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Abstract

Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main
protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the
most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current
investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2
Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID
6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD)
simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and
flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF)
respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro,
interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket
shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is
interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential
inhibitor against SARS-CoV-2 for better management of COVID-19.
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Resumo

Nigella sativa é conhecida pelo perfil de seguranga, contendo uma grande variedade de compostos antivirais tteis.
A principal protease (Mpro, 3CLpro) da sindrome respiratéria aguda grave 2 (SARS-CoV-2) esta sendo considerada
como um dos alvos virais mais atraentes, processando as poliproteinas durante a patogénese e replicacao viral.
Na presente investigacdo analisamos a poténcia do componente ativo, timoquinona (TQ) de Nigella sativa contra
SARS-CoV-2 Mpro. As estruturas de TQ e Mpro foram recuperadas de PubChem (CID10281) e Protein Data Bank
(PDB ID 6MO03), respectivamente. O Mpro e o TQ foram acoplados e o complexo foi submetido a simulagdes de
dindmica molecular (MD) por um periodo de 50ns. O efeito de dobramento de proteinas foi analisado usando o raio
de giracdo (Rg) enquanto a estabilidade e a flexibilidade foram medidas usando a raiz quadrada média dos desvios
(RMSD) e a raiz média quadrada da flutuagio (RMSF), respectivamente. Os resultados da simulagdo mostram que
0 TQ esta exibindo boa atividade de ligagdo contra o SARS-CoV-2 Mpro, interagindo em muitos residuos presentes
no sitio ativo (His41, Cys145) e também o Glu166, facilitando o formato da bolsa. Além disso, sdo necessarias
abordagens experimentais para validar o papel do TQ contra a infecgdo pelo virus. O TQ estd interferindo nos
residuos de manutengao do bolso, bem como no sitio ativo do virus Mpro, que pode ser usado como um potencial
inibidor contra o SARS-CoV-2 para um melhor gerenciamento da Covid-19.

Palavras-chave: Nigella sativa; protease principal; timoquinona; SARS-CoV-2.

1. Introduction

The main protease (Mpro, 3CLpro) is an important ~ CoV-2) proteome, processing the polyproteins. A number
drug targets of sever acute respiratory syndrome 2 (SARS-  of studies has well characterized the Mpro (Anand et al.,
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2005; Liang, 2006; Gan et al., 2006; Xue et al., 2008;
Pillaiyar et al., 2016) and its potential role. This viral protein
acts on 11 positions along polyproteins. Human proteases
do not share the cleavage specificity with NSP5 of SARS-
COV-2 (Lee et al., 2020, p. 2).

The substrate-binding sites residues 10-99 (Domains I)
and 100-182 (Domain II) in picornavirus, are six-stranded
antiparallel B-barrels while domain 111 (198-303) forming
five helices, regulating the dimerization of Mpro (Shi and
Song, 2006). Residues Cys145 and His41 form the catalytic
site. The catalytic activity depends on the dimerization
of the enzyme, as the N-finger interacts with Glu166 to
facilitate the S1 pocket shape of the substrate-binding
site (Anand et al., 2002). The residue T285 and 1286in
CoV-2 Mpro is substituted by A285 and L286 respectively
(Zhang et al., 2020) leading to a threefold upsurge Mpro
(Lim et al., 2014). Inhibitors may be useful to reduce the
catalytic degree against these locations.

Phytocompounds have been found, affective against
many viral targets (Raj and Varadwaj, 2016; Setlur et al.,
2017; Ismail and Jusoh, 2017; Li et al., 2020; Khare et al.,
2020). Among the plants, Nigella sativa (Black cumin) is
an annual flowering plant under the family Ranunculaceae
(Amin and Hosseinzadeh, 2016). Its fruit is in inflated
capsule of seeds, native to North Africa, Southeast Asia,
Southern Europe, Mediterranean and Middle Eastern
region (Ahlatci et al., 2014). N. Sativa seed is composed
of some major components including 35.6-41.5% of fatty
oil, fat (28.5%), proteins (26.7%), carbohydrates (24.9%) and
several vitamins (A, B1, B2, B3, C) and minerals (Ca, K, Se,
Cu, P, Zn, Fe) (Ahlatci et al., 2014; Islam, 2016). The volatile
oil of N. sativa seeds has saturated fatty acids including
thymohydroquinnone (THQ), dithymohydroquinone,
carvacrol, thymoquinone (TQ), nigellone, thymol, « and
B-pinene, d-citronellol, d-limonene, p-cymene volatile
oil, t-anethole, longifoline and 4-terpineol (Enomoto et al.,
2001). The medicinal characteristics focusing on various
pharmacological efficacies of N. sativa seeds like:
gastroprotective (El-Abhar et al., 2003), anti-oxidant
(Hosseinzadeh et al., 2013), anti-cancer (Khan et al.,
2011), anti-viral activity against cytomegalovirus have
been reported in recent years. In some studies, the TQ
was effective against avian influenza virus (HON2 AlV)
and cytomegalovirus infection in murine model I (Salem
and Hossain, 2000; Umar et al., 2016). Nigella sativa
extract prior decreases the coronavirus replication and
significant reduction in coronavirus survival virus load
inside cells. Recently, a am insilico study also proposed
that thymoquinone (TQ) may interfere with ACE2 binding
receptors, preventing virus entry.

