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ABSTRACT

Rationale: The development of closed-loop devices suitable for use in the treatment of epileptic patients
would very likely rely on the adequate development of paradigms able to forecast the occurrence of seizures.
In this paper, we studied the usefulness of approximate enthropy, of a non-linear paradigm, in this patient
population. Methods: We applied approximate entropy (ApEn) analysis to study the variability in the
complexity of the peri-ictal electrocorticogram (ECoG) of patients with refractory epileptic seizures of the
temporal lobe origin. Three patients were implanted with chronic subdural grids. The ApEn algorithm
measured the complexity of interictal, peri-ictal and ictal phases. We selected one representative channel
disclosing interictal activity for each patient and two channels per patient with ictal recordings. Results: In
all patients, we found one channel where the interictal activity registered in the ECoG was associated with
high complexity and where ApEn was higher than 0.59. But in the other two channels, for each patient that
presented interictal/ictal transitions, clinical manifestations of epileptic seizures occurred around 3.5 seconds
after the entropy drop, when entropy was below 0.5. In contrast, when entropy was higher than 0.5, clinical
manifestation occurred 9.5 seconds after the entropy drop. The 3.5 seconds shorter delay possibly indicates
focal activity in the channel analyzed. Conclusions: Our results suggest that ApEn may be a useful instrument
for early detection of epileptic activity. Its application may be indicated for prevention and diagnosis of
epileptic seizures.
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RESUMO

Análise por entropia aproximada da perda de complexidade peri-ictal no eletrocorticograma de pacientes com
epilepsia refratária com origem no lobo temporal
Racional: O desenvolvimento de aparatos retroalimentáveis para o tratamento de pacientes epilépticos de-
penderá em grande parte do desenvolvimento adequado de paradigmas que possam antever as crises. Neste
trabalho, estudamos a utilidade da entropia aproximada (ApEn), um paradigma não-linear, em pacientes
portadores de epilepsia. Métodos: Aplicamos a análise de entropia aproximada (ApEn) no estudo de varia-
bilidade da complexidade do eletrocorticograma (ECoG) de pacientes com epilepsia refratária com origem
no lobo temporal. Três pacientes foram implantados com matrizes de eletrodos subdurais. O algoritmo ApEn
mediu a complexidade das fases interictal, peri-ictal e ictal. Selecionamos um canal representativo de cada
paciente manifestando atividade interictal e dois canais de cada paciente com registro ictal. Resultados: Em
cada paciente, encontramos um canal cuja atividade interictal registrada no ECoG foi associada a alta com-
plexidade com ApEn maior que 0.59. Nos outros dois canais, para cada paciente que apresentou transição
interictal/ictal, as manifestações clínicas das crises epilépticas ocorreram cerca de 3.5 segundos depois após a
queda da entropia abaixo de 0.5. Em comparação, quando a entropia foi maior que 0.5, as manifestações
clínicas ocorreram 9,5 segundos após a queda da entropia. A curta latência (3.5 segundos) indicou possivel-
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INTRODUCTION

There are more than 50 million people with epilepsy
around the world. The apparently unpredictable nature
of the seizures is one of the most devastating features of
epilepsy. A system able to detect seizures in advance might
allow its prevention, reducing morbidity and mortality, and
improving quality of life of epileptic patients.

The electroencephalogram (EEG) is traditionally used
in the identification of epileptic foci(16). It is a noninvasive
measurement of brain‘s dynamic activity and provides a
global spatio-temporal description of the collective
electrical neuronal activity. One of the most important
issues regarding seizure‘s forecast and related analysis is
the access to large ammount of continuous, high-quality,
human artifact-free EEG data, covering all physiological
states relevant to seizures. When surgical treatment is
contemplated, chronic electrocorticography obtained from
subdural electrodes might be indicated(1). Patients are
recorded for a variable period of time (up to 2 or 3 weeks)
to obtain the diagnostic information needed. The ability
to adequately localize the epileptic focus is particularly
valuable when focal cortical resections are planned(10).

