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Abstract

The presence of microplastics in aquatic environments has raised concerns about their abundance and potential
hazards to aquatic organisms. This review provides insight into the problem that may be of alarm for freshwater
fish. Plastic pollution is not confined to marine ecosystems; freshwater also comprises plastic bits, as the most
of plastic fragments enter oceans via rivers. Microplastics (MPs) can be consumed by fish and accumulated due
to their size and poor biodegradability. Furthermore, it has the potential to enter the food chain and cause health
problems. Evidence of MPs s ingestion has been reported in >150 fish species from both freshwater and marine
systems. However, microplastic quantification and toxicity in freshwater ecosystems have been underestimated,
ignored, and not reported as much as compared to the marine ecosystem. However, their abundance, influence,
and toxicity in freshwater biota are not less than in marine ecosystems. The interaction of MPs with freshwater
fish, as well as the risk of human consumption, remains a mystery. Nevertheless, our knowledge of the impacts
of MPs on freshwater fish is still very limited. This study detailed the status of the toxicity of MPs in freshwater
fish. This review will add to our understanding of the ecotoxicology of microplastics on freshwater fish and give
subsequent research directions.
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Resumo

A presenga de microplasticos em ambientes aquaticos levantou preocupagdes sobre sua abundancia e perigos
potenciais para os organismos que vivem nesse meio. Esta revisdo fornece informagdes sobre o problema que
pode ser alarmante para os peixes de agua doce. A poluigdo plastica ndo se limita aos ecossistemas marinhos; a
agua doce também contém pedacos de plastico, ja que a maioria dos fragmentos de plastico entra nos oceanos por
meio dos rios. Os microplasticos (MPs) podem ser consumidos pelos peixes e acumulados devido ao seu tamanho
e baixa biodegradabilidade. Além disso, tem o potencial de entrar na cadeia alimentar e causar problemas de
satide. Evidéncias de ingestdao de MPs foram relatadas em mais de 150 espécies de peixes de sistemas de dgua doce
e marinhos. No entanto, a quantificagdo e a toxicidade de microplasticos em ecossistemas de agua doce foram
subestimadas, ignoradas e ndo relatadas tanto quanto em comparag¢do com o ecossistema marinho. No entanto,
sua abundancia, influéncia e toxicidade na biota de dgua doce ndo sdo menores que nos ecossistemas marinhos.
A interacdo de MPs com peixes de dgua doce, bem como o risco de consumo humano, permanece um mistério.
Todavia, nosso conhecimento sobre os impactos das MPs em peixes de dgua doce ainda é muito limitado. Este
estudo detalhou o status da toxicidade de MPs em peixes de dgua doce. Esta revisdo aumentara nossa compreensao
da ecotoxicologia de microplasticos em peixes de agua doce e fornecera dire¢des de pesquisa subsequentes.
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1. Introduction

Aquatic foods are increasingly recognized for their
key role in food security and nutrition underscoring the
urgent need to manage and protect this natural resource
from pollution (Hassan et al., 2021a, b; Abidin et al., 2022).
Microplastics are usually demarcated as debris lesser than
5 mm (Cheung and Fok, 2017; Bilal et al., 2023a) and have
been observed to contaminate several aquatic ecosystems.
Plastic global production has amplified dramatically over
the last few decades, reaching 350 million tons in 2017.
Plastics are utilized in modern life, such as wrapping,
agriculture, electrical appliances, automotive, and so on
(Brooks et al., 2018; Hassan et al., 2020b). Asia is the major
producer of synthetic polymers (50%), Europe (19%), North
America (18%), the Middle East and Africa (7%), and Latin
America (4%) (Jambeck et al., 2015). Plastics are extensively
used around the world due to easy processing, water
resistance, and reliability. It is possible to say that we are
existing in the plastic era (Lusher, 2015). The continued
expansion of plastics production and use has occasioned
a surge in the number of plastic litter discharged into the
atmosphere. Continuous distortions of plastic items caused
by weathering decay can result in an innumerable variety
of microplastics. MPs are pervasive in nearly all kinds of
aquatic environments, making them accessible to fish
(Wang et al., 2020). Contamination of MPs in water is an
alarm due to their widespread dispersal and possible threat
to underwater life. MPs are identified in a wide array of
aquatic systems. Plastic fibers are the most common kind of
microplastics found in global water, and they are primarily
caused by the breakdown of big debris (Wang et al., 2020).
MPs seem to be common in the freshwater environments
in Europe (Klein et al., 2015; Fischer et al., 2016), North
America (Corcoran et al., 2015; Baldwin et al., 2016),
and China (Su et al., 2016). Despite having a percentage
removal of more than 98% of microplastics, a wastewater
treatment plant on the Clyde River in Glasgow has been
demonstrated to be able to discharge 65 million MPs into
the water on a regular schedule (Murphy et al., 2016).

