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Abstract
The present study sought to evaluate the antibacterial activity of trans-anethole against food-borne strains of 
Enterobacter cloacae and Enterococcus faecalis. The study was performed using Minimum Inhibitory Concentration 
(MIC), and Minimum Bactericidal Concentration (MBC) methods, in addition, disc diffusion technique was used to 
evaluate the association of trans-anethole with synthetic antimicrobials. Minimum Inhibitory Concentration for 
Adherence (MICA) testing was also performed. The results revealed that trans-anethole presents no antibacterial 
activity at any of the concentrations used against the E. cloacae strains tested. However, trans-anethole presented 
antibacterial effect against five of the six E. faecalis bacterial strains tested, with MIC values ranging from 500 μg/mL 
to 1000 μg/mL. Further, when analyzing the MBC results against E. faecalis, it was observed that the compound 
presented values ranging from 500 μg/mL to 1000 μg/mL. As for the associations, it was observed that trans-
anethole when combined with the antimicrobials ampicillin, gentamicin, ciprofloxacin, and ceftriaxone presented 
synergistic effect against most strains of E. faecalis. However, both trans-anethole and the control chlorhexidine 
(0.12%) presented no antibiofilm effects against strains of E. faecalis. In short, trans-anethole presented potential 
antibacterial against E. faecalis strains of food origin, and may upon further study, it may be used alone or in 
association with synthetic antimicrobials to combat infections caused by this bacterium.
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Resumo
O presente estudo procurou avaliar a atividade antibacteriana do trans-anetol contra cepas de Enterobacter cloacae 
e Enterococcus faecalis de origem alimentar. O estudo foi realizado utilizando métodos de Concentração Inibitória 
Mínima (CIM), e Concentração Bactericida Mínima (CBM), além disso, foi utilizada a técnica de difusão de disco para 
avaliar a associação do trans-anetol com antimicrobianos. O teste de Concentração Inibitória Mínima de Aderência 
(CIMA) também foi realizado. Os resultados revelaram que o trans-anetol não apresentou atividade antibacteriana 
em nenhuma das concentrações utilizadas contra as cepas de E. cloacae testadas. No entanto, o trans-anetol 
apresentou efeito antibacteriano contra cinco das seis cepas bacterianas de E. faecalis testadas, com valores de CIM 
variando de 500 μg/mL a 1000 μg/mL. Além disso, ao analisar os resultados da CBM contra E. faecalis, observa-se 
que o composto apresentou valores variando de 500 μg/mL a 1000 μg/mL. Quanto às associações, observou-se que 
o trans-anetol quando combinado com os antimicrobianos ampicilina, gentamicina, ciprofloxacino, e ceftriaxona 
apresentou efeito sinérgico contra a maioria das cepas de E. faecalis. No entanto, tanto o trans-anetol quanto o 
controle clorexidina (0,12%) não apresentaram efeito antibiofilme contra a cepa de E. faecalis. Em suma, o trans-
anetol apresentou potencial antibacteriano contra cepas de E. faecalis de origem alimentar, podendo, mediante 
estudos mais aprofundados, ser utilizado isoladamente ou em associação com antimicrobianos sintéticos para 
combater infecções causadas por esta bactéria.

Palavras-chave: antimicrobianos, bactérias, fenilpropanóide, fitoterapia.
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2. Materials and Methods

2.1. Study location

The study was performed at the Microbiology Laboratory 
of the Federal University of Campina Grande (UFCG) at the 
Centre for Health and Rural Technology (CSTR).

2.2. Test substances

The phenylpropanoid trans-anethole was purchased 
from Sigma-Aldrich® Industry (São Paulo-SP). To perform 
the pharmacological assays, the compound was solubilized 
in dimethylsulfoxide (DMSO) and diluted in distilled water. 
The concentration of DMSO used was less than 0.1% v/v.