Synchronization of neuronal network‘s activity occur
during epileptic seizures(8). Seizure’s precursors come and
go, as attempts to ignite seizures. These attempts may last
for days before special synchronizing event(s) propel
the proccess towards the electrical and clinical seizure
onset. Substantial effort is necessary to analyse these
characteristic findings, which seem to vary from method
to method and from patient to patient. Possibly, these data
could be converted into reliable, on-line systems able
to predict seizures in real time(15). Sharp waves, spikes,
or spike-and-wave complexes might represent epileptic
activity(16). The morphology of these elements has been
correlated with different types of epileptic seizures(9).
Yet, automatic recognition of seizures based on the
morphological aspects needs a large database and long
recordings in order to extract precise information from the
different types of seizures.

Since the early 1990’s, new mathematical approaches
have been applied to EEG signals in order to determine
the spatial localization of the epileptic foci. Recently, new
techniques, based on nonlinear analysis focused in
forecasting epileptic seizures as a tool for the diagnosis and

mente o local de início da atividade focal. Conclusões: Nossos resultados sugerem que ApEn pode ser um
instrumento útil na detecção precoce da atividade epiléptica. Sua aplicação pode estar indicada na preven-
ção ou diagnóstico das crises epilépticas.
Unitermos: entropia aproximada, complexidade, epilepsia do lobo temporal, detecção automática.

treatment of epilepsy. Nonlinear deterministic dynamics
were found in the epileptic process(2). The spatiotemporal
dynamics of epileptic activity significantly changes during
the epileptic process(8). The discrimination of nonlinear
chaotic systems involves establishing an adequate set of
invariant measures, such as fractal spectrum, Lyapunov
exponents and Kolmogorov-Sinai (KS) entropy(11). These
methods require invariant measures to characterize
nonlinear dynamical systems, and their blind application
in analyses of time series may produce spurious results. A
huge amount of clean data is needed, about 10d (where d
is the embedding dimension), for a reliable estimation of
these measures in low-dimensional chaotic systems. Long,
stationary time series of EEG signals are required by those
methods, even if stationarity of the signal is assumed,
although this condition may be inconvenient when dealing
with EEG signals(18). The discrimination power of these
methods is poor and unuseful for accurate temporal
localization of transient events of EEG(6). Moreover,
a low correlation dimension and decrease of fractal
dimension(14) in the EEG signals recorded during seizures
were noted.

Quantification of the complexity of physiological
signals in healthy and pathological conditions has been
the focus of considerable attention(5,12,19,20,21,24). A wide
variety of diseases, as well as aging, appear to degrade
physiologic information content and reduce the adaptation
capacity of individuals. Loss of complexity has been
proposed as a generic feature of pathologic dynamics(22,24).
Entropy-based algorithms quantify the complexity of a
given system. Entropy increases with the complexity (lack
of order) of a time series pattern and decreases when there
are regular (repetitive) patterns.

Recently, a measure of complexity called ApEn has
been introduced by Pincus(20,22). This measure quantifies
the regularity of time-series data, motivated by applications
to short, noisy, data sets. ApEn is suitable to measure
complexity and regularity, especially in a time series of
data obtained from biologic activities that include
both deterministic and stochastic processes(5,21,24). The
approximate entropy (ApEn) algorithm measures the
complexity of the EEG using a temporal slide window. It is
important to remark that this complexity is not an
invariant measure(20). This is useful when dealing with EEG
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signals, since it is difficult to obtain a long transient for a
reliable estimation of the invariant measure. ApEn can
classify complex systems with a value of “N” typically
between 100 and 5000(21) in a diversity of settings,
deterministic, chaotic and stochastic processes, with a
short computational code instruction within a segment
of EEG signal (about 1 second). The capability to
differentiate the changing complexity within such a
relatively small amount of data might allow the use of
ApEn in a variety of contexts(24).