Plastic enters into the water from inland sources, namely
rivers, industrial and urban discharges, and runoff from
residues and surrounding areas (Barboza et al., 2018a;
Rahman et al., 2020; Hassan et al., 2024). It can be also
caused by direct inputs such as aquaculture, oil and gas
production, net loss in fisheries, and garbage discharged
during maritime activities like tourism and salt production
(Siddique et al., 2023). External factors such as biological
degradation, photocatalytic degradation, and chemical
weathering are largely responsible for MPs degradation.
Chemical weathering induces crack propagation on the
plastic’s surface and can shatter particles into smaller
pieces. Polypropylene, polyethylene, polystyrene, polyvinyl
chloride, and polyethylene terephthalate are the major
manufactured polymers. While Polyamide is the most
widespread polymer used in the fisheries sector. Plastic
polymers are classified into three groups based on their
buoyancy in freshwater or saltwater, neutrally buoyant
polymers, and negatively buoyant polymers (Karami, 2017;
Khan et al., 2024). The majority of the evidence for MPs
consumption by fish species came from the evaluation of
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fish gastrointestinal tract contents. Fish that have been
revealed to be contaminated with microplastics include
a diverse range of species and inhabit a wide range of
water bodies. Plastic particles found in these wild-caught
fish vary significantly in color, shape, and polymer type
(Siddique et al., 2022; Bilal et al., 2024). The most frequently
identified shapes of MPs in fish are fiber and fraction,
which correspond to their dominance in global water
bodies (Wang et al., 2020; Siddique et al., 2022).

MPs in water can be simply consumed by fish.
Researchers have described the incidence of MPs in
fish (Su et al., 2016; Bilal et al., 2021; Bilal et al., 2023a).
MPs deposit in fish and have a wide range of negative
impacts i.e decreased feeding activity, impeded growth,
energy interruption, oxidative stress, and even genotoxicity
(Lu et al., 2016; Hassan et al., 2023) According to
Singh et al. (2022), (see Figure 1) MPs particles are easily
ingested by fish in unintended ways due to their small
size and similarity to natural food items (Crawford and
Quinn, 2017). MPs hinder fish metabolism by lowering
the amount of energy needed for growth and delaying
ovulation (Wright et al., 2013). Upon consumption, MPs
may adversely affect fish in three general, non-exclusive
ways: (a) through the MP’s effects (such as obstructing
the GIT or producing distorted satiation); (b) through
the siphoning of plasticizers, ingredients, and other
toxic substances from within the MPs; and (c) through
the inactivation of toxic emissions confined to the MPs
(Strungaru et al., 2019). As ingested MPs associated with
other pollutants affect brain and central nervous system
cells, which may severely affect swimming and/or survival
ability for freshwater fishes and their other behavioral
changes. MPs have effects on freshwater fish at the cellular,
tissue, population, community, and ecosystem levels.
In fish, MPs cause cell death, oxidative stress, and DNA
damage. MPs also have an impact on intestinal dysbiosis,
aberrant neuromuscular function, and metabolic activity.
MPs have an impact on locomotion, feeding, hatching time,
population increase, community structure, and ecosystem
structure (Parker et al., 2021). Swimming problems may
be transient; nevertheless, other research shows that
MP exposure has a greater negative influence on early
development (Duan et al., 2020; Pannetier et al., 2020).
Physically bound MPs and/or smaller NPs in fish eggs can
disrupt gaseous exchange and delay hatching periods
(Batel et al., 2018; Duan et al., 2020). A few studies have
shown that MP exposure has dose-dependent impacts on
freshwater fish, though these effects may only happen ata
specific MP intensity, implying MP thresholds for impact,
making the correlation between exposure and impact more
complicated than a simple linear dose-effect relationship
(Mazurais et al., 2015; Lei et al., 2018; Qu et al., 2019).
In terms of physical consequences, the bio perseverance
of microplastics may result in a variety of biological effects
such as inflammatory response, mutagenicity, oxidative
stress, cell death, and necrotizing. If these situations hold, a
variety of consequences may occur, including tissue injury,
fibrosis, and carcinogenesis. The transformation approach
may occur as a result of the polymers (Khan et al., 2015).

Researchers have revealed that plastics critically pertain
to the spoiling of the aquatic environment. Plastic particle
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Figure 1. Detection of microplastics in fishes and human health risks associated with ingestion exposure.

exposure can cause all sorts of sub-lethal effects in fish
and other aquatic organisms, including impaired feeding,
oxidative damage, growth retardants, and behavioral
changes. The zebrafish (Danio rerio) is a small freshwater
teleost with many similarities to other vertebrate species
in terms of the genome, brain patterning, and neural and
physiological system (Chen et al., 2017). Fish is a crucial
source of proteins for humans, and the possible effects
of MPs on fish require special consideration. Although
freshwater can accumulate a large number of microplastic
particles and fibers, fewer attempts have been done to track
microplastics in freshwater than in seawater. Microplastic
quantification and toxicity in the freshwater ecosystem have
been underestimated, ignored, and not reported much as
compared to marine ecosystems. However, the abundance,
influence, and toxicity of MPs in freshwater biota are not less
than in marine ecosystems. This review aims to highlight
the existing literature on microplastic quantification and
its influence on freshwater fauna and recommendations
for new research to fully understand the issue.

