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abstract 

Introduction: Pathologists currently face a substantial increase in workload and complexity of their diagnosis work on different types of 
cancer. This is due to the increased incidence and detection of neoplasms, associated with diagnostic subspecialization and the advent 
of personalized medicine. There are numerous treatments available for different types of cancer, and the diagnosis must be dispensed 
quickly and accurately for each case. Deep learning is a tool that has been used in daily life, including image detection, and there is 
growing interest in its application in Medicine and especially in Pathology, where it has a revolutionary potential. Objective: In this article, 
we present deep learning, in particular convolutional neural networks, as a potential technique for the analysis of digitized images of 
histopathological slides, detecting identifiable patterns in an automated manner, introducing the possibility of applying this technology as 
an auxiliary tool in the diagnosis of neoplasms, especially in gastric cancer, the object of this preliminary study. Method: From a database 
of digitized images of histopathological slides representative of gastric cancer, we identified three morphological patterns of neoplasia, as 
well as non-neoplastic tissue patterns, with which we train a convolutional neural network algorithm, designed to identify and categorize 
similar images within these standards, in an automated manner. Results: The results of identification and automatic classification in the 
defined categories were satisfactory, with ROC curves above 0.9. Conclusion: The results show the potential application of convolutional 
neural networks for digitized slides of gastric cancer, in accordance with international literature findings.

Key words: neural networks (computer); gastric neoplasms; deep learning/machine learning model.

resumo 

Introdução: Os patologistas enfrentam atualmente um aumento substancial na carga e na complexidade de seu trabalho 
diagnóstico em diferentes tipos de câncer. Isso ocorre devido ao aumento da incidência e da detecção de neoplasias, além da 
subespecialização diagnóstica e do advento da medicina personalizada. Existem inúmeros tratamentos disponíveis para diferentes 
tipos de câncer, e o diagnóstico deve ser dado com celeridade e precisão para cada caso. A aprendizagem profunda é uma 
ferramenta que vem sendo empregada no dia a dia, inclusive na detecção de imagens, e há crescente interesse em sua aplicação 
na Medicina, especialmente na Patologia, área em que apresenta potencial revolucionário. Objetivo: Neste artigo, apresentamos a 
aprendizagem profunda, especificamente as redes neurais convolucionais, como uma potencial técnica para a análise de imagens 
digitalizadas de lâminas histopatológicas, detectando padrões identificáveis de forma automatizada, introduzindo a possibilidade 
de aplicação dessa tecnologia como ferramenta auxiliar no diagnóstico de neoplasias, principalmente no adenocarcinoma gástrico, 
objeto deste estudo preliminar. Métodos: A partir de um banco de dados de imagens digitalizadas de lâminas histopatológicas 
representativas de adenocarcinoma gástrico, identificamos três padrões morfológicos da neoplasia, bem como padrões de tecidos 
não neoplásicos, com os quais treinamos um algoritmo de rede neural convolucional, criado com a finalidade de identificar 
e categorizar imagens similares dentro desses padrões, de forma automatizada. Resultados: Os resultados de identificação 
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e classificação automática nas categorias definidas mostraram-se satisfatórios, com curvas ROC acima de 0,9. Conclusão: 
Os resultados evidenciam o potencial de aplicação das redes neurais convolucionais em lâminas digitalizadas de adenocarcinoma 
gástrico, consoantes com a literatura internacional.

Unitermos: redes neurais (computação); neoplasias gástricas; aprendizagem profunda/modelo de aprendizagem de máquina.