Some reports in which ApEn measuring was carried
out(3,7,13,23) have suggested that paroxismal activity derived
from epileptic seizures in humans seems to be less complex
than the interictal neuronal network‘s activity. The
complexity of the activity of neuronal firing has also
dropped when penicillin was applied(28).

The purpose of our study was the quantification of
regularity of the underlying dynamics of EEG without
establishing the existence of chaos or any estimation of
invariant measures of epileptic seizures. In this study, we
applied ApEn to human ECoG in order to detect
complexity changes in the interictal, peri-ictal and ictal
epochs of patients with refractory temporal lobe epilepsy,
trying to identify and forecast epileptic seizures.

METHODS

Estimation of ApEn

ApEn, as described by Pincus in 1991(20), has been used
to quantify regularity in a time series. It measures the
logarithmic likelihood that runs from patterns that are
close (within r) to m contiguous observations and remain
close (with the same tolerance width r) on subsequent
incremental comparisons. Thus, regular sequences of
patterns have smaller ApEn values, and large ApEn values
indicate random sequences with greater independence or
complexity.

Given N data points, equally time spaced, u(1), u(2),
u(3), … u(N), two input parameters – m and r – must be
fixed to compute ApEn. Parameter m is the length of
compared runs, and r corresponds to a filter. Next,
form vector sequences are formed from x(1) through
x (N-m+1) to {u(i)}, defined by x(i) = [u(i), ..., u(i+m-1)].
These vectors represent m consecutive u values,
commencing with ith point. The distance between vectors
d[x(i),x(j)] is the maximum absolute difference between
the scalar components of vectors x(i) and x(j). Then, one
uses the sequence x (1), x(2), ... x(N-m+1) to compute de
quantity m

riC )( , wich is defined as the fraction of vectors
x(j), inside the sphere centered in x(i) and radius r.
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where ln is a natural logarithm. ApEn was defined by:

ApEn measures differences in probabilities that values
of length 2 will reccur within tolerance r, and the
probability that values of length 3 will reccur to the same
tolerance. High degrees of regularity in the data would
imply that a given run of length 2 often would continue
with nearly the same third value, producing a low ApEn
value.

Clinical data

ECoG recordings were collected from three patients
with refractory temporal lobe epilepsy who were candidates
to surgical resection. These patients have been previously
submitted to chronic subdural grids‘ implantation, and
have been recorded for a period of two to three weeks using
a 32-channel digital video EEG recording system (Oxford-
Medelec).

ApEn analyzed interictal and ictal ECoG recordings.
The location and number of electrodes varied from patient
to patient and their placement was presumably close to
the epileptic focus.

Interictal activity containing no spikes was used as
control for each individual. In order to establish ApEn
convergence rate, we computed ApEn (m,r,N) for r = 0.10
to 0.25 SD (standard deviation) of an ictal segment from
one patient. ApEn reached a plateau for r = 25% and
N = 500 data points, indicating good statistical validity.
We used fixed parameters m = 2, r = 25% and N = 500,
to compute ApEn.

ApEn was applied using a slide window with
N = 500 (around 1sec of ECoG), with overlap of d = 250
(samples), over a standard deviation of signal, with m = 2
and r = 0.25 × SD.

The study was approved by the local IRB.

RESULTS

Convergency of ApEn was tested for r ranging from
0.10 to 0.25. For values smaller than 0.25, more data points
were needed in order to reach a constant plateau. The
best value was obtained with N = 500 and r = 25%. These
results could be seen in Figure 1.

ApEn (m, r, N)  =  [φ 1+m  (r) – φ m  (r)]

Peri-ictal complexity loss as determined by approximate entropy analysis ...
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Figure 1. Convergency rate of ApEn as a function of  the number of points “N” (the number of points used
in the computation), with  m = 2 and r = 25% × SD employing the ictal segment from 11500/256 to
15000/256 seconds, of patient 1 (channel 1).