2. Identification of Microplastics

Natural material in the sample that follows the
MPs during water sample density dispersion usually
hampers the confirmation of MPs particles. As a result,
it is unavoidable to destroy natural debris to reduce the
chance of undervaluation of trivial plastic bits. Natural
material can be destroyed using chemical or enzymatically
catalyzed reactions. Before or after separation, natural
debris is chemically removed by processing the sample with
hydrogen peroxide, combinations of hydrogen peroxide
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and sulfuric acid, and Fenton-like processes (Liebezeit
and Dubaish, 2012; Imhof et al., 2013; Yonkos et al., 2014).
Visual Identification is frequently used to remove MPs
from the sample and to identify them (Hidalgo-Ruz et al.,
2012). Tiny particles should be separated using a dissecting
microscope (Doyle et al., 2011), large size MPs contamination
in freshwater systems microplastics can be (>1 mm)
recognized by the naked eye (Morét-Ferguson et al., 2010).
When arranging water samples, Bogorov counting chambers
might be useful. To prevent misidentification, it was advised
that particles be visually identified using defined criteria
in conjunction with a careful and cautious inspection
(Norén, 2007). Yet, it is strongly encouraged, particularly
for smaller MPs, to evaluate potential microplastics
using reliable practices (e.g., spectroscopic methods) to
adequately determine synthetic polymers (Dekiff et al,, 2014).
By studying the thermal breakdown of products of possible
microplastic particles in samples, pyrolysis-GC/MS may be
utilized to gather information on their chemical composition
(Fries et al., 2013). Plastic polymer pyrolysis products
produce distinct programs, which aid in the appropriate
identification of diverse polymer kinds by contrast with
reference programs of known virgin polymer samples.
Following the extraction of microplastic from deposits, this
method was previously applied (Nuelle et al., 2014). Infrared
(IR) or Fourier transform infrared (FTIR) spectroscopy is a
method that, when combined with Raman spectroscopy,
enables the accurate determination of plastic particles based
on their unique IR spectra. Absorption may be monitored,
yielding a unique infrared spectrum. IR spectroscopy is an
effective tool for detecting MPs since plastic polymers have
extremely unique IR spectra (Hidalgo-Ruz et al., 2012).
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3. Evidence of Microplastics in Freshwater

Freshwaters are incredibly rich and diversified and
supply a wide range of critical ecosystem services while
occupying a very little amount of the earth’s surface
(0.01%). Many anthropogenic stresses, such as excess
nutrients, habitat degradation, biological invaders, and
climate change, are already putting them in danger
(Parker et al., 2021). Preliminary research of freshwater
systems reveals that the presence and interrelationship
of MPs are as substantial as those reported in marine
systems. MPs have been found in freshwater in Europe,
North America, and Asia, and the study show that MPs
are consumed by freshwater fish (Eerkes-Medrano et al.,
2015). Initial freshwater studies have identified primary
and secondary microplastics (Table.1). In samples from the
North American Great Lakes, microplastics of consumer
origin with the same size, color, form, and elemental
analysis as microbeads were discovered from commercial
facial cleansers (Eriksen et al., 2013). In lakes and rivers,
primary microplastics have been discovered. The second
most common residue in Los Angeles basin waterways
were pre-production plastic polymers pods (Moore et al.,
2011), and the most abundant fragments in Lake Huron
(Zbyszewski and Corcoran, 2011). Several studies have been
reported on microplastics in freshwater in the Lake River
Rhine, Europe (Mani et al., 2015), Grade Lakes tributaries,
USA (Baldwin et al., 2016), Lakes Winnipeg, Canada
(Anderson et al., 2017), Taihu Lake, China (Paul-Pont et al.,
2016), River Thames Basin, UK (Horton et al., 2017a),
Laurentian Great Lakes, North America (Driedger et al.,
2015), Lake Poyang, China (Yuan et al., 2019) and Taihu
Lake (Su et al., 2016) (Table 1). MP concentration levels in
Rhine River surface water samples average 892,777 particles
km? with the highest concentration of 3.9 million particles
km2 (Mani et al., 2015). Along the Rhine and Main rivers in
Germany, the particles in river shore silt varied widely from
228 to 3,763 and 786 to 1,368 particles kg (Klein et al.,
2015). At the Three Gorges Dam in China, high surface
water concentrations (192-13,617 particles km?) have been
documented, which have been attributed to the privation
of wastewater treatment services in lesser communities, as
well as infrastructural challenges with recycling and waste
disposal (Zhang et al., 2015). Since these studies rely on
visual observation techniques for isolation and analysis, the
actual MP levels may be miscalculated (Reddy et al., 2006).
The emergence and causes of MPs in freshwater matrices
in Africa, Asia, and Europe are addressed (Cepoi et al., 2016;
Rist and Hartmann, 2018; Wu et al., 2018).

MPs were found to be higher in the southern parts
of Lake Huron in North America and Lake Hovsgol in
Mongolia, where there is heavy industry (Zbyszewski and
Corcoran, 2011; Free et al., 2014). In terms of the correlation
between microplastic existence and sewage management,
the authors reported that the population using certain
ingredients, such as microbeads in beauty products that
are incapable to acquire MPs, adds value to the availability
of MPs in freshwater (Eriksen et al., 2013). These workers
also believe that the occurrence of microbeads in samples
was caused by the use of cumulative sewage overflow in
the Great Lakes. Microplastic concentrations may also vary
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depending on how close you are to a wastewater treatment
facility (Hoellein et al., 2014). Microplastic contamination
in freshwater is widespread and global. According to the
findings, MPs have primarily been recorded in Western
Europe and North America (Horton et al., 2017b), parts
of China ( Zhang et al., 2018), the UK (Blair et al., 2019),
Europe (Bordés et al., 2019). MPs identified in these studies
comprise data from water and sediments, as well as a
variety of compositions (Table 1).