2.3. Bacterial strains

Food-borne bacterial strains of Enterobacter cloacae (Ecl 
41, Ecl 42, Ecl 43, Ecl 44 and Ecl 45), and Enterococcus faecalis 
(Ef 46, Ef 47, Ef 48, Ef 49, Ef 50) were used. In addition 
to these, the standard strain E. faecalis (ATCC 29212) was 
also used.

All strains were maintained on Muller Hinton Agar 
(MHA) at 4°C. Inoculates were obtained from overnight 
cultures on MHA at 35 ± 2 °C; diluted in sterile saline 
to obtain final concentrations of approximately 
1.5 x 108 Colony Forming Units per mL (CFU/mL), adjusted 
by turbidity comparing with the McFarland 0.5 tube scale 
(Bona et al., 2014).

2.4. Culture media

The culture media used in the assays were liquid 
Mueller Hinton broth and solid Mueller Hinton Agar 
medium. The culture media were purchased from Difco® 
and prepared according to the manufacturer’s instructions.

2.5. Determination of the Minimum Inhibitory 
Concentration (MIC)

The MIC was determined using microdilution technique 
in a 96-well plate with a U-shaped bottom. Initially, in each 
well, 100 μL of Mueller Hinton broth, doubly concentrated, 
and 100 μL of the studied compound (trans-anethole) 
were added to the plate performing a serial dilution (ratio 
of two), obtaining the concentrations of 1000, 500, 250, 
125, 62.5, and 31.2 μg/mL. Determination of the MIC was 
conducted using 10 μL of the microorganism suspension 
in each well, being approximately 1.5 x 108 CFU/mL. In the 
penultimate well, the sterile control was performed 
containing 100 μL of Muller Hinton broth alone, and in the 
final well, the growth control was performed, containing 
only 10 μL of the microorganism suspension in 100 μL of 
broth. The assay was performed in duplicate. The plates 
were incubated at 35 ± 2 °C for 24 hours, and after this 
appropriate bacterial incubation time, the first reading 
of the results was performed. 20 μL of sodium resazurin 
solution (SIGMA) was then added, being previously 
solubilized in sterilized distilled water, at a concentration of 
0.01% (w/v). Resazurin is well recognized as a colorimetric 
oxide-reduction indicator for bacteria. Afterwards, a new 
incubation at 35 ± 2 °C was performed. The reading was 
done visually for the absence or presence of microorganism 

1. Introduction

Foodborne pathogens are a leading cause of disease, posing 
a threat to food safety and causing serious harm to human 
health (Qi et al., 2021; Tomao et al., 2020). Among these 
pathogens, bacteria play a considerable role, representing a 
growing worldwide public health concern (Fung et al., 2018).

The Enterobacter genus is responsible for various 
infections, including nosocomial and urinary tract 
infections, respiratory infections, osteomyelitis, 
endocarditis and soft tissue infection (Ramirez and Giron, 
2022). Enterobacter cloacae, a Gram-negative bacterium 
belonging to the Enterobacteriaceae family, is found in 
terrestrial and aquatic environments (Davin-Regli and 
Pagès, 2015). The bacterium has also been isolated in 
foods, such as raw cow´s milk (Alves et al., 2015) and meat 
(Dubey et al., 2018).

Another food-important bacterium is Enterococcus 
faecalis, which is isolated in many foods, including retail 
meats (Tyson et al., 2018). E. faecalis is a Gram-positive 
bacterium distributed in soil and plants, and commensally 
resides in the gastrointestinal tract of humans and animals 
(Guzman Prieto et al., 2016). Despite its commensal nature, 
the bacterium has emerged as a clinically relevant pathogen, 
with the potential to cause many enterococcal infections 
in humans (García-Solache and Rice, 2019). Further, it is 
worth noting that this bacterium forms biofilms on many 
substrates (Guerreiro-Tanomaru et al., 2013), and is thus 
resistant to many antimicrobials (Kim et al., 2018).