Table 1 shows representative entropy values for
interictal segments (without spikes) for patients 1, 2 and
3. The correlation between interictal ECoG recordings and
ApEn analysis can be seen in Figures 2 to 4.

Table 2 shows the results of ApEn with the same
parameters N = 500, d = 250 and r = 25%, for the ictal
epochs obtained from patients 1 (channels l and 2), 2
(channels 22 and 23) and 3 (channels 2 and 3). The
correlation between ictal ECoG recordings and ApEn
analysis can be seen in Figures 5 to 10.

Patient Channel EnAp ± S.D.* Epoch 
(seconds) 

1 C6 0.59 ± 0.027 30-35 

2 C7 0.67 ± 0.054 20-25 

3 C22 0.71 ± 0.018 20-25 

* SD = standard deviation.

3 0 3 1 3 2 3 3 3 4 3 5
- 5 0 0
- 4 0 0
- 3 0 0
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

 

P a t i e n t  1  -  c h a n n e l  6

3 0 3 1 3 2 3 3 3 4 3 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7

( s e c o n d s )

( s e c o n d s )

u
V

m
ic

r
o

v
o

lt
s

A
p

E
n

Figure 2. ECoG obtained from patient 1, channel 6. Above: interictal ECoG (5 seconds).
Below: ApEn (500,250,25%) = 0.59 ± 0.027 (mean ± standard deviation).

Table 1. Approximate Entropy – ApEn (500,250,25%) for
interictal segments of the three patients.

Table 2. Approximate Entropy (500,250,25%) of ictal epochs for the 3 patients. From left to right: Column 5 shows the time for
electrocorticographic seizure onset; Column 6 shows the time of ApEn drop; Column 7 shows the time of seizure‘s clinical manifestation
onset; Column 8 calculates the time delay between detection of entropy‘s drop and onset of clinical manifestations; Column 9 calculates the
time delay between detection of entropy‘s drop and the electrocorticographic seizure‘s onset (negative signs denote antecipation of entropy‘s
drop in relation to ECoG or clinical onset).

Patient Channel ApEn ± S.D. Epoch 
(seconds) 

ECoG onset 
(seconds) 

ApEn drop 
(seconds) 

Clinical 
manifestation 

(seconds) 

Delay 
ApEn/clinical 

(seconds) 

Delay 
ApEn drop/EcoG 

(seconds) 

1 C1 0.45 ± 0.92 50 - 55 s 51.5 s 51.0 s 55.5 s -4.5 s -0. 5  s 
1 C2 0.24 ± 0.96 50 - 55 s 51.5 s 52.0 s 55.5 s -3.5 s 0. 5  s 
2 C22 0.56 ± 0.066 27 - 32 s 28.5 s 28.0 s 41.5 s -13.5 s -0. 5  s 
2 C23 0.55 ± 0.079 27 - 32 s 28.5 s 28.0 s 41.5 s -13.0 s -0. 5  s 
3 C2 0.61 ± 0.140 48 - 53 s 49.0 s 50.0 s 59.5 s -9.  s 1. 0  s 
3 C3 0.51 ± 0.160 48 - 53 s 49.0 s 49.0 s 59.5 s -10. 5 s 0  s 
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Figure 3. ECoG obtained from patient 2, channel 7. Above: interictal ECoG (5 seconds).
Below: ApEn (500,250,25%) = 0.67 ± 0.054 (mean ± standard deviation).

Figure 4. ECoG obtained from patient 3, channel 22. Above: interictal ECoG (5 seconds).
Below: ApEn (500,250,25%) = 0.71 ± 0.018 (mean ± standard deviation).

Figure 5. ECoG obtained from patient 1, channel 1. Above: ECoG  showing the beginning of epileptic
activity. Below: ApEn (500,250,25%) = 0.45 ± 0.092 (mean ± standard deviation). Entropy started
its fall 0.5 second before abnormalities were seen in ECoG.