4. Microplastics in Freshwater Fishes

Fish is an essential biological component of freshwater
ecosystems with great nutritional and economic importance
around the world. Developing countries account for
around 94% of all freshwater fisheries, providing food
and a livelihood for millions of the world’s poorest
people while also adding to the general economy through
exporting, tourism, and recreation (FAO, 2007). In scientific
research, fish are capable of ingesting MPs (Oliveira et al.,
2013; Mazurais et al., 2015; Bilal et al., 2021), though
considerably higher meditations of MPs than those found
in nature (Costa et al., 2016; Phuong et al., 2016). There
is growing evidence that MPs are encountered by wild
freshwater fish through their gills and/or skin. MP contact
by fish is expected to occur mostly during active feeding
(Abbasi et al., 2018; Hurt et al., 2020). Additionally,
experimental investigations have shown that MP builds
up in the gills (Mak et al., 2019; Roch et al., 2020). As a
result, in addition to ambient contact via breathing and
swimming, passive absorption of MPs is another reservoir of
MPs. Considering that MP dispersion and penetrations vary,
with generally larger loadings in sediments comparable to
overlying surface waters, freshwater fish foraging habitats
should also influence MP encounter rates (Boucher et al.,
2019; Bondelind et al., 2020). Notably, because the amount
of MPs ingested is small, the assimilation of MPs by fish in
situ has been frequently observed. Following MPs ingestion,
there is a risk of linked chemical contaminants leaching
and accumulating in edible tissue. MPs disclosure through
fish may be feasible if MPs can cross the GIT or gill via
transcellular utilization or extracellular dissemination
(Handy et al., 2008).

According to several studies on adult and larval Zebra
fish, MPs were originally consumed before persisting and
causing abnormalities, intestinal damage, and metabolic
changes (Chen et al., 2017; Sleight et al., 2017; Lei et al.,
2018). The identification of MPs in 13 species with
including 35 individuals the study was study conducted
in the Xiangxi River in China, as well as the abundance and
characteristics of MPs found in fishes digestion pathways,
were all reported. Polyethylene and nylon were found in the
digestive tracts of 25.7% of the fish samples evaluated for
MPs (Table 2), according to Zhang et al. (2017). In research
undertaken by Dantas et al. (2012) nylon fragments are
used to assess plastic intake in two drum species, Stellifer
brasiliensis, and Stellifer stellife, as it varies with season and
size class. Plastic was consumed across all species. Fish in
the middle estuary had the most consumed fragments in
their guts during the late monsoon season.
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Table 1. Studies reporting the occurrence of microplastics in freshwater ecosystem.

Location Microplastics type Maximum Abundance/ Reference
sources
Lake Hovsgol, Mongolia PP, PY, PE 20264 items/km? W Free et al. (2014)

River Rhine, Europe
Grade Lakes tributaries, USA
Lakes Winnipeg, Canada
Taihu Lake, China
River Thames Basin, UK

Laurentian Great Lakes,
North America

Lake Poyang, China
Taihu Lake

Dongting, Hong Lakes in
China

Remote Lakes in Tibet
Vembanad Lake, India
Italian subalpine Lakes

Dongting Lake, China

Wubhan, China
River Ravi, Lahore Pakistan

Dutch river delta and
Amsterdam canals

Kelvin River, UK
Carpathian Basin, Europe
The lagoon of Bizerte, Tunisia
Wei River, China
Flemish rivers, Belgium
Bloukrans River, Australia

Dutch wastewater treatment
plant effluent, Netherlands

WWTP effluent Scotland

Los Angeles, USA
Oldenburg, Germany
Helsinki, Finland
Rivers Germany
Tamar Estuary, UK

Urban Lakes, Hanjiang and
Wuhan Rivers, China

North Sea coast, Netherlands

PLE, APC, PP, PY, PFE
PLE, APC, PP, PY, PFE
PLE, APC, PP, PY, PFE
PM, Methacrylate PC
Cellophane, PLE, PP
PP, PY, Polycarbonate

PP, PE
cellophane, PP, PLE
PP, PE, PC

PP, PE
PE, PY, PLE
PE, PY, PP

PE, PY

PE, PY
PE, PP
Not detected

Fibers
PE, PP and PY
PP and PE
Fibers
Not identified
Not identified
Effluents

Flakes, fibers, film, beads,
foam

Irregularly shaped fragments
Particles, fibers
films, spheres
foam, fibers, pellets, films
Floating plastic debris

Colored granules, films,
pellets, fiber

Colored granules, films,
pellets, fiber

892777 items/km? W
0.05 to 32 items/m> W
52508-748027 items/km?> W
4.4-258 items/LW
185-660 items/kg S
0.85-0.92 g/cm* SW

5-34 items/L W
3.4-25.8 Items/L W
1250-4650 n/m? SW

20,264 particles/km W
96-496 particles m2 S
25000 items/m? SW

320-480 items/m? And 200-
1150 items/m? SW

1660.0-8925 particles/m SW
2074 + 3651 MPs/m* W
NA

0.26685 g/L S
0.4716 g/L SW
2106 g/LS
0.918 g/L SW
0.0153 g/LW
0216 g/L S
0.00297 g/ E