The development of antimicrobial resistance is one of 
the greatest public health challenges faced in contemporary 
times, and the inappropriate or indiscriminate use of 
antimicrobials is one of the main factors contributing to 
this problem (Muñoz Madero et al., 2016). To effectively 
address antimicrobial resistance, the “One Health” 
concept was proposed by the WHO, and specifically 
addresses environment, human, and animal health factors 
(Robinson et al., 2016; Collignon and McEwen, 2019).

Thus, in view of the increases in bacteria resistance to 
our current antimicrobials, the need for new agents with 
antibacterial activity is explicit (Khadake et al., 2021), and 
phytotherapie emerge as a source of natural remedies that 
can both treat disease and promote well being (Falzon and 
Balabanova, 2017).

Essential oils are natural substances derived from plants 
which possess various biologically active components, 
usually with biological activities (Khorshidian  et  al., 
2018; Stefanakis et al., 2013). Among the wide variety of 
components of essential oils, stands out trans-anethole, 
one of the main constituent of the essential oil of 
Foeniculum vulgare Mill. (fennel) (Nojadeh et al., 2020), and 
Pimpinella anisum (anise seed) (Vieira et al., 2018), has been 
shown to present biological activity, including antibacterial 
(Auezova  et  al., 2020), antifungal (Huang  et  al., 2010), 
neuroprotective (Ryu et al., 2014), and anti-inflammatory 
effect (Kim et al., 2017).

Given the need for new compounds with antibacterial 
activity, and the scarcity of studies on trans-anethole in 
the fight against bacteria that contaminate food, our study 
aimed to evaluate the antibacterial activity of trans-anethole 
against E. cloacae and E. faecalis strains of food origin.
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growth through formation of a cluster of cells (button), 
as well as observing changes in solution color, from blue 
to pink to indicate growth. The MIC was determined as 
the lowest concentration of the compound inhibiting 
visible growth of the microorganism, as verified through 
the change of the solution color, from blue to pink, which 
indicates microorganism growth (Palomino et al., 2002; 
Ostrosky et al., 2008; CLSI, 2012; Bona et al., 2014).

2.6. Determination of the Minimum Bactericidal 
Concentration (MBC)

To perform the MBC, inoculations (10 μL) of dilutions 
from the MIC were performed in Mueller Hinton broth 
medium (100 μL/cavity) in a sterile microdilution plate, and 
subsequently, incubation was performed at 35 ± 2 °C for 
24 hours. After incubation, 20 μL of resarzurin was added, 
and a new incubation was performed at 35 ± 2 °C to confirm 
the concentration capable of total growth inhibition of the 
bacterial species, which would be verified by no indicator 
dye color change (Ncube et al., 2008; Guerra et al., 2012).

2.7. Associations of trans-anethole with synthetic 
antimicrobials

The trans-anethole association studies using synthetic 
antimicrobials was performed by disc diffusion technique 
on solid medium with ampicillin, gentamicin, ciprofloxacin, 
and, ceftriaxone filter paper discs (Bauer  et  al., 1966; 
Oliveira et al., 2006). Using a sterile swab, a volume of 
approximately 1mL of each bacterial suspension was 
seeded onto the solid surface of the Muller Hinton agar 
(MHA) contained in flat sterile plates. Subsequently, 
the paper discs (impregnated with the antimicrobials) 
were applied onto MHA with the bacterial suspension. 
Soon afterwards, a 20μL aliquot (MIC) of the tested 
compound was transferred to the discs containing the 
antimicrobials. A negative control containing only the 
bacterial suspension with antimicrobials discs was also 
performed. The plates were incubated at 35 ± 2 °C for 
24-48h, followed by reading. The effect was considered 
synergistic if the microbial growth inhibition halo formed 
by the association (compound + antimicrobial) presented 
a diameter ≥ than 2mm, when compared to the inhibition 
halo formed by the action of the antimicrobial alone. When 
the formation of the inhibition halo resulting from the 

combined action (compound + antimicrobial) was smaller 
in diameter than that developed by the isolated action 
of the antimicrobial, it was considered an antagonistic 
effect. The effect was considered indifferent when the 
halo of inhibition resulting from the combined application 
(compound + antimicrobial) presented the same diameter 
as that resulting from the isolated application of the 
antimicrobial (Cleeland and Squires, 1991; Oliveira et al., 
2006). All tests were performed in duplicate.