Peri-ictal complexity loss as determined by approximate entropy analysis ...
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Figure 6. ECoG obtained from patient 1, channel 2. Above: ECoG showing the beginning of epileptic activity.
Below: ApEn (500,250,25%) = 0.24 ± 0.096 (mean ± standard deviation). Entropy started its fall 0.5 second after
initiation of ECoG abnormalities.
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Figure 7. ECoG obtained from patient 2, channel 22. Above: ECoG showing the beginning of epileptic
activity. Below: ApEn (500,250,25%) = 0.56 ± 0.066 (mean ± standard deviation). Entropy started
its fall 0.5 second before alterations could be seen in EcoG.
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Figure 8. ECoG obtained from patient 2, channel 23. Above: ECoG showing the beginning of epileptic
activity. Below: ApEn (500,250,25%) = 0.55 ± 0.079 (mean ± standard deviation). Entropy started
its fall 0.5 second before alterations could be seen in EcoG.
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Figure 9. ECoG obtained from patient 3, channel 2. Above: ECoG  showing the beginning of epileptic
activity. Below: ApEn (500,250,25%) = 0.61 ± 0.140 (mean ± standard deviation). Entropy started
its fall 1 second after alterations were noted in EcoG.
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Figure 10. ECoG obtained from patient 3, channel 3. Above: ECoG  showing the beginning of epileptic
activity. Below: ApEn (500,250,25%) = 0.51 ± 0.160 (mean ± standard deviation). Entropy started
its fall coincidently with ECoG abnormalities.

DISCUSSION
Approximate entropy (ApEn) is a statistic estimation

of regularity (or complexity) of a time series. It estimates
whether current patterns remain constant or not taking
into account comparison of future incremental proba-
bilistic events. Persistent patterns indicate regularity (low
entropy) and random patterns indicate complexity (high
entropy). ApEn did not replace statistic measurements
such as mean and standard deviation(21).

ApEn is not invariant under coordinate trans-
formations; it is sensitive to settings of data acquisition
such as scale, sample frequency, filters, etc. For correct
comparisons between sets of data points we must keep the
same parameters N, m and r. Entropy grows logarithmically

with the number “N” points. ApEn is a model of
independent statistics. It compares both stochastic and
deterministic systems.

A statistical bias exists in the calculation of ApEn.
This bias is mainly due to two factors: 1) the concavity of
the logarithmic function used in its definition; generally,
nonlinear unbiased estimators are uncommon (this
observation is valid for algorithms that estimate the
correlation dimension and Kolmogorov-Sinai entropy in
dynamical systems) and 2) a self-matching of the template
vector in the calculation of frequency C, i.e., the frequency
count of vectors. The template vector itself is included in
the calculation of logarithmic probability, as a guarantee
that values of the logarithmic function remain finite. With

Peri-ictal complexity loss as determined by approximate entropy analysis ...
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few x(j) close vectors, within the limits established by r,
the standard deviation may accomplish 20 to 30% of the
statistic calculations by using ApEn.

The computed value of entropy in one moving window
lasts about 2 sec (N = 500 with sample frequency 256
Hz). The calculated of entropy is assigned to the center of
the window. So, there are entropy values assigned to the
first, and last 250 points.

The apen values depende on m, r and N. Based on
several previous works(7), we have set m = 2 and r = 25%
of SD. The choice of N values is trade-off between the
statistical validity of the stimation and temporal resolution
of the characterization. Large values of N gives a better
statistic to estimate ApEn but the apen value correspond
to a large window and one can determine when the events
occurs. In order to chose an adequate value of N we
estimate the ApEn over ictal segment for different values
of N and with r =25% of standard deviation. Fig. 1 shown
ApEn as function of N, we can observe that Apen values
converge around N = 500, after that ApEn almost became
independent of N. In further calculation, we will adopt
this value in order to calculate the entropy.

There were three types of transitions from the
interictal to the ictal phase: 1) Entropy‘s drop was seen
prior to the detection of ECoG abnormalities (patient 1,
channel 1; patient 2, channels 22 and 23); 2) Entropy‘s
drop coincided with ECoG abnormalities (patient 3,
channel 3) and 3) Entropy‘s drop occurred after the ECoG
abnormalities (patient 3, channel 2).

