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1. Introduction

Although microscopy is a traditional method for the 
examinations of parasites but molecular identification 
has become more reliable to detect protozoan parasites in 
domestic and wild animals. In the case of low parasitemia 

levels, molecular techniques have better sensitivity and 
specificity than that of microscopy (Maia  et  al., 2012; 
Merino et al., 2009; Moody, 2002; Rubini et al., 2005). These 
simple and relatively low-cost molecular techniques are 
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volume was adjusted to 80 μl of AE buffer. Until PCR 
analysis, all DNA samples were stored at -20 °C.

2.3. PCR Amplification:

For the amplification of 18S rRNA, SEDI G thermal 
cycler (Wealtec Corp. Japan) was used for two-step 
nested-PCR. For the primary PCR, the forward primer 
18SiCF2 (5-GACATTCATTTTCTGACC-3) and the reverse 
primer 18SiCR2 (5-CTGAAGGAGGAACAACC-3) were 
used to amplify a PCR product of 763 bp. A total of 25μl 
reaction mixture for primary PCR consisted of ExTaq 
premix (Takara Bio Group, Japan), 1 μM of each primer 
and 3 μl DNA. Cycling condition started with an initial 
cycle of denaturation at 94 °C for 5 minutes followed by 
45 cycles (94°C - 30 s, 58°C - 30 s, 72°C – 30 s), and the final 
extension of 72°C for 10 minutes as previously described 
(Ryan et al., 2003). For the secondary PCR, forward primer 
18SiCF1 (5-CCTATCAGCTTTAGACGGTAGG-3) and reverse 
primer 18SiCR1 (5-TCTAAGAATTTCACCTCTGACTG-3) 
were used to amplify a fragment of 587 bp. Optimum PCR 
cycling conditions were adjusted for both steps. Agarose 
gel (1%) with GoldView™ (Solarbio, China) was used to 
electrophorese the secondary PCR products.

2.4. Sequencing and data analyzing:

Positive Secondary PCR products on the gel were 
excised and purified using the AxyPrep DNA Gel Extraction 
Kit (Axygen, USA). Secondary PCR amplification with the 
same cycling conditions and primers was revised by using 
purified DNA as a template. PCR products were Sequenced 
from the Comate Biosciences Co., Ltd. (Changchun, 
China). DNAMAN and the Basic Local Alignment Search 
Tool (BLAST) were used to perform similarity analysis 
of sequenced data.

2.5. Sequence and phylogenetic analysis:

The sequenced data obtained from the company 
were trimmed by using BioEdit 7.2.0. Sequence of 
Cryptosporidium sp. and Colpodella sp. showed many 
similarities. All the obtained sequences were submitted 
to the GenBank database for unique code (accession 
number). Phylogenetic tree was generated with obtained 
sequences and reference data of NCBI by using the 
neighbor-joining method.

3. Results

3.1. Analysis of PCR amplification of Cryptosporidium sp. 
and Colpodella sp.

The analysis of the sequences showed a cross-genera 
amplification phenomenon as these primers not just 
amplified Cryptosporidium sp. (17/56) but Colpodella sp. 
(07/56) too. Amplicon sizes were 585 bp and 583 bp for 
Cryptosporidium sp. and Colpodella sp. respectively.

3.2. Amplification of Cryptosporidium sp.

See Figure 1.

not time-consuming, thereby allowing for the reproducible 
testing of large numbers of specimens. In addition, 
the molecular analysis provides useful information on the 
diversity and genetic relationships of parasites. Most of 
the studies, however, estimate the prevalence of infections 
only on the basis of PCR testing without confirmation of 
sequence (Ujvari et al., 2004; Vardo et al., 2005), this could 
lead to false positive results and unexpected amplification 
of another organism.

Cryptosporidiosis is a diarrheal disease caused by 
Cryptosporidium (Tyzzer, 1912) species. Cryptosporidium 
sp. considered to be one of the important water-borne 
pathogens in human beings and pets, (Šlapeta, 2017) and is 
among the top four causes of moderate-to-severe diarrheal 
disease in young children in developing countries (Ryan 
and Hijjawi, 2015).

By applying molecular techniques, the taxonomy can 
incorporate genetic data as one of the parameters for 
validating Cryptosporidium species (Nichols et al., 2008). 
The molecular methods commonly used for Cryptosporidium 
sp. characterization is based on different types of the 
polymerase chain reaction (PCR) (Xiao, 2010). Such methods 
are usually associated with amplified fragment sequencing 
for verification of results (Khurana and Chaudhary, 2018; 
Xiao, 2010) and analysis of genetic diversity among 
species. Such approaches use a number of genetic markers, 
including, the SSU rRNA gene, the cowp gene, the hsp70 gene, 
ITS-1 and ITS-2, the trap gene, and the gene encoding the 
GP60 or GP15/40 glycoproteins (Khan et al., 2018; Xiao, 
2010; Xiao and Feng, 2017).