2.8. Determination of the Minimum Inhibitory 
Concentration for Adherence (MICA)

The Minimum Inhibitory Concentration for Adherence 
(MICA) of the compound was determined in the presence 
of sucrose (5%), according to Albuquerque et al. (2010) 
with modifications, using compound dilutions of up to 
1:128. From the bacterial growth, the bacterial strain 
was grown at 35 ± 2 °C in Mueller Hinton broth (DIFCO, 
Michigan, United States). A 0.9 mL of the subculture was 
then distributed into test tubes and 0.1 mL of the solution 
corresponding to the compound dilutions was added. 
Incubation was performed at 35 ± 2 °C for 24 hours with 
the tubes tilted at 30°. The reading was performed by 
visual observation of bacteria adherence to the walls of 
the tube after shaking. The procedure was performed 
in duplicate. The same procedure was performed for 
the positive control, 0.12% chlorhexidine digluconate 
(Periogard®, Colgate-Palmolive Company, New York, 
USA). The MICA was considered the lowest concentration 
of the agent in contact with sucrose which prevented 
adherence to the glass tube.

3. Results

3.1. Minimum Inhibitory Concentration (MIC)

The Minimum Inhibitory Concentration results for 
trans-anethole against E. cloacae and E. faecalis strains 
are presented in Tables 1 and 2. According to the results, 
trans-anethole presented no antibacterial activity at 
any concentration used against the strains of E. cloacae. 
In relation to E. faecalis, trans-anethole presented 
antibacterial effect against five of the six strains, with MIC 
values ranging from 500 μg/mL to 1000 μg/mL.

Table 1. Minimum Inhibitory Concentration (MIC) in μg/mL of trans-anethole against strains of Enterobacter cloacae.

Trans-anethole

Ecl 41 Ecl 42 Ecl 43 Ecl 44 Ecl 45

1000 μg/mL - - - - -

500 μg/mL - - - - -

250 μg/mL - - - - -

125 μg/mL - - - - -

62.5 μg/mL - - - - -

31.25 μg/mL - - - - -

Legend: (+) Inhibited bacterial growth (-) Did not inhibit bacterial growth.
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3.2. Minimum Bactericidal Concentration (MBC)

The results for the Minimum Bactericidal Concentration 
of trans-anethole against Enterococcus faecalis are presented 
in Table 3. Analyzing the results, it is observed that the 
compound presented MBC values ranging from 500 μg/mL 
to 1000 μg/mL.

3.3. Associations of trans-anethole with synthetic 
antimicrobials

The inhibition halos (mm) resulting fromy the 
associations of trans-anethole with synthetic antimicrobials 
for E. faecalis strains are presented in Table 4. Analyzing 
the results, it can be seen that trans-anethole when 

Table 2. Minimum Inhibitory Concentration (MIC) in μg/mL of trans-anethole against strains of Enterococcus faecalis

Trans-anethole

ATCC 29212 Ef 46 Ef 47 Ef 48 Ef 49 Ef 50

1000 μg/mL + + + - + +

500 μg/mL + - - - - -

250 μg/mL - - - - - -

125 μg/mL - - - - - -

62.5 μg/mL - - - - - -

31.25 μg/mL - - - - - -

Legend: (+) Inhibited bacterial growth (-) Did not inhibit bacterial growth.