resumen 

Introducción: Los patólogos enfrentan actualmente un aumento sustancial de su trabajo diagnóstico en diferentes tipos de cáncer. 
Eso ocurre debido al incremento de la incidencia y de la detección de neoplasias, además de la subespecialización diagnóstica 
y del advenimiento de la medicina personalizada. Hay numerosos tratamientos disponibles para diferentes tipos de cáncer, y el 
diagnóstico debe ser realizado con celeridad y precisión para cada caso. El aprendizaje profundo es una herramienta que ha sido 
empleada en el día a día, incluso en la detección de imágenes, y hay creciente interés en su aplicación en Medicina, especialmente 
en Patología, área en la que presenta potencial revolucionario. Objetivo: En este artículo presentamos el aprendizaje profundo, 
en especial las redes neuronales convolucionales, como una técnica potencial para el análisis de imágenes digitalizadas de 
portaobjetos histopatológicos, detectando patrones identificables de forma automatizada, introduciendo la posibilidad de empleo 
de esa tecnología como herramienta auxiliar en el diagnóstico de neoplasias, principalmente en el adenocarcinoma gástrico, 
objeto de este estudio preliminar. Métodos: A partir de una base de datos de imágenes digitalizadas de portaobjetos histopatológicos 
representativos de adenocarcinoma gástrico, identificamos tres patrones morfológicos de la neoplasia, así como patrones de tejidos 
no neoplásicos, con los cuales entrenamos un algoritmo de red neuronal convolucional, creado para identificar y categorizar 
imágenes semejantes dentro de eses patrones, de modo automatizado. Resultados: Los resultados de identificación y clasificación 
automática en las categorías definidas se mostraron satisfactorios, con curvas ROC por encima de 0,9. Conclusión: Los resultados 
muestran el potencial de aplicación de las redes neuronales convolucionales en portaobjetos digitalizados de adenocarcinoma 
gástrico, en conformidad con la literatura internacional.

Palabras clave: redes neurales/neuronales (computación); neoplasias gástricas; aprendizaje profundo/modelo de aprendizaje 
de máquinas.

Introduction

The anatomopathological diagnosis of neoplastic lesions is 
substantially carried out by the analysis of hematoxylin and eosin 
(HE) stained slides(1), evaluated through an optical microscope 
by a trained pathologist. This method has been used and refined 
since the second half of the nineteenth century(2). Due to the high 
prevalence of cancer and its high mortality in the world population, 
responsible for 9 million deaths in 2016 alone(3), coupled with an 
increasingly personalized medicine, the pathologist’s work has 
encountered numerous challenges. The main challenges detected 
involve mainly the increase in workload, as a consequence of 
both the increased demand due to population growth, and the 
intense subspecialization of the area in response to surgical 
subspecialization(4). Likewise, advances in knowledge about 
different types of cancer and the need for greater accuracy and 
speed in the diagnostic definition also contribute to the increase in 

workload, and the data provided by the pathological examination 
are essential for determining the best treatment available(4). 

In this context, the advent of high-resolution slide scanning 
systems is already a technology available on large scale, allowing 
for excellent quality and resolution of histological whole slide 
image (WSI), widely use in teaching, research and remote 
consulting, giving rise to virtual microscopy(5-10). However, there are 
also no automated programs for analyzing such images or data, 
applicable in clinical routine, which would assist the pathologist 
to streamline the diagnostic process, which still depends on the 
single analysis case-by-case by a trained individual.

The present study addresses a technique that has become 
popular for the past seven years: deep learning, applying it to 
histopathological images, and will be conducted similarly to the 
of Litjens et al. technique (2016)(11). The technique was used to 
diagnose stomach cancer, a malignant epithelial neoplasm that 
affects about 990,000 individuals each year worldwide, leading 
about 738,000 patients to death. It is the fourth most common type of 
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cancer regarding global incidence and the second leading cause 
of cancer mortality worldwide(12). In Brazil, the National Cancer 
Institute [Instituto Nacional do Câncer (INCA)] estimated 13,540 
new cases of stomach cancer among men and 7,750 in women for 
the 2018-2019 biennium; it is the fourth most common type in 
men and the sixth among women(13). 

Deep learning was applied specifically for the gastric 
cancer subtype. Histologically, the diagnosis of this tumor poses 
challenges due to its morphological heterogeneity, partly reflected 
in the diversity of histopathological classification schemes. The 
World Health Organization (WHO) adopts a strictly descriptive 
histological subclassification, which recognizes five main types 
of gastric cancer, the following categories designated: tubular, 
papillary, mucinous, poorly cohesive (including the signet ring 
cell variant), and mixed(14). Other classification systems used 
by pathologists include the Lauren system, with the following 
subclassifications: diffuse, intestinal and undetermined types(15), 
consisting of the microscopic description of diffuse type carcinoma 
in poorly cohesive cells with little or no glandular formation; 
whereas the intestinal type refers to carcinomas with glandular 
formation with varying degrees of differentiation(14). There is also 
the classification of Carneiro, which recognizes four categories: 
glandular, isolated cells, solid and mixed(16) . It is also worth 
mentioning the premalignant lesions, which include neoplastic 
epithelial proliferations with cellular and architectural atypia, 
but with no evidence of invasion of the lamina propria(14). 
A combination of these classifications was used in the study and 
will be described in the methodological section.