Nested-PCR has been used to amplify the18S rRNA 
gene of Cryptosporidium sp. with the specific primers 
(Ryan et al. 2003). In this study, nucleotide sequences or 
sequencing results demonstrated that these primers can 
also amplify another apicomplexan, namely Colpodella 
(Dujardin, 1841). That type of cross-genera amplification 
of apicomplexans has already been reported previously 
in Germany (Mendonça, 2018).

Although, Colpodella is less studied until now but the 
recent data from China show its pathogenic importance 
(Jiang et al., 2018; Yuan et al., 2012).

2. Materials and Methods

2.1. Sample collection:

Fresh fecal samples (n= 56) of different zoo felines 
(Siberian tiger n=26, White tiger n=07, Bengal tiger n=06, 
African tiger n=06, White lion n=05, Lynx n=05, Jaguar 
n=01) were collected from Harbin Zoo, China. These fresh 
specimens were collected in the plastic bags directly from 
the ground and brought to the laboratory to store at 4 0C 
in the refrigerator. Isolation of ocysts was done within 
24 hours by using the previously described discontinuous 
sucrose gradient method by Arrowood and Sterling (1987).

2.2. DNA Extraction:

QIAmp DNA Stool Kit (QIAGEN, Hilden, Germany) was 
used to extract DNA from 200 ml ocysts instead of feces. 
In order to enhance DNA concentration, the final elution 
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3.3. Amplification of Colpodella sp.

See Figure 2.

3.4. Phylogenetic and comparative analysis

All 17 Cryptosporidium sp. sequences were alike 
Cryptosporidium sp. NEV10 (accession no. (JN245625) While 
On the basis of 18S rRNA gene, a tree was constructed to 
explain the phylogenetic relationship of Colpodella sp. 
see Figure 3 and Figure 4.

4. Discussion

The PCR primers used in this study were previously 
known to have the ability to amplify a segment of the 
Cryptosporidium sp. 18S rRNA gene (Alkhaled, 2017; 
Ayinmode et al., 2018; Ayinmode et al., 2017; Camargo et al., 
2018; Lucio et al., 2016). But our results revealed that Colpodella 
sp. could also be amplified by using same set of primers. 
Cryptosporidium belongs to apicomplexan parasites that have 
evolved from algal ancestors and their closest relatives are 

Figure 1. Amplification of 18S rRNA gene from Colpodella sp.

Figure 2. Amplification of 18S rRNA gene from Cryptosporidium spp.

Figure 3. Phylogenetic tree of sequences of 18S rRNA gene using the Neighbor-Joining method. Black and bold circled sequences belong 
to this study. Remaing sequences retrieved from GenBank.
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parasitic flagellates (colpodellides) and algae (chromerids) 
(McFadden et al., 1996; Moore et al., 2008).

Previously, Copodella have been identified from blood, 
ticks and soil samples (Han et al., 2018; Jiang et al., 2018; 
Matsimbe et al., 2017; Olmo et al., 2011; Yuan et al., 2012) 
but as per our best knowledge, this is the first study in which 
Colpodella have been identified from the fecal samples of 
zoo felines of Northeast China. Researchers have realized the 
pathogenic importance of Colpodella after two case reports 
from China (Jiang et al., 2018; Yuan et al., 2012) where 
Colpodella has been found to associate with neurological 
symptoms and Babesia sp. like relapsing infection

Our findings are similar to the findings of the 
study conducted in Germany to test a cross-genera 
amplification of Babesia, Theileria specific primer. Three 
other apicomplexans including Toxoplasma, Hepatozoon, 
and Hammondia were also successfully amplified by 
the same set of primers (Mendonça, 2018). Another 
unexpected amplification of Proteromonas was noticed 
when apicomplexan parasites were routinely screened 
using 18S rRNA gene (Maia et al., 2012).

Genotyping is very important to get reliable results 
(Papini and Verin, 2019) just like the study undertaken 
where sequencing revealed about cross-genera 
amplification. Comparative analysis of the received 
sequences in Figure 4 showed that both Cryptosporidium 
sp. and Colpodella sp. contained secondary pcr primers 
(18SiCF1 and 18SiCR1). The ratio of identity was 97.26% 
and only two gaps were found in nucleotide sequence. 
Phylogenetic tree was constructed for the better 
understanding among generic phylogenetic relationships.

5. Conclusion

In the present study, Cross-genera amplification 
and unexpected identification of Colpodella from the 

fecal samples of zoo felines has been reported first 
time. Analysis of the sequences of Cryptosporidium 
sp. and Colpodella sp. revealed 97.26% identity. It is 
concluded from the study that sequencing is necessary 
to confirm the parasitic infection so that we can avoid 
the false-positive results or unexpected amplification of 
less common parasites. However, new primers should 
be explored for more positive, accurate and error free 
results.

5.1. Accession Numbers

Sequences were submitted to GenBank under accession 
number of: Colpodella sp. MN640805, MN640806, 
MN640807, MN640808, MN640809; and Cryptosporidium 
sp. MN640812, MN640813, MN640814, MN640815, 
MN640816.
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