In the drug discovery and their mechanism of action
are important for better understanding the insight of the
molecules. The molecular biologist desire to know that
how a protein and small molecules works. An atomic
level information is typically generating significant
insight information of biomolecular interactions.
The intermolecular interactions could be explored
through the dynamic’s studies. Unfortunately, such kind of
information is difficult to obtained through experimental
approaches. An alternative to such approaches is
computational molecular dynamics simulation (MD) of
proteins and natural compounds to understand the atomic
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level mechanism underlined. The MD simulations are time
efficient and may accurately predict how interact (Liu et al.,
2018; Hollingsworth and Dror, 2018). These MD studies are
useful to capture a variety of biomolecular interactions,
including ligand binding, protein folding, and changes in
proteins behavior over time.

Knowing the strength of MD simulations and the
importance of pharmacological characteristics of N. sativa,
we performed the current study on thymoquinone (TQ)
against Mpro to analyze the behavior of target protein at
molecular level and their molecular effect on the SARS-
CoV-2 target proteins.

2. Methods

2.1. Protein preparation

The worldwide biomolecular structural information
is being archived at Brookhaven National Laboratories,
called Protein Data Bank (PDB) (Bernstein et al., 1977;
Berman et al., 2000). The researchers around the world
can easily retrieve the crystal structures of biomolecules.
The crystal structure of COVID-19 Mpro (PDB ID: 6M03)
was retrieved from PDB. Prior to further analysis, the
structure was subjected to Preparation, using MOE
(molecular operating environment) (Vilar et al., 2008).
The partial charges and missing hydrogen were assigned.
The thymoquinone (CID:10281) was also prepared. Protein
and ligand were docked and the complex was subjected
to dynamics study.

2.2. Molecular Dynamics (MD) simulation

The molecular dynamics (MD) simulations in drug
discovery capture the behavior of proteins in full molecular
and atomic detail to an extent of fine temporal resolution
(Liuetal., 2018; Hollingsworth and Dror, 2018). The Mpro
and TQ docking complex were subjected to molecular
dynamics (MD) simulation as described in our previous
study using Amber package (Berendsen et al., 1995;
Khan et al., 2020). Briefly, MD simulation was performed
on docking complex with the ff14SB force field through
Amber14 package (Salomon-Ferrer et al., 2013; Sun et al.,
2014b, a). To solvate each system the TIP3P water model
was applied while system was neutralized with counterions
(Jorgensen et al., 1983). The system was energy minimized
and conjugate gradient followed by heating upto 300K
and 1atm pressure to equilibrate the system. Temperature
regulations was achieved with the Langevin thermostat
while Particle Mesh Ewald algorithm was applied for
long-range electrostatic interactions (Essmann et al.,
1995; Darden et al., 1993). The MD simulation production
step was carried with pmemd code 30 (Gétz et al., 2012).

3. Results and Discussion

The current study shows that TQ may be effective against
Mpro of SARS-CoV-2. The calculation of drug-likeness
may help to understand the pharmacokinetic of a novel
compound as well the pharmaceutical properties before
its clinical application. The TQ drug likeness properties,
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calculated through Swiss ADME, is also in accordance the
drug likeness rule (Walters and Murcko, 2002; Daina et al.,
2017). The drug likeness properties and absorption has
been given in Table 1. The pharmacokinetics of TQ seems
in accordance with desire drug like compound. Similarly,
drug likeness properties also favor its clinical application
(Brtistle et al., 2002; Vistoli et al., 2008; Ursu et al., 2011).
The TQ docked against SARS-CoV-2 Mpro seems potent,
altering the stability of protein. The RMSD of TQ and
Mpro in Figure 1 shows stability. The Mpro is not stable
in the whole simulation period which might be useful for
effective inhibition of viral activity.