Deep learning, a technology that has been applied in several 
areas of knowledge(17-19), as previously mentioned; it has been 
shown to be promising as an auxiliary tool in the detection and 
in the histological diagnosis of certain types of neoplasms, such as 
prostate cancer and breast cancer(11). It is a family of algorithms 
that use large databases to detect and learn to recognize relevant 
patterns automatically without relying on laborious manual 

extraction of quantitative data for each set(18, 19). It is divided into 
two groups: unsupervised and supervised learning. The first one, 
used in this study, is the one in which, for each input sample, there 
is a correct answer that is presented to the training algorithm.

A specific technique for modeling within the family of deep 
learning algorithms, named convolutional neural network, was 
used. Its differential is that it contains one or more convolutional 
layers in its topology, indicated by the letter C in Figure 1. The 
learning process consists of updating the weights of the links 
between the nodes of the neural network layers to the sample set. 
A convolutional layer will try to learn the patterns (features) of the 
samples presented through the dynamic process of updating their 
weights. The process is repeated iteratively, that is, it is repeated 
several times to reach a result and each time generates a partial 
result that will be used the next time; and the algorithm operator 
sets a time for training to be interrupted. The time is called epoch 
and each epoch unit corresponds to one pass through all available 
samples. In the following epoch, all samples will be revisited 
during the weights update.

Our study investigates the application of convolutional neural 
network in the identification of gastric cancer in high resolution 
scanned images obtained from histopathological slides stained 
by the HE method. We, therefore, investigate the possibility of 
associating such a method with the pathologist’s work which, in 
the future, may be useful in meeting the challenges of current 
practice.

Materials 

Fifty-five whole images of histological slides (WSI) from the 
archive of the Pathology Laboratory of the São Paulo State Cancer 
Institute [Instituto do Câncer do Estado de São Paulo (ICESP)], 
with previous diagnosis of gastric cancer were obtained through 
a 3D Histech P250 slide scanner, using a 40× objective, resulting 

figure 1 – Convolutional neural network processing flow used to detect the five classes defined for gastric cancer in HE-stained tissue slides, digitized. The four layers indicated with C 
(convolutional layers) can be considered as feature extraction stages in which non-user-defined features are consecutively extracted from the image fragment. The layers indicated by the 
letter M are max-pooling layers and reduce the size of the image, forcing even more iterations between fragments. The last three layers F are the “classification” type which, based on the 
extracted features, indicate the final classes of each sample

HE: hematoxylin and eosin.
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in a resolution of 0.19 µm/pixel. After digitization, for this initial 
study, six slides with minimal histological processing artifacts 
representative of the different gastric cancer subclassifications were 
selected and viewed using the Pannoramic Viewer software, version 
1.15.4. From these, 251 representative areas were obtained, with an 
increase of 20× (1145 × 707 pixels), corresponding to the different 
morphological variations of the adenocarcinoma and also to the 
representative areas of the normal gastric epithelium and other 
non-epithelial and non-neoplastic tissues, according to the criteria 
listed below: 1. non-epithelial normal tissues (NT) – any area of 
the lamina where there is no normal or neoplastic epithelium, 
containing broad representativeness of connective, muscle, 
vascular, adipose tissues, and lamina propria. Fifty representative 
areas were selected; 2. normal gastric epithelium (NG) – fundic 
and pyloric gastric epithelium with no metaplastic, dysplastic 
or neoplastic changes. Fifty representative areas were selected; 
3. neoplastic gastric epithelium/tubular gastric adenocarcinoma 
(TGA) – gastric epithelium with moderate dysplasia and gastric 
cancer with glandular formation. Fifty representative areas were 
selected; 4. solid-type gastric adenocarcinoma (SGA) – solid type 
gastric cancer with no gland formation. Forty-one representative 
areas were selected; 5. diffuse/dyscohesive gastric carcinoma 
(DGC) – gastric cancer with dyscohesive cells and signet ring cells. 
Sixty representative areas were selected.