We found a clear discrimination between the inter-
ictal and ictal phases when entropy’s drop occurred prior
to ECoG alterations. We could also observe the profile
described above in patients in whom entropy dropped
coincidently with EEG ictal onset. In patient 3, entropy’s
drop occurred after electrographic ictal onset; entropy‘s
value was higher than 0.5, which was the highest entropy
registered during ictal epochs, although standard deviation
was high. In this patient, we observed that the
electrocorticographic activity gradually intermingled the
pre-existing inter-ictal complex pattern with the ictal re-
gular pattern; this probably delayed entropy’s drop, which
would identify the transition to an ictal phase. This might
well mean that the studied electrodes were not near the
epileptic focus in this patient.

Patient 1 (channel 2) presented the lowest peri-ictal
entropy and high pre-ictal variability. In this channel, there
were low values of entropy prior to the electrographic
manifestation. The difference in entropy’s levels before
and after its drop was small and entropy values were also
very low in general. Clinical manifestations had a very
short delay, possibly indicating spatial proximity to the
epileptic focus. These findings are in agreement with those
reported by others(3,7).

The analysis of interictal epochs showed high entropy
(higher than 0.59) due to a high ECoG complexity. Clinical
manifestations of epileptic seizures occurred around 3.5
seconds after entropy dropped below 0,5. When entropy
was higher than 0.5, clinical manifestations were delayed
around 9.5 seconds.

Our results showed that low entropy preceded early
clinical manifestations. ApEn seemed to be appropriate in
predicting epileptic seizures in patients submitted to
invasive recordings with subdural grids. In some epochs of
ictal activity, entropy analysis estimated values higher than
0.5 before the interictal/ictal transition. In these instances,
the ECoG presented intermingling of both regularity and
complexity. We were able to verify that this might be a
specific characteristic of ictal phases, during which ApEn
primarily detects the complexity patterns, giving rise to
high entropy values.

ApEn was used as a measure of complexity, to quantify
regularity in the ECoG. The ApEn algorithm was applied
using a slide window with previously fixed parameters.
With the computacional processing of one second of a
moving window it was possible to anticipate the
electrographic manifestation in about 0.5 second, in some
patients.

The ability to adequately define the spatial distribution
of epileptic activity might be valuable in order to localize
the epileptic focus when surgical treatment is con-
templated. The use of ApEn would bring high versatility
to the identification of regions with epileptic activity in
long-term ECoG monitoring, especially when data were
obtained from implanted subdural electrodes, which
provide artifact-free signals.

ApEn has recently been applied to measure complexity
of neuronal spiking of CA1 hippocampal cells of rats.
In this model, entropy‘s drop corresponded to loss of
complexity in neuronal spiking(28). The spatial-temporal
dynamics of the epileptic processes, analyzed by non-
linear methods, such as correlation dimension, shows
transference of the dimensionality from high to low states,
representing the synchronization of neuronal activity(15).
Low dimensionality indicates loss of complexity commonly
seen in the epileptogenic process.

Several authors argued that epileptic activity is less
complex than baseline brain activity(4,17,25,26,27). ApEn
algorithm is more robust when compared to the nonlinear
methods. ApEn was appropriate to identify the trends
towards regularity characteristic of an ictal phase, in
patients with epilepsy. It has been possible to forecast
electrographic abnormalities in the ECoG while analysing
small datasets (1 to 2 seconds in duration).

ApEn might prove to be a useful paradigm for
controlling implanted electronic devices, in order to
deliver anti-epileptic drugs or controlling brain electrical
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stimulation for treatment of epileptic seizures. The high
quality of ECoG signals (free of artifacts) enhances the
quality of complexity’s analysis, making it possible to
adequately study the peri-ictal loss of complexity and its
variations as well.
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