250e15700/m* E

0.002/m* E
10e9000/m* E
5e2000/m? E

2.9e214/m? SW
0.028/m* SW
1660 e8925/m* SW

27000/m?* SW

Mani et al. (2015)
Baldwin et al. (2016)
Anderson et al. (2017)
Paul-Pont et al. (2016)
Horton et al. (2017a)
Driedger et al. (2015)

Yuan et al. (2019)
Su et al. (2016)
Wang et al. (2018)

Free et al. (2014)
Sruthy and Ramasamy (2017)
Sighicelli et al. (2018)
Jiang et al. (2018a)

Wang et al. (2017)
Irfan et al. (2020)
Leslie et al. (2017)

Blair et al. (2019)
Bord6s et al. (2019)
Toumi et al. (2019)

Ding et al. (2019)

Slootmaekers et al. (2019)
Nel et al. (2018)
Van Wezel et al. (2016)

Murphy et al. (2016)

Carr et al. (2016)
Mintenig et al. (2017)
Talvitie et al. (2017)
Heb et al. (2018)
Sadri and Thompson (2014)
Wang et al. (2017)

Karlsson et al. (2017)

Notes: PP (Polypropylene), PY (Polystyrene), PE (Polyethylene), PLE (Polyester), APC (Acetyl Polyvinyl Chloride), PC (Polyvinyl Chloride), PM
(Polymethylene), WWTP (Waste Water Treatment Plants) and NA (Not applicable).

Polyethylene reduces the toxicity of pollutants (pyrene)

on the Pomatoschistus microps (found in estuaries) in
Portugal (Oliveira et al., 2013). When microplastics

Brazilian Journal of Biology, 2024, vol. 84, 272524

were prevalent, fish subjected to pyrene died later
(Oliveira etal., 2013). Three significant catfish species from
the South Western Atlantic estuaries (Cathorops agassizii,
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Table 2. Studies on microplastics in freshwater fishes.

Taxa

Location

Type of polymers

Concentration of MPs

Reference

European flounder
(Platichtyhys flesu)
and European smelt
(Osmerus eperlerus)

Bluegill (Lepomis

macrochirus) and

longear (Lepomis
megalotis)

Gudgeon (Gobio gobio)

Thirteen different fish
species

Forty-six different
fish spp.

Eleven fish species

Thirteen Fish Spp.

Drum species (Stellifer
brasiliensis and Stellifer
stellife)

Common goby,
(Pomatoschistus
microps)

Catfish species

Gerreidae Fish

(Oryzias latipes)

gudgeons (Gobio
gobio)

African catfish (Clarias
gariepinus).

Goldfish (Carassius
auratus)

Zebra fish (Danio rerio)
Carassius carassius
Carassius auratus

Acipenser
transmontanus

Clarias gariepinus

Fathead minnow
(Pimephalespromelas)

Rastrilleger kanagurta
and Epinephalus

River Thames, Uk

Brazos river Basin, USA

Eleven French River

Xiangxi Bay of three
gorges reservoir, China

Amazon river estuary

Rio de la Plata estuary,
Argentina

Xiangxi River, China
Tropical estuaries,
Brazil

Estuaries, Portugal

South Western
Atlantic estuaries, a
tropical estuary of the
Brazilian Northeast

Tropical estuary in
Northeast Brazil

Brackish, USA

French rivers, France

Malaysia

Canada, USA

China

Malaysia

Germany

India

PY, PA, PE

PY, PA, PE

PY, PA, PE
PA, PE

PA, PE

PA, PE

PE

Poly filament nylon

PE and Pyrene

Nylon fragments and
hard plastic

Blue nylon fragments

PE
Fiber and pellets

PN (Phe)- loaded
low-density PE (LDPE)
fragments

Microbeads
microfibers

PS
PE,
PP
PE

PN (Phe)- loaded low-
density PE

PY and PC

PE and PP

75%, 20%

12%
25%

1.2 to 5.0 items/
individual

19.2 items/individual

25.7% fish spp.

6.9 and 9.2% of
individuals spp.

Not identified

17% and 33% of
individuals spp.

4.9 and 33.4% of
individuals

Not Identified
12% of individuals

-3 particles/50
retained

20-2,000 pg L1
NA
NA
NA

(50 or 500 mg/L)
PS: 41.0 nm, PC: 158.7

nm

ND

McGoran et al. (2017)

Peters and Bratton
(2016)

Sanchez et al. (2014)

Zhang et al. (2017)

Schmidt et al. (2018)

Pazos et al. (2017)

Zhang et al. (2017)

Dantas et al. (2012)

Oliveira et al. (2013)

Possatto et al. (2011)

Ramos et al. (2012)

Rochman et al. (2013)
Sanchez et al. (2014)

Karami et al. (2016)

Grigorakis et al. (2017)

Lu et al. (2016)
Mattsson et al. (2017)
Grigorakis et al. (2017)
Rochman et al. (2017)

Karami et al. (2016)

Greven et al. (2016)

Kumar et al. (2018)

Notes: PY (Polystyrene), PA (Polyamide), PE (Polyethylene), LDPE (Low-density polyethylene), PS (Polystyrene), PP (Polypropylene), PN
(Phenonthrene) (Polyvinyl Chloride), NA (Not applicable) and ND (Not identified).

individuals from all three species. Plastic was consumed
by all size-classes (Possatto et al.,2011; Ramos et al., 2012).