These categories were created based on the different 
classification systems of gastric cancer, in order to evaluate the 
automated discriminatory power between the presence or absence 
of neoplastic and non-neoplastic gland formation and the presence 
or absence of dyscohesive neoplastic or signet ring cells. Regarding 
the representative areas with neoplastic tissue (designated TGA, SGA, 
and DGC), a minimum of 70% of the total selected area should 
contain the defined histological pattern. Figure 2 illustrates one of 

the 60 representative DGC areas selected with at least 70% of the area 
containing dyscohesive/diffuse gastric cancer type. This value was 
arbitrary, and the area categorization method was chosen because 
it is faster compared to the frame-by-frame separation method by 
manually labeling the slides. These representative areas gave rise to 
the samples used in the present study.

Methods

After selecting these representative areas, they were divided 
into two groups: training-set and testing-set. With the images of 
the training-set, the algorithm was trained. The topology of the 
convolutional neural network used (Figure 1) is similar to 
the neural network described by Litjens et al. (2016)(11), but there 
are some differences: the F3 layer is composed of five nodes, since 
the modeling in this work takes into account five different types of 
classifications and the use of a dropout regularization between the 
F2 and F3 layers. This regularization technique has the function of 
preventing the network from learning very specific patterns of the 
presented data set, generating an overfitted model, that is, a model 
that fits very well with the observed data set, but proves ineffective 
to predict new results. The data input tensor has the size of a n × n 
pixels sample in three layers corresponding to the channels R 
(red), G (green), and B (blue), where n is the number of pixels 
in line and column. This three-dimensional matrix of n × n × 3 
dimensions and its subsequent transformations in the network are 
called tensors. Layers C are convolutional, while layers M are max-
pooling. The max-pooling operation layers effectively reduce the 
tensor area, giving the next convolution layer an opportunity to 
learn a pattern related to a new scale of the image. A max-pooling 
layer with a 2 × 2 window size selects one pixel out of four to create 
a new reduced area tensor. This pooling technique enables to 
create a network topology with more layers, hence the term known 
as deep learning. The number of features is a parameter used in 
the convolutional layers and represents the number of different 
patterns that the network will consider when learning. 

The greatest consumption of time involving neural networks 
modelling is to determine the parameters of the network in which 
learning is best according to the chosen metrics. A network that 
is too complex for a given modeling will present unsatisfactory 
results. Another important factor for the success of training for 
modeling, such as pattern recognition in images, is the amount of 
samples available for learning, as often the appropriate number 
of samples reaches around the millions(19). 

At the interface between layers F2 and F3 there is also 
the application of the softmax function, which normalizes the 
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figure 2 – DGC representative area selected for convolutional neural network training 
with at least 70% of the image, containing DGC

DGC: dyscohesive/diffuse gastric carcinoma.
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probabilities of each class. The trained model is able to receiving 
an image of n × n × 3 dimensions, in addition to delivering a 
vector of probabilities with five inputs, one for each class. The 
probability vector is normalized, that is, the sum of the probabilities 
of occurrence is equal to 1.

The metrics used for the evaluation of the algorithm’s 
classification potential were sensitivity and specificity. Sensitivity 
measures the fraction of the number of samples correctly classified 
in the chosen class over the total number of samples belonging to 
this class. Specificity measures the fraction of the number of samples 
correctly classified as not belonging to the chosen class over the total 
number of samples that do not belong to this class. Specificity relates 
to the false negative metric according to the equation FN = 1 – S, 
where FN is the false negative rate and S is the sensitivity. The F1-score 
metric used refers to a harmonic mean of sensitivity and accuracy, 
corresponding to a measure of accuracy of the test, which values 
range from 0 to 1, where 1 is equivalent to perfect accuracy and 
sensitivity. Accuracy measures the fraction of true positives over the 
total amount of positives predicted by the test (true positives and 
false positives). All the results of the metrics were calculated from the 
testing-set (set of test samples not used in training).

Finally, three results will be presented. The first step was 
to determine the ideal sample size to be generated from the 
representative areas that will be input to the convolutional neural 
network. Samples that are too small do not have structures that 
can be significant for class determination. On the other hand, 
samples that are too large require a more complex and difficult to 
parameterize neural network, in addition to significantly reducing 
the amount of samples available and, as previously mentioned, 
thousands or even millions of samples are needed. The second 
result sought was the receiver operator curve (ROC) satisfactory 
for the sample size obtained in the first step. These curves are 
indicative of the discriminative capacity of the algorithm. The 
third and last step is the classification of the samples using 
the best parameters for the optimization of the convolutional 
neural network found in the previous step. 