Table 3. Minimum Bactericidal Concentration (MBC) in μg/mL of trans-anethole against Enterococcus faecalis.

Trans-anethole

ATCC 29212 Ef 46 Ef 47 Ef 49 Ef 50

1000 μg/mL + - + + -

500 μg/mL + - - - -

250 μg/mL - - - - -

125 μg/mL - - - - -

62.5 μg/mL - - - - -

31.25 μg/mL - - - - -

Legend: (+) Inhibited bacterial growth (-) Did not inhibit bacterial growth.

Table 4. Inhibition halos (mm) of trans-anethole / synthetic antimicrobial associations for E. faecalis strains.

Trans-anethole

Bacterial strains Association AMP GEN CIP CRO

ATCC 29212
AIH 24 mm 14 mm 24 mm 10 mm

AIH w/ TA 22 mm (↓) 18 mm (↑) 24 mm (*) 14 mm (↑)

Ef 46
AIH 24 mm 12 mm 26 mm 12 mm

AIH w/ TA 30 mm (↑) 14 mm (↑) 28 mm (↑) 18 mm (↑)

Ef 47
AIH 22 mm 12 mm 22 mm 12 mm

AIH w/ TA 32 mm (↑) 14 mm (↑) 28 mm (↑) 14 mm (↑)

Ef 48
AIH 10 mm 12 mm 24 mm 14 mm

AIH w/ TA 18 mm (↑) 32 mm (↑) 26 mm (↑) 20 mm (↑)

Ef 49
AIH 26 mm 10 mm 20 mm 10 mm

AIH w/ TA 38 mm (↑) 20 mm (↑) 32 mm (↑) 14 mm (↑)

Ef 50
AIH 28 mm 10 mm 26 mm 16 mm

AIH w/ TA 34 mm (↑) 20 mm (↑) 26 mm (*) 28 mm (↑)

AIH: Antimicrobial Inhibition Halo. TA: Trans-anethole. Synergistic effect (↑); antagonistic effect (↓); indifferent effect (*); AMP: ampicillin; 
GEN: gentamicin; CIP: ciprofloxacin; CRO: ceftriaxone.
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combined with the antimicrobials ampicillin, gentamicin, 
ciprofloxacin, and ceftriaxone presented synergistic effect 
against most of the strains.

3.4. Minimum Inhibitory Concentration for Adherence 
(MICA)

Table 5 presents the Minimum Inhibitory Concentration 
for Adherence (MICA) results of trans-anethole, 
as well as a comparison with the positive control 
(chlorhexidine 0.12%) against the Enterococcus faecalis 
strain (Ef 49). Analyzing the results, it is observed that 
in the proportions used, neither trans-anethole nor 
chlorhexidine (0.12%) presented antibiofilm effects 
against the studied strain.

4. Discussion

For years, the emergence and spread of microorganisms 
resistant to market available synthetic antimicrobials has 
been reported, and the need for new alternatives which 
present antimicrobial activity is clear (Mendes et al., 2011). 
In this context, natural products, being both culturally 
accepted and accessible are an effective therapeutic 
alternative (Bezerra et al., 2017).

For antimicrobial activity to be considered strong, it must 
have an MIC of up to 500 µg/mL, MICs of 600 to 1500 µg/
mL are considered moderate, and weak activity presents 
MICs above 1500 µg/mL (Sartoratto et al., 2004). According 
to the results found in this study, trans-anethole presented 
moderate antimicrobial activity against Enterococcus faecalis 
strains, since the MIC 90 was 1000 μg/mL.

For a compound to be considered bactericidal or 
bacteriostatic according to its MBC, its concentration should 
be, respectively, equal to or twice the MIC or greater than 
twice the MIC (Hafidh et al., 2011). Thus, our results show 
that trans-anethole presents bactericidal potential against 
E. faecalis ATCC 29212, Ef 47, and Ef 49, since respectively 
the MBC against these strains were 500 µg/mL, 1000 µg/
mL, and 1000 µg/mL. The strains Ef 46 and Ef 50 presented 
bacteriostatic potencial, since both presented an MBC 
>1000 µg/mL.