Cathorops spixii, and Sciades herzbergii) were evaluated
in a tropical estuary. Plastics have been consumed by
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Microplastic item intake by three Gerreidae fish species
(Eucinostomus melanopterus, Eugerres brasilianus, and
Diapterus rhombeus) in a tropical estuary in Northeast Brazil
was evaluated for three distinct size classes. The number
of ingested fragments varied across size classes. In the
United States, laboratory research was done to examine the
danger of compounds sorbed on MPs in Japanese medaka.
Toxins sorbed on microplastics bioaccumulate in fish,
causing liver toxicity. Microplastic accumulation in fish can
result in liver glycogen reduction (Rochman et al., 2013).

Sanchez et al. (2014) investigated the presence of MPs
in the GIT of gudgeons (Gobio gobio) in French rivers.
He reported the presence of MPs in the digestive tracts
of 13% of gudgeons (Sanchez et al., 2014). The frequency
of MP consumption in fish samples was correlated with
their food intake strategies. Polystyrene was found in
freshwater zebrafish (D. rerio) in China. Polystyrene leads to
inflammation and lipid acquisition and metabolic changes in
zebrafish (Lu et al., 2016). Oliveira et al. (2013) determined
whether polyethylene microspheres affect the hazard of
pyrene to common goby juveniles (Pomatoschistus microps).
Microplastics raised biliary pyrene metabolite levels and
prolonged pyrene-induced fish mortality.

Chen et al. (2017) analyze the toxicity of MPs and nano
plastics on zebrafish (D. rerio) larvae. MPs had no profound
impacts; whereas nano-plastics hindered larval motility
by 22% in the last nightfall period, substantially reduced
larvae body length by 6%, and impeded acetylcholinesterase
activity by 40%. Moreover, oxidative impairment and body
length decrease were recognized as the major causes of
hypoactivity. Karami et al. (2016) investigated the impact
of virgin or Phe-loaded low-density polyethylene bits on
several biomarker responses in juvenile African catfish
(Clarias gariepinus). In the C. gariepinus brain, one or both
Phe treatments enhanced the degree of tissue change
(DTC) while lowering the transcription levels of forkhead
box L2 (foxl2) and tryptophan hydroxylase 2 (tph2). This
study highlighted the ability of virgin LDPE fragments to
cause toxicity and change the detrimental effects of Phe
in C. gariepinus.

A study examined the effects of polystyrene-MPs
(40 mm), and cadmium (Cd) on early juvenile discus fish
Symphysodon aequifasciatus. MPs and Cd had no negative
consequences on growth or survival, according to the
findings (Wen et al., 2018). However, when exposed to Cd,
the aggregation of Cd in the body of the fish is reduced with
higher MP dosages, as evidenced by a lower metallothionein
content (Wen et al., 2018). Haghi and Banaee (2017)
studied the impact of paraquat and microplastics on blood
biochemical markers in common carp (Cyprinus carpio).
Blood biochemical analysis found that 0.4 mg L' paraquat
and a combination of paraquat and microplastic ingestion
increased aspartate aminotransferase (AST), alkaline
phosphatase (ALP), and glucose levels. Albumin levels
have risen dramatically when fish were treated with a
combination of paraquat and 2 mg L-! microplastics.

Polystyrene and polycarbonate nano-plastic were
described in plasma, and the effects of polystyrene and
polycarbonate nano-plastic on the fathead minnow’s
immune system were investigated. When neutrophils were
subjected to PSNP or PCNP, there was a significant elevation
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in primary granule degranulation and the production of
neutrophil extracellular traps (NETs) compared to non-
control, but the oxidative explosion was less affected
(Greven et al., 2016). The researchers (Zhang et al., 2019)
investigated the effect of polystyrene microplastics
(PS-MPs) on the dispersion and bioaccumulation of
roxithromycin (ROX) in the freshwater fish red tilapia
(Oreochromis niloticus), as well as their interacting
biochemical consequences in red tilapia. PS-MPs were
observed to increase ROX bioaccumulation in fish tissues
when contrasted to ROX exposure alone. MPs may influence
the fate and toxicity of other organic contaminants in fish.

Microplastics (MPs) were found in the gastrointestinal
contents of coastal freshwater fish in the Rio de la Plata
Estuary. The existence of MPs was confirmed in 100% of
the fish. The concentration of MPs in stomach contents
was substantially greater near sewage discharge. There
was no correlation discovered between the number of
MPs and the length, weight, or eating habits of the fish.
The variations in the mean number of MPs in fish reported
in this study suggest that environmental MP accessibility
may play a substantial role in determining the inequalities
seen among sample locations surveyed (Pazos et al., 2017).
Jabeen et al. (2018) fed three different types of virgin MPs
types, including fibers and pieces to Goldfish (Carassius
auratus. When contrasted to the control, fish exposed to
plastic lost substantial weight. Fibers were discovered in
the gills and the GIT, and feces were unlikely to collect in
the GIT. The livers of fish open to fibers showed obvious
and severe changes. The distal gut revealed more significant
and severe alterations than the proximal intestine, most
likely owing to fiber consumption. Fish subjected to
fragments had the incidence of reverting and circulatory
abnormalities, notably in the upper and lower jaws, and in
the lower jaw and liver, correspondingly. Polyamide, rayon,
and polyethylene were the primary polymers detected
through ATR-FTIR (Pegado et al., 2018).