Results

The sample size is a relevant parameter in modeling planning. 
To determine an optimal size for this study, the F1-score was 
calculated using a variety of different dimensions for the samples; 
a neural network in each case was trained. The dimensions 
(in pixel × pixel) used were: 8 × 8, 16 × 16, 32 × 32, 96 × 96, 
128 × 128, 148 × 148, 198 × 198, and 256 × 256. Figure 3 shows 
the results of the F1-score for all classes according to the sample’s 

lateral size. The results show that the best dimensions were 128 × 
128 and 148 × 148. Then the 128 × 128 size was chosen, because 
even though there was a NG class with a F1-score value higher for 
the 148 × 148 dimension, than for 128 × 128, the other classes 
suffered a penalty. Using a sample size of 128 × 128, the total 
number of samples was 10,040, with 2,000 for NG, 2,000 for TGA, 
1,640 for SGA, 2,400 for DGC and 2,000 for NT.

The ROC curves, indicative of the algorithm’s discriminative 
capacity, referring to the five classes, are shown in Figure 4. The 
class with the smallest area under the ROC curve (AUC) – 0.9795 – 
was NG, which can be considered an excellent performance value; 
this conclusion also extends to the other classes. 
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figure 3 – F1-score curves for all classes according to the lateral size of the sample

NG: normal gastric epithelium; TGA: neoplastic gastric epithelium/tubular gastric 
adenocarcinoma; SGA: solid-type gastric adenocarcinoma; DGC: diffuse/dyscohesive gastric 
carcinoma; NT: non-epithelial normal tissues.
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figure 4 – ROC curves for the five defined classes and their respective AUC

ROC: receiver operator curve; AUC: area under the ROC curve; TGA: neoplastic gastric epithelium/
tubular gastric adenocarcinoma; DGC: diffuse/dyscohesive gastric carcinoma; SGA: solid-type 
gastric adenocarcinoma; NG: normal gastric epithelium; NT: non-epithelial normal tissues.
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Finally, the third result to be presented is the classified 
representative areas. After each sample receives a probability 
vector for each class (the five probability vectors added together 
must equal 1), the greater vector will be the definer of the class to 
which the sample belongs. It is also interesting to know the degree 
of certainty of the classified sample. Figure 5 illustrates the 
results for the five different classes. Unclassified samples are 
the first image of each class (marked with the letter A); the second 
image (marked with the letter B), with its degrees of certainty; 
and the third image of each class (marked with the letter C), the 
classifications generated by the algorithm for the testing-set samples.

hypotheses were raised to explain the high performance of the 
obtained metrics: 1. specific characteristics of gastric cancer – 
the object of study may have a particularly easy identification 
pattern in relation to the normal condition of the tissue, when 
analyzed for the ideal sample size found of 128 × 128 pixels; 
2. particularity of the samples used, which were selected 
aiming to represent as much as possible all the morphological 
possibilities of gastric cancer, avoiding selecting areas with 
many processing artifacts or other possible confounding 
factors. This implies that the chosen images may have made 
the modeling very specific for this set of cases; 3. characteristic 
of the methodology for defining images for sampling. For the 
definition of the learning samples, images were searched in 
which at least 70% of the area of interest corresponded only 
to one of the histological classifications described, avoiding 
capturing areas with combinations of the different classes. It is a 
different process of marking the classes on a total digitized slide 
and a subsequent post-processing step to define the samples and 
the probability vector to be used in the training. According to 
Litjens et al. (2016)(11) these two definitions are not equivalent in 
relation to modeling. This method of defining the samples can 
then bring promising results using as a test samples extracted 
with the same method. It does not necessarily mean that this 
modeling will offer the good results for a prediction in a WSI.

