid in H2SO4 (Mallinckrodt, Ireland) 
was added and allowed to stand for 20 minutes. Next, 8 N 

NaOH (Merck, Germany) was added to 10 mL and filtered. 
The absorbances were measured at 414 nm.

2.12. Lipid peroxidation test

A total of 250 µL samples and TEP (Merck, Germany) 
solution (as standard) were added to 250 µL of 20% TCA (Merck, 
Germany), followed by 0.5 mL 0,67% TBA (Merck, Germany). 
The mixtures were heated to 95-100 °C for 15 minutes until the 
color changed and then cooled and centrifuged. The absorbance 
of the supernatant was read at 532 nm.

2.13. Statistical analysis

The data were analyzed for normality and homogeneity 
and continued with the Analysis of Variance (ANOVA) test.

3. Results

3.1. Phytochemical profile

The TLC analysis of LF showed separated colored 
bands corresponded to lignans, one of which was cubebin 
with Rf 0.4 (Figure  1). The UPLC-MS analysis showed 
the presence of compounds presumed to be cubebin, 
hinokinin, and yatein (Figure 2), and these results were 
confirmed by GC-MS analysis, where hinokinin showed 
the highest area percentage (Table 1). The LF yield was 
5.35%, and the phytochemical screening also showed 
the presence of flavonoids, tannins, quinones, steroids/
triterpenoids, and alkaloids. The phenol content of LF 
was 134.62±2.83 (mg GAE/g extract), while the flavonoid 
content was 152.58±15.38 (mg QE/ g extract).

3.2. Antioxidant activity of LF on rats’ brain

Figure  3 showed that LF inhibits lipid peroxidation, 
shown by lower MDA levels comparable to Vit-C, and 

Figure 1. TLC analysis result of LF showed the presence of cubebin 
and other lignans.
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Figure 2. LF Chromatogram (a) and the mass spectrum of presumed (b) Hinokinin, (c) Cubebin, (d) Yatein by UPLC-MS.

Table 1. Lignans in LF by GC-MS analysis.

Molecular formula Molecular weight Name of compound Retention time Area (%)

C21H20O7 384.2 5-Methoxyhinokinin 38.9 6.12

C20H20O6 356.2 Cubebin 39.7 3.93

C20H18O6 354.3 Hinokinin 41.4 11.4

C23H26O8 430.3 Cubebinone 41.6 2.73

C22H26O7 402.2 Clusin 43 1.52

C27H28O3 400.2 Yatein 44.2 3.49
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there was no significant difference between the lower 
and higher dose of LF. The linear result was shown in 
CAT activity, where both LF doses could increase this 
antioxidant enzyme significantly compared to N control 
(p<0.05), despite decreased SOD activity. Finally, LF could 
inhibit NO production, especially at 200 mg/kg (p<0.01).

4. Discussion

The central nervous system is very susceptible 
to oxidative stress due to high lipids, low enzymatic 
antioxidants, and high oxygen consumption (Prasad et al., 
2018). Oxidative stress plays a significant role in 
neurological impairment due to the vulnerability of the 
nerve systems to reactive oxygen species (ROS). Under 
normal conditions, the level of lipid metabolism in the brain 
is the highest in the body, and one of the primary producers 
of ROS in resting brain cells is the high metabolism in 
mitochondria (Angelova et al., 2021), which could lead 
to cell death through apoptosis or necrosis (Desai et al., 
2014). The imbalance of antioxidants and oxidative stress 
in the brain could further lead to various degenerative 
diseases (Lee et al., 2020).

The current study showed that LF significantly 
suppressed lipid peroxidation, increased CAT activity, and 
reduced NO levels in rat brains, showing LF’s potential 
to develop as a neuroprotective agent. ROS peroxidase 
polyunsaturated fatty acid (PUFA) generates MDA, which 

becomes the marker of lipid peroxidation (Tsikas, 2017), and 
the current study revealed that LF significantly suppressed 
lipid peroxidation as indicated by lower MDA levels than 
the control. Both doses of LF inhibited lipid peroxidation 
comparable to Vit-C, and there was no difference between 
the two doses of LF.