The presence of MPs in two species of fish, Epinephalus
merra and Rastrilleger kanagurta was studied in India.
Particles were found in the intestines of 12 of the
40 fish tested. FTIR analysis revealed the microplastics as
polyethylene and polypropylene (Kumar et al., 2018). Silva-
Cavalcanti et al. (2017) tested for microplastic consumption
of Hoplosternum littorale, a prevalent freshwater fish
ingested in semi-arid South America. We discovered that
fish swallowed more plastics in urbanized areas of the river
and that MP consumption was inversely linked with the
richness of other food items in individual fish guts. The goal
of the study was to see how these pollutants affected the
swimming capability of juvenile Dicentrarchus labrax.
Microplastics, mercury, and all of the mixtures lowered
fish swimming velocity and resistance time considerably.
Furthermore, behavioral abnormalities such as sluggish and
irregular swimming behavior were found (Barboza et al.,
2018b). A study in China looked at plastic pollution in six
kinds of freshwater fish. Micro- or microplastics were
identified in all of the species. The fiber in form, translucent
in color, and cellophane in substance dominated the plastics
(Jabeen et al., 2017). The study’s goal was to count the
number and kinds of microplastics consumed by fish in
different freshwater of the Gulf of Mexico. Microplastics
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were detected in the digestive systems of 8% of the
freshwater fish and 10% of the marine fish examined in
this research. The percentage of microplastics ingested
by fish in non-urbanized streams was lower (5%) than in
one of the urbanized streams (Neches River, 29 percent)
(Phillips and Bonner, 2015).

Research undertaken by Peters and Bratton (2016)
investigated MPs and synthetic fiber intake by longear
(Lepomis megalotis), bluegill (Lepomis macrochirus), and
sunfish (Centrarchidae sp.) in the Brazos River Basin, USA.
A total of 436 sunfish were caught, and microplastics were
found in 196 (45 percent) of their guts. Because microplastic
consumption is so common, further research is needed
to determine the residence time of microplastics inside
the stomach and intestines, the probability of food web
transmission, and the harmful effects on animal health.

Bivalve mollusks are now the major source of food
exposure to microplastics (shellfish). Shellfish are a
significant food source, accounting for roughly 22 million
tons of fish output via capture and aquaculture in
2012 (almost 15 million USD) (Barange, 2018). Bivalves
eat by pushing huge amounts of water through their
shells’ pallial chamber, keeping particles in suspension on
their gills for later digestion (Ward and Shumway, 2004).
MPs have also been found in wild and cultured shellfish
intended for human ingestion. Microplastic infestation
of shellfish is not restricted to China. Microplastic fibers
have polluted mussels in Canada and Belgium (Witte et al.,
2014). Microplastics were discovered from farmed mussels
and store-bought Pacific oysters in Belgium after a 3-day
depuration period. According to the average retrieved
amount, the European shellfish user may invest up to
11,000 microplastics each year (Van Cauwenberghe and
Janssen, 2014).

Potential MPs have been found in meals other than
seafood. Microfibers and fragments have been found
in sugar and honey (Liebezeit and Liebezeit, 2013).
Microplastics have recently been discovered in fifteen
different kinds of store-bought sea salt. There have been
reports of up to 681 MPs/kg of oceanic salt down to 45 m.
The utmost frequent form of plastic identified was PET,
followed by PE. The pollution was most likely caused by
the coastal waters used to create sea salt (Yang et al.,
2015), Though MPs may be available as a result of air
accumulation at certain locations. Microplastics are
presently contaminating food meant for human ingestion,
with unknown consequences.

5. Microplastics as a Vector for Pathogen Transfer
and Biotoxins

Microplastics pollution is a new ecological concern
that poses a risk to fish and human health. Fish is being
contaminated with MP worldwide and it finds its way to
human body through food (Bilal et al., 2023a). A major threat
to human health is created by MPs in seafood. The human
diet must include seafood. There is a significant threat that
intestinal MPs infection will spread to other body systems.
Two of the most typical ways that MPs enter the human
body are endocytosis and persorption. Toxicological effects
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may have a negative impact on fish performance, which is
important to take seriously as humans frequently consume
fish as part of their diets (Hassan et al., 2021a; Bilal et al.,
2023b). Toxins have the potential to cause serious health
problems in humans. A few trials on fish have revealed
that MPs and their related toxins bio-accumulate and
cause issues such as intestinal injury and alterations in
metabolic profiles (Li et al., 2018). MP might serve as a
transporter of environmental toxins from water to fish.
Even though different modeling studies reach contrasting
conclusions (Antunes et al., 2013; Koelmans et al., 2013).
According to an investigation, fish bare to pollutants sorbed
to MP bioaccumulate these chemicals and have harmful
effects (Zettler et al., 2013). MP can serve as a carrier for
waterborne infections in humans. The point that the
microbes on MP are different from those in nearby water
(Harrison, 2012; Zettler et al., 2013), implies that MP can
act as a new habitat. To date, the dynamic interactions
between microorganisms and microbial assemblages as
major players in aquatic ecosystems/food webs and MP,
mainly in freshwater, have remained unclear and warrant
additional investigation.