The RMSD graph during the 50ns simulation period
shows that the Mpro exhibited an unstable fluctuation.
The RMSD at the start (1.06A) is rising to 2.9A at 18ns
simulations. A downfall fall in fluctuation was again
observed to 1.4A at the end of 50ns MD simulation.
The RMSD of Mpro seems highly unstable due to TQ
which may alter the stability of target, assisting in the
inhibition of viral proteins. Flexibility is also one of the
important thermodynamic properties, maintaining the
optimal functions of proteins (Nagasundaram et al., 2015).
Alarge change in this property may alter the biomolecules
optimal function. The TQ may cause an increase in the
flexibility of Mpro (Figure 2) which might be useful for
better management of SARS-CoV-2 infections. The Mpro
exhibited the RMSF among 5A and 25A at residues position
48 and 310 respectively. Residues at location 145 to 160 also
attained a high RMSF (20.4A) which contains the active site
residue Cys145. MD simulations may explore the insight
mechanisms of changes at the molecular level (Liu and
Yao, 2010; Liu et al., 2018; He et al., 2018) which might

Table 1. Chemical properties of thymoquinone.

Thymoquinone Pharmacokinetics
*permeant to BBB Yes
‘Absorption (GI) High
Inhibitor of CYP2C19 No
Inhibitor of CYP1A2 No
Inhibitor of CYP2C9 No
Inhibitor of CYP2D6 No
CYP3A4 inhibitor No
Drug likeness
Lipinski Yes (0 violations)
Veber Yes
Physiochemical Properties
Formula C10H1202
Molecular weight 164.20 g/mol
Heavy atoms 12
‘Rot: bonds 1
"HB acceptors 2
HBdonors 0

*BBB = blood brain barrier; GI = gastrointestinal; Rot = rotatable; HB
= hydrogen bond.
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be difficult through experimental work. Several studies
reported that any change in protein function might be
due the change in RMSF (Berhanu and Masunov, 2011;
Chong et al., 2011; Bavi et al., 2016).

The degree of folding stability could be measured
through Rg. Fluctuations in Rg with respect to time shows
unstable folding while a straight value reveals stability in
folding (Lobanov et al., 2008; Smilgies and Folta-Stogniew,
2015; Khan et al., 2019, 2021). A protein with misfolding
shows variations in Rg over time (Figure 3). The plot
shows large variations between 22A and 22.8A. Majority
of the variations have been found from 811ps to 2026ps.

RMSD (&)

0 10 20 30 40 50
Time (ns)

Figure 1. RMSD of TQ and Mpro during the 50ns MD simulation
period. Stability seems fluctuating from 1.0612A at 2ns and 2.94
A at 18ns. Target stability seems unstable even at the end of
simulation period.
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Figure 2. Residue’s flexibility of TQ and Mpro complex during
simulation. Flexibility is very high in last amino acid residues.
This high flexibility may change the protein function, required
for virus activity.
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Figure 3. Radius of gyration TQ and SARS-CoV-2 Mpro complex.
A constant Rg value is a measure of correct folding. Fluctuations
in Rg shows that protein folding is not stable.
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The lowest Rg was detected at 811ps (22A) while the highest
at 1216ps (22.8A). This shows that the TQ may affect the
folding of Mpro which might be important to inhibit the
protein activity. The Rg plot of Mpro is not stable during
the simulation peried which shows the potential activity of
TQ. Change in protein stability may be due to the alteration
of thermodynamic property (Chen and Shen, 2009). This
includes protein RMSD, fluctuations and also the protein
folding. Destabilization in folding and thermodynamic
stability may affect biomolecules function.

The TQ is fitting in the pocket, interacting with active
site (C145, H41) (Figure 4), altering the catalytic activity
of viral protein. The residues located in the binding pocket
and its surrounding (T24, L27, H41, F140, C145,H163, M 165,
P168, and His172) are imported for a natural compound
to interact with. The phytocompound TQ form a hydrogen
bond with Glu166, facilitating the pocket shape of the
substrate-binding site (Anand et al., 2002) and many
hydrophobic interactions with active site (His41, Cys145)
and its surrounding residues (Figure 5).

Figure 4. Thymoquinone and SARS-CoV-2 main protease interaction. (A) Docked thymoquinone. (B) Thymoquinone in binding Pocket.

(C) Residues in the surrounding thymoquinone.
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Figure 5. Mpro of SARS-CoV-2. (A) Domain organization. Active site residues have been shown. (B) Dimerization of two Mpro monomers
and location of E166. (C) Impact of EI66A mutation on the dynamics of Mpro. The mutant gain flexibility and show destabilizing effect

(Rodrigues et al., 2018).
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4. Conclusion

TQ shows good binding affinity with SARS-CoV-2 NSP5,
interacting with active site residues and also with Glue166,
maintaining the pocket shape for viral enzymatic activity.
This phytomedicine alters the overall thermodynamics
properties of SARS-CoV-2 Mpro which may useful for better
management of COVID-19 in future. Further experimental
validation is required to observe the TQ effect in vivo.
The TQ may be used as therapeutic compound against
SARS-CoV-2 after experimental confirmation.
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