A broader generalization of identification requires more 
data for training with as much diversity as possible. It is known 
that, during preparation of a simple HE histopathological slide, 
numerous factors influence the final result of the histological 
cut under analysis, such as the variation in the intensity of 
the stains used, the processing artifacts and the cut, which can 
produce empty spaces between the tissues, folds and overlaps, in 
addition to the longitudinal or transverse direction of the cut 
in relation to the tissue sample, which can generate different 
image patterns, easily recognized by the human eye-to-brain 
set. However, it is a challenge for the classifying algorithm if 
such variations are not previously included in the training. In 
addition to these technical challenges that generate a diversity 
of patterns, the morphological nature of gastric cancer is quite 
heterogeneous, with the possible presence of different patterns in 
the same lesion, making it a classificatory challenge also for the 
trained pathologist(16). This limitation extends to the definition 
and selection of samples and, consequently, to the classification 
system of the algorithm, predominantly in cases of lesions that, 
when analyzed in a whole slide, fit into the mixed subtype. Thus, 
the current classificatory definitions in the selection of samples 
in this study may be revised in a later study, to be applied not 
only in representative samples, but in a WSI.
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Discussion

In this work the application of convolutional neural networks 
for the recognition of five classes present in histological images 
stained by HE, digitalized, representative of gastric cancer, was 
studied. The identification results were satisfactory according to 
the metrics of the visual inspection of the ROC curves and the AUC 
values, since all the ROC curves presented AUC above 0.97, which 
indicates an excellent algorithm classifying and discriminative 
capacity for all the five defined classes. Comparing these results 
with others identified in the literature(11), three non-exclusive 

figure 5 – Images marked 1 to 5 illustrate the results for the five different classes. The 
images marked by the letter A are unclassified samples; those marked with the letter B, the 
samples and their respective degrees of certainty (according to the gray B-gradation in 
the color code: the darker the greater the uncertainty); and those marked with the letter C, the 
classifications generated by the algorithm, according to the color code in the label

NG: normal gastric epithelium; NT: non-epithelial normal tissues; TGA: neoplastic gastric 
epithelium/tubular gastric adenocarcinoma; SGA: solid-type gastric adenocarcinoma; DGC: 
diffuse/dyscohesive gastric carcinoma.

NG NT TGA SGA DGC B

1 2

3 A

A C

B

C

B

A C

B

C

B

A

5 A C

B

4



7

It is reasonable to expect that a larger set of data for training 
will decrease the performance of the model in relation to the metrics 
presented; however the modeling will have greater generalization 
power regarding the data that can be presented. During the training 
performed, we also verified the robustness of the models according 
to some cases in which a sample is informed to the training as 
belonging to a certain class and the prediction of this model informs 
another class, classifying it correctly, as observed in Figure 4. There, 
we see that in an image with a predominant classification of DGC 
pattern (Figure 4 – 5A), the algorithm identified an area with a 
normal gland, correctly classifying it as NG (Figure 4 – 5C). This is 
because the samples (128 × 128 pixels) are obtained from a larger 
area of a representative image (1145 × 707 pixels) in which only the 
predominant class of the larger image is reported as present in the 
algorithm training.

Conclusion

This preliminary study demonstrated that, for a defined 
sample size of 128 pixels, the algorithm is able to satisfactorily 
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identifying the different relevant structures in the gastric cancer 
image for classification within the five determined classes. It also 
shows that the application of convolutional neural networks for 
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INCA; 2017.

14. Carneiro F, Curado, MP, Franceschi S, et al. Gastric carcinoma. 
In: Bosman FT, Carneiro F, Hruban R H, Theise N, editors. WHO 
classification of tumours of the digestive system. 4 edição. France: IARC; 
2010. p. 48-58.

15. Schaeffer DF, Owen DA. Stomach. In: Sternberg SS, Mills SE, 
Carter D, editors. Sternberg’s diagnostic surgical pathology. 6 ed. 
Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 
2015. p. 1409-46.

e1522020

Jonas Kloeckner; Tatiana K. Sansonowicz; Áttila L. Rodrigues; Tatiana W. N. Nunes



8

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Corresponding author

Jonas Kloeckner  0000-0002-9947-7081
e-mail: jonaskloeckner@hotmail.com

16. Carneiro F. Classification of gastric carcinomas. Curr Diagn Pathol. 
1997; 4(1): 51-9.

17. Hastie T, Tibshirani R, Friedman J. The elements of statistical 
learning: data mining, inference, and prediction. Nova Iorque: Springer-
Verlag; 2009.

18. Deo RC. Machine learning in medicine. Circulation. 2015; 132(20): 
1920-30.

19. Cruz-Roa A. Data-driven representation learning from histopathology 
image databases to support digital pathology analysis [thesis]. 
Universidad Nacional de Colombia; 2015.

Multi-categorical classification using deep learning applied to the diagnosis of gastric cancer

e1522020