In addition to lipid peroxidase, this study evaluated SOD 
and CAT activity. SOD works as an enzymatic antioxidant 
by metabolizing superoxide to hydrogen peroxide (H2O2). 
Simultaneously, catalase breaks down H2O2 into water and 
oxygen, protecting the cells against H2O2 damage (Hopkins 
and Li, 2020). These two enzymes could work synergistically 
to produce antioxidant effects. In this study, LF in both 
doses increased CAT activity significantly compared to N 
but decreased the SOD activity. The same trend was found 
in the Vit-C group, possibly due to the inhibition of the 
SOD expression (Kao et al., 2003).

In addition, LF could suppress NO production. NO is 
one of the prooxidative species, which is known as a toxic 
gas with a dual identity (neuroprotector and neurotoxin). 
In ischemic conditions, NO in the brain is synthesized 
mainly by 3 NO synthases (NOS) subtypes, neuronal 
NOS (nNOS), endothelial NOS (eNOS), and inducible NOS 
(iNOS). Both nNOS and iNOS could cause nerve damage, 
while eNOS produces a neuroprotective effect. Further, 
NO produced by nNOS shortly after reperfusion causes 
nitrosative stress and increases apoptosis through the 
downregulation of caspase-3 (Chen et al., 2017). A decrease 

Figure 3. Antioxidant activities on rat’s brain based on activities of lipid peroxidation inhibition (a), SOD (b) and CAT (c) activities, and 
NO concentration (d) of lignan-rich fraction of P.cubeba 200 mg/kg (LF-200), 400 mg/kg (LF-400), Vitamin C 200 mg/kg (Vit-C), and 
normal control (N). The results are present as the mean ± SEM, asignificantly different compared to the N group (p<0.01), bsignificantly 
different compared to the N group (p<0.05).
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in NO concentration indicates low oxidative stress. In this 
study, LF-400 did not affect the NO level, as shown by a 
comparable result to N, while LF-200 caused a significant 
decrease in NO production compared to N, even better 
than Vit-C. However, further research needs to be done to 
determine which subtype of NOS is affected by LF.

The TLC analysis of LF confirmed the presence of lignans, 
which showed that separated colored bands corresponded 
to lignans. TLC results also confirm that LF contained 
cubebin, one of the active compounds and the marker of P. 
cubeba. UPLC-MS analysis showed that LF contains cubebin, 
hinokinin, and yatein, which GC-MS confirmed. GC-MS 
analysis showed that LF contains 5-methoxyhinokinin, 
cubebin, hinokinin, cubebinone, clusin, and yatein. These 
lignans have various pharmacological activities and have 
been studied to reduce the risk of various chronic diseases. 
Cubebin and hinokinin have shown anti-inflammatory, 
antibacterial, and antitumor effects in various studies 
(Godoy de Lima  et  al., 2018). Previous research also 
showed that the dichloromethane fraction of P. nigrum 
and P. longum, other piper species containing piperine, 
piperglin, and hinokinin, had a significant neuroprotective 
effect through antioxidant activity (Hua  et  al., 2019; 
Wang et al., 2017). Besides lignans, flavonoids and other 
phenol are also responsible for the antioxidant activity in 
plants (Tungmunnithum et al., 2018), and both contents 
were detected in high amounts in LF. The results of this 
study indicate that the lignan-rich fraction of P. cubeba has 
antioxidant potential in the brain. Since oxidative stress is 
critical in aggravating neurological disorders, the lignan-
rich fraction of P.cubeba could benefit these conditions.

5. Conclusion

The lignan-rich fraction of P. cubeba revealed an 
antioxidant property in the brain by inhibiting lipid 
peroxidase, increasing catalase, and inhibiting NO 
production, especially at 200 mg/kg. Thus, this fraction 
has the potential to be further developed for research on 
neurodegenerative diseases.
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