Although trans-anethole was significantly effective 
against E. faecalis strains, it is worth noting that the 
compound did not present antibacterial activity against 
Enterobacter cloacae. Donati  et  al. (2014) also reported 
disappointing results, in that trans-anethole presented 

no antibacterial activity against Staphylococcus aureus, 
Pseudomonas aeruginosa, or Escherichia coli.

We note that in the literature it has already 
been reported that trans-anethole indeed presents 
antibacterial potential. Orhan et al. (2012) found that 
trans-anethole presents antibacterial activity against 
various bacteria, including E. faecalis. Their results 
corroborate our findings, in which trans-anethole 
presented antibacterial activity against E. faecalis of 
food origin.

Other natural products have presented relevant results 
against E. faecalis. An example is Janani et al. (2019), who 
observed that oregano essential oil presents antimicrobial 
activity against E. faecalis.

Further, according to our results, trans-anethole 
presented efficacy in inhibiting microbial growth when 
associated with synthetic antimicrobials, with synergistic 
effects for most strains of E. faecalis. Many natural products 
when associated with synthetic antimicrobials present 
synergistic effects. For instance, Santana  et  al. (2021) 
analyzed Lavandula hybrida Grosso essential oil, which in 
association with cephalothin, presented synergistic effect 
against pathogenic strains of S. aureus.

Kwiatkowski  et  al. (2019a) analyzed the influence 
of essential oil compounds on the antibacterial activity 
of mupirocin against strains of methicillin resistant 
Staphylococcus aureus (MRSA) susceptible to mupirocin 
(MupS), and induced low-level mupirocin resistant (MupRL). 
According to the authors, trans-anethole presented additive 
effect with mupirocin against the MRSA MupRL strain, and 
indifferent effect against the MRSA MupS strain.

It is also worth noting that trans-anethole presents 
other functions, such as contributing to antibiofilm effects. 
Previous studies reveal that mupirocin in association 
with 2% trans-anethole was able to significantly decrease 
S. aureus biofilms (Kwiatkowski et al. 2019b). However, 
in the present study trans-anethole alone was unable to 
inhibit E. faecalis biofilm.

Differently, experiments have been conducted 
in which other natural products were tested 
with other bacteria regarding the anti-adherent 
actitity and pertinent results were found such as 
that of Ramalho  et  al. (2020), who observed that 
Eucalyptus globulus oil presents anti-adherent activity 
equivalent to chlorhexidine digluconate 0.12% against 
Klebsiella pneumoniae, both compunds inhibited the 
formation of biofilm in a ratio of 1:8.

Table 5. Minimum Inhibitory Concentration for Adherence (MICA) in μg/mL of trans-anethole and 0.12% chlorhexidine digluconate 
against Enterococcus faecalis strain (Ef 49).

Trans-anethole

μg/mL 1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128

+ + + + + + + +

0.12% Chlorhexidine digluconate

μg/mL 1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128

+ + + + + + + +

Legend: (+) Adhesion to the tube wall (-) No adhesion to the tube wall.
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5. Conclusion

We conclude that trans-anethole is effective in inhibiting 
the growth of the Gram-positive bacteria E. faecalis, yet 
when tested against the Gram-negative bacteria E. cloacae 
no antibacterial action was observed. Trans-anethole 
also potentiated the antibacterial activity of synthetic 
antimicrobials against E. faecalis, presenting synergistic 
effects against most strains. However, trans-anethole 
did not effectively inhibit E. faecalis biofilm under our 
methodology.

In short, trans-anethole presented potential antibacterial 
against E. faecalis strains of food origin, and may upon 
further study, it may be used alone or in association with 
synthetic antimicrobials to combat infections caused by 
this bacterium.
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