One of the commonly stated possible environmental
activities for artificial nanoparticles and MPs is their
capability to act as carriers for other contaminants.
Synthetic nanoparticles and primary MPs will interact
with other chemical compounds such as preservatives. As a
result, the particles are intentionally and unintentionally
mixed with other chemical compounds. An ordinarily
passive and non-toxic bit may become a transporter
of harmful substances as a result of this mechanism
(Teuten et al., 2007). Engineered nanomaterials have been
shown to absorb and transport organic pollutants in the
aquatic environment (Hofmann and Von der Kammer,
2009; Hartmann and Baun, 2010; Vickers, 2017).

The biological consequences include the potential for
microorganisms to be transferred geographically. Since
plastics are usually extra durable, microbes can rapidly
colonize the exterior of MPs and be carried with the MPs
(Lietal., 2018). While this association is well understood
and its consequences, such as disease development in a
sterile environment, are explored, there is little literature
published to show the broad biofilm (Mc-Cormick et al.,
2014). Microplastics obtained from the river in Chicago
were subjected to high-throughput sequencing analysis.
They discovered that some of the committed taxa were
plastic-decaying entities, implying that MPs can transfer
microbial accumulations in freshwater. Their research
also highlighted the possibility of pathogenic wastewater-
allied bacteria being disposed into waterways via MPs
with the organisms attached. A survey on MPs-linked
microbes in the Yangtze Estuary reported the existence of
pathogenic organisms on microplastics as well (Jiang et al.,
2018a,b). Briefly, gene sequencing studies suggested
that MPs can act as a carrier for the transmission of
impending pathogens such as Arcobacter and Vibrio
spp. (Hadi et al., 2008; Zettler et al., 2013; Harrison et al.,
2014; McCormick et al., 2014; Amaral-Zettler et al., 2015).
Schmidt et al. (2014) found precise outcomes for Vibrio
taxa identifying the presence of pathogenic organisms
influencing animals such as fish samples. The existence of
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Vibrio spp. on marine plastics was only recently validated
by (MALDI-ToF MS) (Kirstein et al., 2016). In research
carried out by (Kirstein et al., 2016), V. fluviales, and V.
parahaemolyticus were found on MPs. These species, in
addition to alginolyticus, were discovered on plastics
accumulated in the brackish Baltic Sea.

6. Possible Solutions and Control Strategies

Microplastic contamination is a worldwide ecological
issue. The harm instigated by MPs contamination is not
confined to a fixed place, and its impression and harm are
worldwide. As a result, the administration and mitigation
of MPs contamination necessitate global assistance and a
coordinated response from all governments. On the one
hand, active involvement in international conferences
is suggested to improve international interaction
and coordination, treatment approaches, and policy
recommendations for the prevention of MPs contamination
(Gong and Xie, 2020; Hassan et al., 2020a). Source
reduction is a crucial step in reducing MPs contamination.
Microplastics should be controlled at the source by strong
rules, and the manufacture and trade of products that might
pollute the environment with MPs should be forbidden.
Microplastics, such as microbeads, have been banned for
industrial usage in various countries due to their negative
consequences. The United States, for example, outlawed
the use of microbeads in 2015 with the adoption of the
Microbead-Free Water Act (Auta et al., 2017).

The advancement of the biological elimination of
microplastics has piqued the interest of many people.
Some bacteria in the environment are capable of breaking
down microplastics (Ball, 2017). Biodegradable plastics
can be tainted by ambient microbes after they have been
ditched. It is currently an efficient method of avoiding and
regulating microplastic pollution, as well as an excellent
solution for non-biodegradable plastics. At the same time,
due to processing costs, breakdown efficacy, and other
limitations, biodegradable polymers cannot completely
replace conventional plastics shortly (Gong and Xie, 2020).
Filter feeders like bivalves can deliver nutrients from the
water column to the benthic zone of rivers and lakes via
wastes and pseudo feces. The filter feeder bivalve Anodontites
trapesialis was evaluated as a latent sentinel organism for
freshwater effluence in the South American Pantanal region.
Anodontites trapesialis can be regarded as a promising
sentinel organism for detecting microplastic contamination
in freshwater (Moreschi et al., 2020). In many developing
and least developing countries, there are no precise rules
governing MPs contamination. It does, still, have legislation
in place in its capital that governs the usage of plastic such
as polyethylene bags. These plastics-ban regulations will aid
as afirst phase in the development of additional regulations
to combat plastic contamination.

7. Conclusion

MPs have been detected in numerous sites in the world,
triggering extensive public concerns. Freshwater systems
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have equivalent or perhaps worse MPs contamination
than marine environments. However, Microplastics
quantification and toxicity in freshwater ecosystems have
been underestimated, ignored, and not reported much as
compared to the marine ecosystems, their abundance,
influence, and toxicity in freshwater biota are not less than
a marine ecosystem. The current status of microplastic
contamination in freshwater was summarized in this
review article. The potential environmental impacts, such
as ingestion and toxicity to freshwater fish, were discussed.
As a consequence, future investigations of the incidence
and ecotoxicology of microplastics on freshwater fish are
needed to fully understand the issue. Progress on this
concern entails a strong systematic foundation as well as
relevant legislation at global and national levels (EEA, 2012).
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